Quantifying the Impact of Urban Sprawl on Green Total Factor Productivity in China: Based on Satellite Observation Data and Spatial Econometric Models
Abstract
:1. Introduction
2. Literature Review
2.1. Urban Sprawl
2.2. Impact of Urban Sprawl on GTFP
3. Methodology and Data Sources
3.1. Models
3.1.1. GTFP Evaluation Model
3.1.2. Model for Calculating Urban Sprawl Index
3.1.3. Moran’s I
3.1.4. Econometric Models
3.2. Data Sources
4. Spatio-Temporal Analysis of Urban Sprawl and GTFP
4.1. Urban Sprawl Index
4.2. GTFP Scores
5. Empirical Results
5.1. Classical Models
5.2. Spatial Lag Panel Data Models
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Liu, Y.; Zhao, J.; Li, G. Urban Total Factor Productivity: Does Urban Spatial Structure Matter in China? Sustainability 2019, 12, 214. [Google Scholar] [CrossRef][Green Version]
- World Bank. Urban China: Toward Efficient, Inclusive, and Sustainable Urbanization; World Bank: Washington, DC, USA, 2014. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2021.
- Deng, Y.; Qi, W.; Fu, B.; Wang, K. Geographical transformations of urban sprawl: Exploring the spatial heterogeneity across cities in China 1992–2015. Cities 2020, 105, 102415. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of China. China Urban Construction Statistical Yearbook; China Statistics Press: Beijing, China, 2021.
- Guan, X.; Wei, H.; Lu, S.; Dai, Q.; Su, H. Assessment on the urbanization strategy in China: Achievements, challenges and reflections. Habitat Int. 2018, 71, 97–109. [Google Scholar] [CrossRef]
- Shi, K.; Xu, T.; Li, Y.; Chen, Z.; Gong, W.; Wu, J.; Yu, B. Effects of urban forms on CO2 emissions in China from a multi-perspective analysis. J. Environ. Manag. 2020, 262, 110300. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, H.; Song, W.; Yu, B.; Xiu, C. Normalization of time series DMSP-OLS nighttime light images for urban growth analysis with Pseudo Invariant Features. Landsc. Urban Plan. 2014, 128, 1–13. [Google Scholar] [CrossRef]
- Guo, A.; Yang, J.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Influences of urban spatial form on urban heat island effects at the community level in China. Sustain. Cities Soc. 2020, 53, 101972. [Google Scholar] [CrossRef]
- Shao, S.; Li, X.; Cao, J. Urbanization promotion and haze pollution governance in China. Econ. Res. J. 2019, 2, 148–165. [Google Scholar]
- Khan, S.A.R.; Zaman, K.; Zhang, Y. The relationship between energy-resource depletion, climate change, health resources and the environmental Kuznets curve: Evidence from the panel of selected developed countries. Renew. Sustain. Energy Rev. 2016, 62, 468–477. [Google Scholar] [CrossRef]
- Mitchell, L.E.; Lin, J.C.; Bowling, D.R.; Pataki, D.E.; Strong, C.; Schauer, A.J.; Bares, R.; Bush, S.E.; Stephens, B.B.; Mendoza, D.; et al. Long-term urban carbon dioxide observations reveal spatial and temporal dynamics related to urban characteristics and growth. Proc. Natl. Acad. Sci. USA 2018, 115, 2912–2917. [Google Scholar] [CrossRef][Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. Global Anthropogenic Phosphorus Loads to Freshwater and Associated Grey Water Footprints and Water Pollution Levels: A High-Resolution Global Study. Water Resour. Res. 2018, 54, 345–358. [Google Scholar] [CrossRef][Green Version]
