Geospatial Analysis of Abandoned Lands Based on Agroecosystems: The Distribution and Land Suitability for Agricultural Land Development in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definition of Abandoned Land
2.2. Research Area
2.3. Data
2.4. Methods
2.4.1. Identification of AL at the National Level
2.4.2. Identification of AL at the District Level
2.4.3. Land Suitability Evaluation
2.4.4. Land Suitability Estimation Based on Visual Interpretation Results
- PSA = Prediction of national AL suitability (ha)
- VI = Area of AL suitability from visual interpretation (ha)
- LCA = Area of AL suitability based on agroecosystem (ha)
- LC = Area of total AL suitability (ha)
- i = Agroecosystem class, which consists of:
- a1 = Agroecosystem of lowland wet climate
- a2 = Agroecosystem of lowland dry climate
- a3 = Agroecosystem of highland wet climate
- a4 = Agroecosystem of highland dry climate
- a5 = Agroecosystem of peat swamps
- a6 = Agroecosystem of mineral swamps.
3. Results
3.1. Geospatial Analysis of AL at the National Level
3.2. Identification of AL at the District Level
3.3. The Comparison of AL
3.4. Land Suitability Evaluation for AL
3.5. Prediction of AL Suitability at the National Level
3.6. Recommendation of Agricultural Development
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BPS (Badan Pusat Statistik). Statistik Indonesia 2020; Badan Pusat Statistik: Jakarta, Indonesia, 2021; Volume 1101001, p. 758. [Google Scholar]
- Liu, Q.; Sun, X.; Wu, W.; Liu, Z.; Fang, G.; Yang, P. Agroecosystem services: A review of concepts, indicators, assessment methods and future research perspectives. Ecol. Indic. 2022, 142, 109218. [Google Scholar] [CrossRef]
- Djihouessi, M.B.; Degan, A.; Mpo Yekanbessoun, N.; Sossou, M.; Sossa, F.; Adanguidi, J.; Aina, M.P. Inventory of agroecosystem services and perceptions of potential implications due to climate change: A case study from Benin in West Africa. Environ. Impact Assess. Rev. 2022, 95, 106792. [Google Scholar] [CrossRef]
- Mulyani, A.; Sarwani, M. Karakteristik dan potensi lahan sub optimal untuk pengembangan pertanian di Indonesia. J. Sumberd. Lahan 2013, 7, 46–57. [Google Scholar]
- Ritung, S.; Suryani, E.; Subardja, D.; Sukarman; Nugroho, K.; Suparto; Hikmatullah; Mulyani, A.; Tefakresnanto, C.; Sulaeman, Y.; et al. Sumberdaya Lahan Pertanian Indonesia: Luas, Penyebaran Dan Potensi Ketersediaan; Badan Penelitian dan Pengembangan: Jakarta, Indonesia, 2015; p. 96. [Google Scholar]
- Mulyani, A.; Suwanda, M.H. Pengelolaan Lahan Kering Beriklim Kering untuk Pengembangan Jagung di Nusa Tenggara. J. Sumberd. Lahan 2019, 13, 41–52. [Google Scholar] [CrossRef]
- Agraria, K.; Ruang, T. Badan Pertanahan Nasional Peta Spasial Penggunaan Tanah Tahun 2019. J. Sist. Inf. Dan Inform. 2019, 2, 29–43. [Google Scholar]
- Roser, M.; Ritchie, H.; Ortiz-Ospina, E. World Population Growth. Available online: https://ourworldindata.org/world-population-growth (accessed on 9 September 2022).