- Cheng, K.; Gao, D.; Zhuang, Y. The Mechanism and Effects of Urban Sprawl on Total Factor Productivity in Prefecture Level Cities of China: Based on DMSP/OLS and NPP/VIIRS Night Light Data. China Land Sci. 2021, 35, 90–100. (In Chinese) [Google Scholar]
- Chen, D.; Lu, X.; Liu, X.; Wang, X. Measurement of the eco-environmental effects of urban sprawl: Theoretical mechanism and spatiotemporal differentiation. Ecol. Indic. 2019, 105, 6–15. [Google Scholar] [CrossRef]
- Han, J. Can urban sprawl be the cause of environmental deterioration? Based on the provincial panel data in China. Environ. Res. 2020, 189, 109954. [Google Scholar] [CrossRef]
- Shao, H.; Xia, H. The impact of urban sprawl on green total factor productivity in China. Resour. Sci. 2020, 42, 790. [Google Scholar] [CrossRef]
- Song, M.; Du, J.; Tan, K.H. Impact of fiscal decentralization on green total factor productivity. Int. J. Prod. Econ. 2018, 205, 359–367. [Google Scholar] [CrossRef]
- Xia, F.; Xu, J. Green total factor productivity: A re-examination of quality of growth for provinces in China. China Econ. Rev. 2020, 62, 101454. [Google Scholar] [CrossRef]
- Wang, J.; Qu, S.; Peng, K.; Feng, Y. Quantifying urban sprawl and its driving forces in China. Discret. Dyn. Nat. Soc. 2019, 2019, 2606950. [Google Scholar] [CrossRef]
- Fulton, W.B.; Pendall, R.; Nguyen, M.; Harrison, A. Who Sprawls Most?: How Growth Patterns Differ across the US; Brookings Institution, Center on Urban and Metropolitan Policy: Washington, DC, USA, 2001. [Google Scholar]
- Kolankiewicz, L.; Beck, R. Weighing Sprawl Factors in Large US Cities. Available online: https://www.numbersusa.com/content/files/pdf/LargeCity%20Sprawl.pdf (accessed on 19 March 2001).
- Galster, G.; Hanson, R.; Ratcliffe, M.R.; Wolman, H.; Coleman, S.; Freihage, J. Wrestling Sprawl to the Ground: Defining and measuring an elusive concept. Hous. Policy Debate 2001, 12, 681–717. [Google Scholar] [CrossRef]
- Frenkel, A.; Ashkenazi, M. The integrated sprawl index: Measuring the urban landscape in Israel. Ann. Reg. Sci. 2008, 42, 99–121. [Google Scholar] [CrossRef]
- Ewing, R.; Pendall, R.; Chen, D. Measuring Sprawl and Its Transportation Impacts. Transp. Res. Rec. 2003, 1831, 175–183. [Google Scholar] [CrossRef]
- Sutton, P.C. A scale-adjusted measure of “Urban sprawl” using nighttime satellite imagery. Remote Sens. Environ. 2003, 86, 353–369. [Google Scholar] [CrossRef]
- Qin, M.; Liu, X.; Tong, Y. Does urban sprawl exacerbate haze pollution–An empirical study of fine particles (PM2.5) in Chinese cities. Financ. Trade Econ. 2016, 37, 146–160. (In Chinese) [Google Scholar]
- Sudhira, H.S.; Ramachandra, T.V.; Jagadish, K.S. Urban sprawl: Metrics, dynamics and modelling using GIS. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 29–39. [Google Scholar] [CrossRef]
- Jat, M.K.; Garg, P.K.; Khare, D. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 26–43. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; He, C.; Sun, Z.; Zhang, D. How does sprawl differ across cities in China? A multi-scale investigation using nighttime light and census data. Landsc. Urban Plan. 2016, 148, 89–98. [Google Scholar] [CrossRef]
- Guan, D.; He, X.; He, C.; Cheng, L.; Qu, S. Does the urban sprawl matter in Yangtze River Economic Belt, China? An integrated analysis with urban sprawl index and one scenario analysis model. Cities 2020, 99, 102611. [Google Scholar] [CrossRef]