- Irawan, B. Konversi lahan sawah: Potensi dampak, pola pemanfaatannya dan faktor determinan. J. Empir. Stud. Soc. Sci. 2005, 23, 1–18. [Google Scholar] [CrossRef]
- Mulyani, A.; Kuncoro, D.; Nursyamsi, D.; Agus, F. Analisis Konversi Lahan Sawah: Penggunaan Data Spasial Resolusi Tinggi Memperlihatkan Laju Konversi yang Mengkhawatirkan. J. Tanah Dan Iklim 2016, 40, 121–133. [Google Scholar]
- Hidayat, Y.; Ismail, A.; Ekayani, M. Dampak konversi lahan pertanian terhadap ekonomi rumah tangga petani padi (Studi kasus Kecamatan Kertajati Kabupaten Majalengka Jawa Barat). J. Pengkaj. Dan Pengemb. Teknol. Pertan. 2017, 20, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Mulyani, A.; Mulyanto, B.; Barus, B.; Panuju, D.R.; Husnain. Analisis Kapasitas Produksi Lahan Sawah untuk Ketahanan Pangan Nasional Menjelang Tahun 2045. J. Sumberd. Lahan 2022, 16, 33–50. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Dong, J.; Chi, W.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef]
- Fu, S.; Xu, X.; Zhang, J. Land conversion across cities in China. Reg. Sci. Urban Econ. 2021, 87, 103643. [Google Scholar] [CrossRef]
- Yu, M.; Chen, Z.; Long, Y.; Mansury, Y. Urbanization, land conversion, and arable land in Chinese cities: The ripple effects of high-speed rail. Appl. Geogr. 2022, 146, 102756. [Google Scholar] [CrossRef]
- Munteanu, C.; Kuemmerle, T.; Boltiziar, M.; Butsic, V.; Gimmi, U.; Lúboš, H.; Kaim, D.; Király, G.; Konkoly-Gyuró, É.; Kozak, J.; et al. Forest and agricultural land change in the Carpathian region-A meta-analysis of long-term patterns and drivers of change. Land Use Policy 2014, 38, 685–697. [Google Scholar] [CrossRef]
- Jiang, L.; Bao, A.; Jiapaer, G.; Liu, R.; Yuan, Y.; Yu, T. Monitoring land degradation and assessing its drivers to support sustainable development goal 15.3 in Central Asia. Sci. Total Environ. 2022, 807, 150868. [Google Scholar] [CrossRef]
- Syahbuddin, H.; Surmaini, E.; Estinityas, W. Pembangunan Pertanian Berbasis Ekoregion Dari Perpekstif Keragaman Iklim; IAARD Press: Jakarta, Indonesia, 2015. [Google Scholar]
- Surmaini, E.; Ramadhani, F.; Syahputra, M.R.; Dewi, E.R.; Apriyana, Y. Development of a paddy drought hazard forecasting system to cope with the impact of climate change. IOP Conf. Ser. Earth Environ. Sci. 2020, 484, 012050. [Google Scholar] [CrossRef]
- Sukarman, S.; Mulyani, A.; Purwanto, S. Modifikasi Metode Evaluasi Kesesuaian Lahan Berorientasi Perubahan Iklim. J. Sumberd. Lahan 2020, 12, 1–11. [Google Scholar] [CrossRef]
- DePaula, G. The distributional effect of climate change on agriculture: Evidence from a Ricardian quantile analysis of Brazilian census data. J. Environ. Econ. Manag. 2020, 104, 102378. [Google Scholar] [CrossRef]
- Susilowati, S.H.; Maulana, M. Luas lahan usahatani dan kesejahteraan petani: Eksistensi petani gurem dan urgensi kebijakan reforma agraria. J. Anal. Kebijak. Pertan. 2012, 10, 17–30. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Fang, X.; Li, G.; Cao, Y. Does land tenure fragmentation aggravate farmland abandonment? Evidence from big survey data in rural China. J. Rural. Stud. 2022, 91, 126–135. [Google Scholar] [CrossRef]