- Feng, Z.; Peng, J.; Wu, J. Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities. Habitat Int. 2020, 103, 102227. [Google Scholar] [CrossRef]
- Chen, D.; Lu, X.; Hu, W.; Zhang, C.; Lin, Y. How urban sprawl influences eco-environmental quality: Empirical research in China by using the Spatial Durbin model. Ecol. Indic. 2021, 131, 108113. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.; Shi, K.; Liu, S.; Chang, Z. Exploring the effect of urban sprawl on carbon dioxide emissions: An urban sprawl model analysis from remotely sensed nighttime light data. Environ. Impact Assess. Rev. 2022, 93, 106731. [Google Scholar] [CrossRef]
- Shao, Z.; Sumari, N.S.; Portnov, A.; Ujoh, F.; Musakwa, W.; Mandela, P.J. Urban sprawl and its impact on sustainable urban development: A combination of remote sensing and social media data. Geo-Spat. Inf. Sci. 2021, 24, 241–255. [Google Scholar] [CrossRef]
- Lu, C.; Li, L.; Lei, Y.; Ren, C.; Su, Y.; Huang, Y.; Chen, Y.; Lei, S.; Fu, W. Coupling Coordination Relationship between Urban Sprawl and Urbanization Quality in the West Taiwan Strait Urban Agglomeration, China: Observation and Analysis from DMSP/OLS Nighttime Light Imagery and Panel Data. Remote Sens. 2020, 12, 3217. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Wang, P.; Liu, X.; Yang, F.; Qu, J.J. Spatiotemporal characterization of the urban sprawl and its impacts on urban island in China with DMSP/OLS and MODIS measurements. Theor. Appl. Climatol. 2019, 138, 293–303. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, C.; He, B. Spatial and temporal heterogeneity of urban land area and PM2.5 concentration in China. Urban Clim. 2022, 45, 101268. [Google Scholar] [CrossRef]
- Zhao, X.; Shang, Y.; Song, M. What kind of cities are more conducive to haze reduction: Agglomeration or expansion? Habitat Int. 2019, 91, 102027. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, D. Does urban sprawl exacerbate urban haze pollution? Environ. Sci. Pollut. Res. 2021, 28, 56522–56534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. The Impact of Urban Sprawl on Environmental Pollution: Empirical Analysis from Large and Medium-Sized Cities of China. Int. J. Environ. Res. Public Health 2021, 18, 8650. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X. Effects of urban sprawl on haze pollution in China based on dynamic spatial Durbin model during 2003–2016. J. Clean. Prod. 2020, 242, 118368. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J.; Cao, J.; Ren, S.; Ran, Q.; Wu, H. The spatial spillover effect of urban sprawl and fiscal decentralization on air pollution: Evidence from 269 cities in China. Empir. Econ. 2022, 63, 847–875. [Google Scholar] [CrossRef]
- Shi, X.; Matsui, T.; Machimura, T.; Haga, C.; Hu, A.; Gan, X. Impact of urbanization on the food–water–land–ecosystem nexus: A study of Shenzhen, China. Sci. Total Environ. 2022, 808, 152138. [Google Scholar] [CrossRef]
- Tao, A.; Liang, Q.; Kuai, P.; Ding, T. The Influence of Urban Sprawl on Air Pollution and the Mediating Effect of Vehicle Ownership. Processes 2021, 9, 1261. [Google Scholar] [CrossRef]
- Cheng, Z.; Hu, X. The effects of urbanization and urban sprawl on CO2 emissions in China. Environ. Dev. Sustain. 2022, 1–17. [Google Scholar] [CrossRef]