- Muchová, Z.; Raškovič, V. Fragmentation of land ownership in Slovakia: Evolution, context, analysis and possible solutions. Land Use Policy 2020, 95, 104644. [Google Scholar] [CrossRef]
- Ager, A.A.; Vaillant, N.M.; Finney, M.A. Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning. J. Combust. 2011, 2011, 19. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Liu, H.; Chen, C.; Li, J.; Hou, H.; Hewage, K.; Sadiq, R. An integrated geospatial correlation analysis and human health risk assessment approach for investigating abandoned industrial sites. J. Environ. Manag. 2021, 293, 112891. [Google Scholar] [CrossRef] [PubMed]
- Jayanthi, M.; Thirumurthy, S.; Samynathan, M.; Manimaran, K.; Duraisamy, M.; Muralidhar, M. Assessment of land and water ecosystems capability to support aquaculture expansion in climate-vulnerable regions using analytical hierarchy process based geospatial analysis. J. Environ. Manag. 2020, 270, 110952. [Google Scholar] [CrossRef] [PubMed]
- Fagi, A.M. Strategi Pembangunan Pertanian pada Lahan Terlantar. IPTEK Tanam. Pangan 2007, 2, 154–168. [Google Scholar]
- Maulana, A.; Suryanto, P.; Widiyatno, W.; Faridah, E.; Suwignyo, B. Dinamika Suksesi Vegetasi pada Areal Pasca Perladangan Berpindah di Kalimantan Tengah. J. Ilmu Kehutan. 2019, 13, 181. [Google Scholar] [CrossRef] [Green Version]
- Ketterings, Q.M.; Tri Wibowo, T.; Van Noordwijk, M.; Penot, E. Farmers’ perspectives on slash-and-burn as a land clearing method for small-scale rubber producers in Sepunggur, Jambi Province, Sumatra, Indonesia. For. Ecol. Manag. 1999, 120, 157–169. [Google Scholar] [CrossRef]
- Azis, I.; Surya, B.; Salim, A. Pengaruh pengembangan kawasan transmigrasi terhadap laju deforestrasi hutan lindung (studi kasus: Lokasi pemukiman transmigrasi Mahalona). J. Ecosyst. 2018, 18, 1096–1104. [Google Scholar]
- Rodenburg, J.; Stein, A.; Van Noordwijk, M.; Ketterings, Q.M. Spatial variability of soil pH and phosphorus in relation to soil run-off following slash-and-burn land clearing in Sumatra, Indonesia. Soil Tillage Res. 2003, 71, 1–14. [Google Scholar] [CrossRef]
- Varma, A. The economics of slash and burn: A case study of the 1997-1998 Indonesian forest fires. Ecol. Econ. 2003, 46, 159–171. [Google Scholar] [CrossRef]
- Mulyani, A.; Las, I. Potensi sumber daya lahan dan optimalisasi pengembangan komoditas penghasil bioenergi di Indonesia. J. Litbang Pertan. 2008, 27, 31–41. [Google Scholar]
- Prishchepov, A.V.; Radeloff, V.C.; Dubinin, M.; Alcantara, C. The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 2012, 126, 195–209. [Google Scholar] [CrossRef]
- Visockiene, J.S.; Tumeliene, E.; Maliene, V. Analysis and identification of abandoned agricultural land using remote sensing methodology. Land Use Policy 2019, 82, 709–715. [Google Scholar] [CrossRef]
- Karlsson, A.; Albrektson, A.; Forsgren, A.; Svensson, L. An analysis of successful natural regeneration of downy and silver birch on abandoned farmland in Sweden. Silva Fenn. 1998, 32, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.; Leitão, P.J.; Sikor, T. Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agric. Syst. 2013, 117, 66–77. [Google Scholar] [CrossRef]
- Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ostafin, K.; Ostapowicz, K.; Wężyk, P.; Price, B. Understanding farmland abandonment in the Polish Carpathians. Appl. Geogr. 2017, 88, 62–72. [Google Scholar] [CrossRef]
- Grădinaru, S.R.; Kienast, F.; Psomas, A. Using multi-seasonal Landsat imagery for rapid identification of abandoned land in areas affected by urban sprawl. Ecol. Indic. 2019, 96, 79–86. [Google Scholar] [CrossRef]
- Löw, F.; Fliemann, E.; Abdullaev, I.; Conrad, C.; Lamers, J.P.A. Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Appl. Geogr. 2015, 62, 377–390. [Google Scholar] [CrossRef]
- Xu, F.; Ho, H.C.; Chi, G.; Wang, Z. Abandoned rural residential land: Using machine learning techniques to identify rural residential land vulnerable to be abandoned in mountainous areas. Habitat Int. 2019, 84, 43–56. [Google Scholar] [CrossRef]
- Zhu, X.; Xiao, G.; Zhang, D.; Guo, L. Mapping abandoned farmland in China using time series MODIS NDVI. Sci. Total Environ. 2021, 755, 142651. [Google Scholar] [CrossRef]
- Mulyani, A.; Sukarman; Hikmat, M.; Puspitahati, D. Nurwinda. In Atlas Peta Sebaran Kakao Di Sulawesi; Kerjasama antara Direktorat Jenderal Perkebunan dengan Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian: Bogor, Indonesia, 2020. [Google Scholar]
- Mulyani, A.; Sukarman; Hikmat, M.; Puspitahati, D. Nurwinda. In Atlas Peta Sebaran Potensi Peremajaan Kelapa Di Sulawesi; Kerjasama antara Direktorat Jenderal Perkebunan dengan Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian: Bogor, Indonesia, 2020. [Google Scholar]
- Ritung, S.; Suryani, E.; Yatno, E.; Hikmatullah; Nugroho, K.; Sukarman; Subandiono, R.E.; Tafakresnanto, C.; Suratman; Hidayat, H.; et al. Peta Lahan Gambut Indonesia Skala 1:50,000; Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian: Bogor, Indonesia, 2019. [Google Scholar]
- Ritung, S.; Suryani, E.; Yatno, E.; Subandiono, R.E. Laporan Akhir Pemutakhiran Peta Sumberdaya Lahan Rawa; Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian: Bogor, Indonesia, 2020. [Google Scholar]
- Aber, J.S.; Marzolff, I.; Ries, J.B.; Aber, S.E.W. Chapter 1-Introduction to Small-Format Aerial Photography. In Small-Format Aerial Photography and UAS Imagery; Aber, J.S., Marzolff, I., Ries, J.B., Aber, S.E.W., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 1–10. [Google Scholar]
- Ritung, S.; Nugroho, K.; Mulyani, A.; Suryani, E. Petunjuk Teknis Evaluasi Lahan Untuk Komoditas Pertanian; Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian: Bogor, Indonesia; Badan Penelitian dan Pengembangan Pertanian: Jakarta, Indonesia, 2011. [Google Scholar]
- Balai Penelitian Agroklimat dan Hidrologi. Atlas Sumberdaya Iklim Pertanian Indonesia Skala 1:1.000.000; Balai Penelitian Agroklimat dan Hidrologi: Bogor, Indonesia, 2003. [Google Scholar]
- Anda, M.; Ritung, S.; Suryani, E.; Sukarman; Hikmat, M.; Yatno, E.; Mulyani, A.; Subandiono, R.E.; Suratman; Husnain. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma 2021, 402, 115235. [Google Scholar] [CrossRef]
- Hamylton, S.M.; Morris, R.H.; Carvalho, R.C.; Roder, N.; Barlow, P.; Mills, K.; Wang, L. Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102085. [Google Scholar] [CrossRef]
- Alves, L.A.; Tiecher, T.L.; Flores, J.P.M.; Filippi, D.; Gatiboni, L.C.; Bayer, C.; Pias, O.H.d.C.; Marquez, A.A.; Bordignon, V.; Goulart, R.Z.; et al. Soil chemical properties and crop response to gypsum and limestone on a coarse-textured Ultisol under no-till in the Brazilian Pampa biome. Geoderma Reg. 2021, 25, e00372. [Google Scholar] [CrossRef]
- Prasetyo, B.H.; Suradikarta, D.A. Karakteristik, potensi, dan teknologi pengelolaan tanah Ultisols untuk pengembangan pertanian lahan kering di Indonesia. J. Penelit. Dan Pengemb. Pertan. 2006, 25, 39–46. [Google Scholar]
- Rheinheimer, D.S.; Tiecher, T.; Gonzatto, R.; Zafar, M.; Brunetto, G. Residual effect of surface-applied lime on soil acidity properties in a long-term experiment under no-till in a Southern Brazilian sandy Ultisol. Geoderma 2018, 313, 7–16. [Google Scholar] [CrossRef]
- Mulyani, A.; Nursyamsi, D.; Las, I. Acceleration of Agricultural Development in Dryland with Dry Climate in Nusa Tenggara. Pengembangan Inovasi Pertanian. 2014, 7, 187–198. [Google Scholar]
- Mulyani, A.; Wahyunto, W.; Sukarman, S.; Suganda, M.H.; Agus, F. Sintesis Kebijakan Pengelolaan Sumberdaya Lahan Untuk Mendukung Pembangunan Pertanian; Balai Besar Litbang Sumberdaya Lahan Pertanian: Bogor, Indonesia, 2016. [Google Scholar]
- Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. Paket Rekomendasi Pengelolaan Lahan Untuk Pengembangan dan Peningkatan Produksi Komoditas Pertanian Strategis Berbasis Agroekositem dan Kesesuaian Lahan Di 511 Kabupaten/Kota; Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian: Bogor, Indonesia, 2018. [Google Scholar]
Province | District | Agroecosystem | Visual Interpretation | Ground Check | Year |
---|---|---|---|---|---|
Aceh | Gayo Luwes | HDC | + | − | 2020 |
Aceh Barat | LWC | + | + | 2018 | |
North Sumatera | Humbanghasundutan | HWC | + | + | 2020 |
Padang Lawas Utara | LWC | + | + | 2022 | |
Riau | Pelalawan | PS | + | − | 2019 |
Siak | PS | + | + | 2017 | |
West Sumatera | Sijunjung | LWC | + | − | 2021 |
Bengkulu | Muko-muko | LWC | + | + | 2017 |
Kaur | HWC | + | − | 2021 | |
South Sumatera | Ogan Komering Ilir | PS | + | + | 2021 |
Lampung | Way Kanan | LWC | + | − | 2021 |
Riau Island | Lingga | LWC | + | − | 2021 |
Jambi | Tanjung Jabung Timur | MS | + | + | 2016 |
Kerinci | HWC | + | − | 2021 | |
Babel Island | Bangka Selatan | LWC | + | − | 2021 |
West Kalimantan | Kapuas Hulu | MS | + | − | 2021 |
Ketapang | LWC | + | − | 2021 | |
Kuburaya | PS | + | + | 2017 | |
Central Kalimantan | Katingan | LWC | + | − | 2021 |
Barito Selatan | LWC | + | − | 2020 | |
Pulang Pisau | MS | + | + | 2017 | |
South Kalimantan | Tanah Bumbu | LWC | + | − | 2021 |
Kota Baru | LDC | + | − | 2021 | |
East Kalimantan | Berau | LWC | + | + | 2017 |
Paser | LWC | + | + | 2017 | |