- Schwaab, J.; Deb, K.; Goodman, E.; Lautenbach, S.; van Strien, M.; Grêt-Regamey, A. Reducing the loss of agricultural productivity due to compact urban development in municipalities of Switzerland. Comput. Environ. Urban Syst. 2017, 65, 162–177. [Google Scholar] [CrossRef]
- Fallah, B.N.; Partridge, M.D.; Olfert, M.R. Urban sprawl and productivity: Evidence from US metropolitan areas. Pap. Reg. Sci. 2011, 90, 451–472. [Google Scholar] [CrossRef]
- Park, J.-I.; Kim, J.-O. Does industrial land sprawl matter in land productivity? A case study of industrial parks of South Korea. J. Clean. Prod. 2022, 334, 130209. [Google Scholar] [CrossRef]
- Monkkonen, P.; Montejano, J.; Guerra, E.; Caudillo, C. Compact cities and economic productivity in Mexico. Urban Stud. 2020, 57, 2080–2097. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Tang, Z.; Zhang, K.; Wang, T. Spatial effects of urban expansion on air pollution and eco-efficiency: Evidence from multisource remote sensing and statistical data in China. J. Clean. Prod. 2022, 367, 132973. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, H.; Cui, X.; Wang, Z. Do compact cities have higher efficiencies of agglomeration economies? A dynamic panel model with compactness indicators. Land Use Policy 2022, 115, 106005. [Google Scholar] [CrossRef]
- Lu, X.; Chen, D.; Wang, Y. Is Urban Sprawl Decoupled from the Quality of Economic Growth? Evidence from Chinese Cities. Sustainability 2020, 12, 218. [Google Scholar] [CrossRef][Green Version]
- Pastor, J.T.; Lovell, C.A.K. A global Malmquist productivity index. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- Oh, D.-H. A global Malmquist-Luenberger productivity index. J. Product. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing Improved Time-Series DMSP-OLS-Like Data (1992–2019) in China by Integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Cui, Y.; Shi, K.; Jiang, L.; Qiu, L.; Wu, S. Identifying and evaluating the nighttime economy in China using multisource data. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1906–1910. [Google Scholar] [CrossRef]
- Doll, C.H.; Muller, J.-P.; Elvidge, C.D. Night-time Imagery as a Tool for Global Mapping of Socioeconomic Parameters and Greenhouse Gas Emissions. AMBIO A J. Hum. Environ. 2000, 29, 157–162. [Google Scholar] [CrossRef]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Econometrics from Cross-Sectional Data to Spatial Panels; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Xiao, H.; You, J. The Heterogeneous Impacts of Human Capital on Green Total Factor Productivity: Regional Diversity Perspective. Front. Environ. Sci. 2021, 9, 713562. [Google Scholar] [CrossRef]
- Jiang, L.; He, S.; Zhou, H.; Kong, H.; Wang, J.; Cui, Y.; Wang, L. Coordination between sulfur dioxide pollution control and rapid economic growth in China: Evidence from satellite observations and spatial econometric models. Struct. Chang. Econ. Dyn. 2021, 57, 279–291. [Google Scholar] [CrossRef]
Description | Mean | S.D. | Min | Max | |
---|---|---|---|---|---|
GTFP | GTFP | 1.172 | 0.248 | 0.678 | 3.105 |
US | Urban sprawl | 0.539 | 0.15 | 0.014 | 0.988 |
FDI | Foreign direct investment | 4776.9 | 9630.613 | 0.343 | 98834.31 |
Edu | Expenditure on education | 4.17 × 105 | 6.23 × 105 | 994.003 | 8.87 × 106 |