Kutai Kertanegara | LWC | + | − | 2021 | |
Kutai Timur | LWC | + | + | 2017 | |
North Kalimantan | Malinau | LWC | + | + | 2018 |
Bulungan | LWC | + | − | 2021 | |
South Sulawesi | Gowa | LDC | + | + | 2018 |
Luwu Utara | HWC | + | + | 2020 | |
West Sulawesi | Mamuju | HWC | + | − | 2019 |
Central Sulawesi | Buol | LDC | + | + | 2018 |
Morowali Utara | LWC | + | − | 2021 | |
Gorontalo | Gorontalo | LDC | + | + | 2018 |
Boalemo | LDC | + | − | 2021 | |
North Sulawesi | Bolaang Mongondow | LDC | + | − | 2021 |
South-east Sulawesi | Buton | LWC | + | + | 2019 |
Konawe Selatan | LDC | + | − | 2020 | |
West Nusa Tenggara | Sumbawa Barat | LDC | + | + | 2021 |
Bima | LDC | + | + | 2019 | |
East Nusa Tenggara | Manggarai Barat | LDC | + | + | 2018 |
Flores Timur | LDC | + | + | 2019 | |
Kupang | LDC | + | + | 2018 | |
Timor Tengah Selatan | HDC | + | + | 2018 | |
Maluku | Buru Island | LDC | + | + | 2018 |
Aru Island | LDC | + | − | 2021 | |
North Maluku | Tidore | LDC | + | + | 2019 |
Halmahera Timur | LDC | + | − | 2021 | |
West Papua | Sorong | LWC | + | + | 2019 |
Fakfak Barat | HWC | + | − | 2021 | |
Papua | Nabire | LWC | + | + | 2019 |
Merauke | MS | + | − | 2021 | |
Mappi | LWC | + | − | 2021 |
Province | Distribution of AL Based on Agroecosystem | Total Area (ha) | |||||
---|---|---|---|---|---|---|---|
Swamp Land | Dry Land | ||||||
PS | MS | LWC | LDC | HWC | HDC | ||
Aceh | 15 | 27,073 | 33,917 | 292,793 | 109,532 | 352,370 | 815,700 |
Sumatera Utara | 9168 | 16,404 | 587,445 | 240,887 | 398,789 | 136,825 | 1,389,520 |
Sumatera Barat | 2227 | 10,887 | 965,079 | 2478 | 337,101 | 3760 | 1,321,532 |
Riau | 22,603 | 43,773 | 304,119 | 21,757 | - | - | 392,252 |
Jambi | 748 | 33,650 | 704,557 | 157,955 | 94,303 | 1247 | 992,459 |
Bengkulu | - | 179 | 161,496 | - | 61,501 | - | 223,176 |
Sumatera Selatan | 6348 | 172,230 | 359,307 | - | 72,525 | - | 610,411 |
Kep Bangka Belitung | 6253 | 39,788 | 330,342 | - | - | - | 376,382 |
Kep Riau | 2 | 416 | 130,881 | - | 1264 | - | 132,563 |
Lampung | 495 | 19,909 | 146,567 | 37,836 | 28,101 | 6 | 232,914 |
Banten | - | 5095 | 44,046 | 19,517 | - | - | 68,658 |
Jawa Barat | - | 527 | 60,152 | 4243 | 113,582 | 3274 | 181,779 |
Jawa Tengah | - | 911 | 12,922 | 10,881 | 26,235 | 2564 | 53,514 |
Yogyakarta | - | 34 | 288 | 1085 | - | 1407 | |
Jawa Timur | - | 3.202 | 23,680 | 139,866 | 46,829 | 68,884 | 282.460 |
Bali | - | 6 | 28,376 | 36,251 | 13,600 | 6066 | 84,299 |
Nusa Tenggara Barat | - | 1402 | 5333 | 628,153 | 24,716 | 94,057 | 753,662 |
Nusa Tenggara Timur | - | 2513 | 55,588 | 1,639,787 | 24,649 | 876,945 | 2,599,481 |
Kalimantan Barat | 4717 | 128,731 | 2,660,869 | 65,869 | 18,431 | - | 2,878,616 |
Kalimantan Selatan | 54 | 37,589 | 666,186 | 288,805 | 39,715 | - | 1,032,349 |
Kalimantan Tengah | 224,143 | 297,591 | 4,648,902 | 604,587 | - | - | 5,775,223 |
Kalimantan Timur | 6281 | 116,678 | 3,378,715 | 13,060 | 147,434 | - | 3,662,169 |
Kalimantan Utara | - | 37,260 | 1,495,291 | 35,019 | 32,885 | - | 1,600,454 |
Gorontalo | - | 395 | 61,839 | 117,367 | 1636 | 25,558 | 206,795 |
Sulawesi Utara | - | 275 | 41,975.0 | 133,462.0 | 75,068.0 | 82,248.0 | 333,028 |
Sulawesi Selatan | - | 2504 | 436,606 | 48,745 | 575,887 | 5231 | 1,068,973 |
Sulawesi Tengah | 658 | 7479 | 670,317.6 | 773,137.7 | 353,590.5 | 196,143.2 | 2,001,326 |
Sulawesi Tenggara | - | 19,943 | 112,514.0 | 822,963.0 | 9827.0 | 40,589.0 | 1,005,836 |
Sulawesi Barat | 213 | 652 | 113,986.0 | 9989.0 | 332,159.0 | 177,389.0 | 634,388 |
Maluku | - | 40,290 | 1,320,196 | 543,123 | 225,484 | 101,681 | 2,230,773 |
Maluku Utara | - | 5582 | 524,043 | 458,886 | 40,696 | 38,524 | 1,067,731 |
Papua | 148,534 | 1,205,358 | 2,890,131 | 828,810 | 1,366,916 | 121,601 | 6,561,350 |
Papua Barat | 26,887 | 69,939 | 1,885,853 | - | 49,282 | - | 2,031,960 |
Total | 459,346 | 2,348,264 | 24,861,520 | 7,976,224 | 4,622,824 | 2,334,962 | 42,603,139 |
Land Characteristic | Agroecosystem Type | |||||
---|---|---|---|---|---|---|
LWC | LDC | HWC | HDC | PS | MS | |
Berau | Bima | Humbahas | TTS | Kuburaya | Tanjabtim | |
Climate: | ||||||
Rainfall (mm/year) | 2.438 | 952 | 3034 | 1245 | 2772 | 2584 |
Temperature (°C) | 26.9 | 28.3 | 23.0 | 22.2 | 27.2 | 26.6 |
Elevation (m asl) | <200 | <200 | 1420 | 893 | <50 | <10 |
Topography: | ||||||
Landform | Rolling tectonic plain | Lava flow | Volcanic | Tectonic hills | Tidal topogenous peat | Tidal swamp |
Slope (%) | 8–15 | 3–8 | 8–15 | 15–25 | 0–1 | 0–1 |
Soil: | ||||||
Great group | Hapludults | Haplustepts | Hapludands | Haplustepts | Haplosaprists | Sulfaquepts |
Solum (cm) | Deep | Deep | Deep | Slightly deep | Very deep | Very deep |
Texture | Fine | Slightly fine | Slightly fine | Slightly fine | Sapric | Fine |
Drainage | Well drained | Well drained | Well drained | Well drained | Poorly drained | Poorly drained |
pH | Acid | Neutral | Neutral | Neutral | Acid | Acid |
CEC | Low | Medium | High | High | High | High |
Base saturation | Low | Very high | High | High | Low | Low |
Agroecosystem | Districts Amount | AL Based on | ||
---|---|---|---|---|
Land Cover Map of Indonesia | Land Cover Map of 54 districts | Visual Interpretation of 54 Districts | ||
ha | ||||
LWC | 22 | 24,861,520 | 9,563,644 | 7,754,597 |
LDC | 16 | 7,976,224 | 3,033,903 | 2,498,629 |
HWC | 6 | 4,622,824 | 1,297,199 | 1,010,142 |
HDC | 2 | 2,334,962 | 529,316 | 500,547 |
PS | 4 | 459,346 | 197,258 | 1,076,536 |
MS | 4 | 2,348,264 | 3,516,552 | 4,053,793 |
Total | 54 | 42,603,139 | 18,137,873 | 16,894,244 |
Island | PS | MS | LWC | LDC | HWC | HDC | Total | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
AC | AC | AC | PC | AC | PC | AC | PC | AC | PC | ||
×1000 ha | |||||||||||
Sumatera | 41 | 343 | 1776 | 1097 | 344 | 236 | 151 | 211 | 16 | 140 | 4355 |
Jawa | - | 8 | 53 | 47 | 43 | 82 | 6 | 33 | 38 | 34 | 343 |
Bali & NT | - | 4 | 15 | 65 | 563 | 1248 | 5 | 29 | 16 | 479 | 2423 |
Kalimantan | 96 | 484 | 3964 | 3322 | 691 | 40 | - | - | - | - | 8596 |
Sulawesi | 1 | 31 | 336 | 561 | 649 | 459 | 119 | 182 | 41 | 91 | 2470 |
Maluku & Papua | 175 | 1314 | 4034 | 1774 | 1082 | 672 | 73 | 305 | 10 | 93 | 9533 |
Total | 313 | 2185 | 10,178 | 6865 | 3372 | 2737 | 353 | 760 | 121 | 838 | 27,721 |