Structure | Ratio of the tertiary industry | 37.038 | 8.838 | 11.1 | 85.3 |
FD | Ratio of fiscal expenditure to GUP | 0.163 | 0.086 | 0.043 | 0.916 |
Inno | Ratio of R&D expenditure to GUP | 0.947 | 2.124 | 0.001 | 29.316 |
Moran’s I | Inverse | K3 | Rook | ||||||
---|---|---|---|---|---|---|---|---|---|
LnGTFP | LnTC | LnEC | LnGTFP | LnTC | LnEC | LnGTFP | LnTC | LnEC | |
2005 | 0.041 *** | 0.018 | 0.029 * | 0.181 *** | 0.202 *** | 0.135 *** | 0.163 *** | 0.009 | 0.105 ** |
(2.532) | (1.249) | (1.826) | (4.24) | (4.858) | (3.19) | (3.589) | (0.276) | (2.347) | |
2006 | 0.070 *** | 0.025 * | 0.055 *** | 0.262 *** | 0.226 *** | 0.204 *** | 0.204 *** | 0.064 | 0.155 *** |
(4.103) | (1.67) | (3.274) | (6.088) | (5.497) | (4.751) | (4.471) | (1.526) | (3.411) | |
2007 | 0.061 *** | 0.020 | 0.036 ** | 0.240 *** | 0.313 *** | 0.172 *** | 0.219 *** | 0.086 ** | 0.170 *** |
(3.607) | (1.418) | (2.192) | (5.6) | (7.684) | (4.019) | (4.793) | (2.037) | (3.738) | |
2008 | 0.064 *** | 0.028 * | 0.050 *** | 0.238 *** | 0.261 *** | 0.154 *** | 0.205 *** | 0.103 ** | 0.170 *** |
(3.808) | (1.909) | (3.018) | (5.547) | (6.518) | (3.607) | (4.497) | (2.467) | (3.736) | |
2009 | 0.061 *** | 0.040 *** | 0.041 ** | 0.243 *** | 0.262 *** | 0.158 *** | 0.207 *** | 0.136 *** | 0.158 *** |
(3.645) | (2.617) | (2.51) | (5.664) | (6.538) | (3.704) | (4.532) | (3.229) | (3.474) | |
2010 | 0.065 *** | 0.042 *** | 0.049 *** | 0.274 *** | 0.272 *** | 0.155 *** | 0.193 *** | 0.137 *** | 0.125 *** |
(3.823) | (2.714) | (2.952) | (6.377) | (6.76) | (3.624) | (4.235) | (3.247) | (2.763) | |
2011 | 0.070 *** | 0.042 *** | 0.052 *** | 0.309 *** | 0.334 *** | 0.165 *** | 0.194 *** | 0.132 *** | 0.127 *** |
(4.099) | (2.666) | (3.125) | (7.179) | (8.104) | (3.865) | (4.254) | (3.047) | (2.813) | |
2012 | 0.078 *** | 0.043 *** | 0.056 *** | 0.318 *** | 0.360 *** | 0.171 *** | 0.187 *** | 0.137 *** | 0.114 ** |
(4.548) | (2.682) | (3.333) | (7.393) | (8.648) | (4.003) | (4.099) | (3.131) | (2.529) | |
2013 | 0.064 *** | 0.049 *** | 0.053 *** | 0.309 *** | 0.402 *** | 0.160 *** | 0.142 *** | 0.154 *** | 0.077 ** |
(3.754) | (3.023) | (3.152) | (7.171) | (9.517) | (3.734) | (3.127) | (3.462) | (1.74) | |
2014 | 0.062 *** | 0.052 *** | 0.051 *** | 0.323 *** | 0.388 *** | 0.177 *** | 0.161 *** | 0.161 *** | 0.099 *** |
(3.684) | (3.21) | (3.039) | (7.496) | (9.214) | (4.128) | (3.542) | (3.628) | (2.199) | |
2015 | 0.056 *** | 0.055 *** | 0.033 ** | 0.32 *** | 0.421 *** | 0.176 *** | 0.163 *** | 0.184 *** | 0.072 |
(3.314) | (3.312) | (2.026) | (7.424) | (9.91) | (4.101) | (3.583) | (4.102) | (1.62) | |
2016 | 0.050 *** | 0.054 *** | 0.020 | 0.308 *** | 0.429 *** | 0.204 *** | 0.143 *** | 0.178 *** | 0.066 |
(2.973) | (3.301) | (1.322) | (7.128) | (10.085) | (4.752) | (3.155) | (3.977) | (1.502) |
Variable | Model (1) | Model (2) | Model (3) | Model (4) | Model (5) | Model (6) |
---|---|---|---|---|---|---|
LnGTFP | LnTC | LnEC | LnGTFP | LnTC | LnEC | |
LnUS | −0.073 *** | −0.049 *** | −0.024 *** | −0.050 *** | −0.034 *** | −0.015 * |
(0.000) | (0.000) | (0.007) | (0.000) | (0.000) | (0.061) | |
LnFDI | −0.001 | 0.004 ** | −0.006 ** | 0.001 | 0.004 ** | −0.002 |
(0.681) | (0.013) | (0.016) | (0.697) | (0.019) | (0.339) | |
LnEdu | 0.143 *** | 0.078 *** | 0.065 *** | 0.129 *** | 0.074 *** | 0.054 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