Agroecosystem | Sum of District | Land Cover Map of Indonesia | Land Cover Map of 54 Districts | Visual Interpretation of 54 Districts | Prediction of Indonesia |
---|---|---|---|---|---|
ha | |||||
LWC | 22 | 16,727,764 | 5,852,976 | 4,174,303 | 11,930,128 |
LDC | 16 | 6,108,161 | 2,073,032 | 1,544,315 | 4,550,304 |
HWC | 6 | 1,113,403 | 630,230 | 510,549 | 901,966 |
HDC | 2 | 958,301 | 282,636 | 264,916 | 898,219 |
PS | 4 | 312,307 | 183,038 | 399,305 | 681,309 |
MS | 4 | 2,153,059 | 2,176,208 | 1,597,777 | 1,580,780 |
Total | 54 | 27,372,993 | 11,198,120 | 8,491,164 | 20,756,037 |
Agroecosystem | Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|---|
LWC | Distributed widely in Sumatera, Kalimantan, and Papua Islands | High rainfall, low fertility | High potential for the development of various commodities | Requires balanced fertilization, ameliorant, and commodity zoning |
LDC | Medium fertility | Water scarcity, slightly sallow depth, rock outcrop | High potential for the development of cereal commodities | Exploration of water sources and efficient use of water is needed |
HWC | Volcanic soil, medium-high fertility | The distribution of highland is not wide | Potential for horticultural commodities | High rainfall and slope; erosion control needed |
HDC | Medium-high fertility | Dry climate and water scarcity; the distribution of highland is not wide | Potential for suitable horticultural commodities in dry climate areas | Exploration of water sources and efficient use of water is needed |
PS | Water available for food crop or horticulture | The distribution is narrow | Potential for paddy fields and horticultural commodities | This land requires water management and fertilization |
MS | Water available for paddy field | Some areas contain pyrite | Potential for paddy fields and perennial crop | This land requires water management and fertilization |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulyani, A.; Mulyanto, B.; Barus, B.; Panuju, D.R.; Husnain. Geospatial Analysis of Abandoned Lands Based on Agroecosystems: The Distribution and Land Suitability for Agricultural Land Development in Indonesia. Land 2022, 11, 2071. https://doi.org/10.3390/land11112071
Mulyani A, Mulyanto B, Barus B, Panuju DR, Husnain. Geospatial Analysis of Abandoned Lands Based on Agroecosystems: The Distribution and Land Suitability for Agricultural Land Development in Indonesia. Land. 2022; 11(11):2071. https://doi.org/10.3390/land11112071
Chicago/Turabian StyleMulyani, Anny, Budi Mulyanto, Baba Barus, Dyah Retno Panuju, and Husnain. 2022. "Geospatial Analysis of Abandoned Lands Based on Agroecosystems: The Distribution and Land Suitability for Agricultural Land Development in Indonesia" Land 11, no. 11: 2071. https://doi.org/10.3390/land11112071
APA StyleMulyani, A., Mulyanto, B., Barus, B., Panuju, D. R., & Husnain. (2022). Geospatial Analysis of Abandoned Lands Based on Agroecosystems: The Distribution and Land Suitability for Agricultural Land Development in Indonesia. Land, 11(11), 2071. https://doi.org/10.3390/land11112071