LnStructure | 0.180 *** | 0.130 *** | 0.050 *** | 0.153 *** | 0.109 *** | 0.044 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
LnFD | −0.066 *** | −0.030 *** | −0.035 *** | −0.023 ** | −0.007 | −0.015 ** |
(0.000) | (0.000) | (0.000) | (0.018) | (0.237) | (0.036) | |
LnInnov | −0.006 ** | 0.003 * | −0.009 *** | −0.008 *** | 0.002 | −0.010 *** |
(0.048) | (0.057) | (0.000) | (0.005) | (0.345) | (0.000) | |
Fixed effects | Yes | Yes | Yes | No | No | No |
R2 | 0.563 | 0.646 | 0.200 | − | − | − |
Obs. | 3324 | 3324 | 3324 | 3324 | 3324 | 3324 |
Matrix | Inverse | K3 | Rook | ||||||
---|---|---|---|---|---|---|---|---|---|
Model | Model (7) | Model (8) | Model (9) | Model (10) | Model (11) | Model (12) | Model (13) | Model (14) | Model (15) |
Variable | LnGTFP | LnTC | LnEC | LnGTFP | LnTC | LnEC | LnGTFP | LnTC | LnEC |
LnUS | −0.031 *** | −0.035 *** | 0.004 | −0.020 * | −0.024 *** | 0.005 | −0.031 *** | −0.034 *** | 0.003 |
(0.008) | (0.000) | (0.652) | (0.064) | (0.000) | (0.601) | (0.008) | (0.000) | (0.717) | |
LnFDI | −0.010 *** | −0.008 *** | −0.002 | −0.009 *** | −0.006 *** | −0.002 | −0.010 *** | −0.007 *** | −0.003 |
(0.001) | (0.000) | (0.371) | (0.003) | (0.000) | (0.323) | (0.002) | (0.000) | (0.315) | |
LnEdu | 0.044 *** | −0.000 | 0.044 *** | 0.041 *** | −0.000 | 0.045 *** | 0.045 *** | −0.002 | 0.047 *** |
(0.000) | (0.998) | (0.000) | (0.000) | (0.976) | (0.000) | (0.000) | (0.767) | (0.000) | |
LnStructure | 0.058 *** | 0.049 *** | 0.009 | 0.041 *** | 0.028 *** | 0.005 | 0.050 *** | 0.045 *** | 0.003 |
(0.000) | (0.000) | (0.407) | (0.003) | (0.000) | (0.620) | (0.000) | (0.000) | (0.772) | |
LnFD | −0.098 *** | −0.061 *** | −0.036 *** | −0.089 *** | −0.050 *** | −0.037 *** | −0.100 *** | −0.061 *** | −0.038 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
LnInnov | 0.015 *** | 0.010 *** | 0.004 * | 0.014 *** | 0.009 *** | 0.004 | 0.015 *** | 0.011 *** | 0.004 |
(0.000) | (0.000) | (0.098) | (0.000) | (0.000) | (0.112) | (0.000) | (0.000) | (0.110) | |
ρ | 0.322 *** | 0.356 *** | 0.320 *** | 0.296 *** | 0.410 *** | 0.174 *** | 0.121 *** | 0.110 *** | 0.190 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
R2 | 0.133 | 0.004 | 0.048 | 0.130 | 0.011 | 0.039 | 0.105 | 0.012 | 0.032 |
Log−Likelihood | 3935.155 | 6005.987 | 4764.773 | 4012.763 | 6211.783 | 4772.284 | 3928.726 | 4753.573 | 6021.162 |
Obs. | 3324 | 3324 | 3324 | 3324 | 3324 | 3324 | 3324 | 3324 | 3324 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Chen, Y.; Zha, H.; Zhang, B.; Cui, Y. Quantifying the Impact of Urban Sprawl on Green Total Factor Productivity in China: Based on Satellite Observation Data and Spatial Econometric Models. Land 2022, 11, 2120. https://doi.org/10.3390/land11122120
Jiang L, Chen Y, Zha H, Zhang B, Cui Y. Quantifying the Impact of Urban Sprawl on Green Total Factor Productivity in China: Based on Satellite Observation Data and Spatial Econometric Models. Land. 2022; 11(12):2120. https://doi.org/10.3390/land11122120
Chicago/Turabian StyleJiang, Lei, Yuan Chen, Hui Zha, Bo Zhang, and Yuanzheng Cui. 2022. "Quantifying the Impact of Urban Sprawl on Green Total Factor Productivity in China: Based on Satellite Observation Data and Spatial Econometric Models" Land 11, no. 12: 2120. https://doi.org/10.3390/land11122120