Performance Comparison of Different Particle Size Distribution Models in the Prediction of Soil Particle Size Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Data
2.2. PSD Models
3. Fitting and Comparison of the Model
3.1. Comparison Criteria
3.2. Evaluation Criteria
4. Results and Discussion
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, E.; Cruse, R.M.; Zhao, Y.; Chen, X. Quantifying soil physical condition based on soil solid, liquid and gaseous phases. Soil Till. Res. 2015, 146, 4–9. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, C.; Qiang, Y.; Wang, X.; Yan, X. Hydrodynamics and bed morphological characteristics around a boulder in a gravel stream. Water Sci. Tech-W. Sup. 2020, 20, 395–407. [Google Scholar]
- Hwang, S.I.; Lee, K.P.; Lee, D.S.; Powers, S.E.; Powers, S.E. Models for Estimating Soil Particle-Size Distributions. Soil Sci. Soc. Am. J. 2002, 66, 1143–1150. [Google Scholar] [CrossRef]
- Gupta, S.C.; Larson, W.E. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 1979, 15, 1633–1635. [Google Scholar] [CrossRef]
- Arya, L.M.; Paris, J.F. A physicoempirical model to predict the soil moisture characteristic from particle size distribution and bulk density data. Sci. Soc. Am. J. 1981, 45, 1023–1030. [Google Scholar] [CrossRef]
- Satyanaga, A.; Rahardjo, R.; Zhai, Q. Estimation of unimodal water characteristic curve for gap-graded soil. Soils Found. 2017, 57, 789–801. [Google Scholar] [CrossRef]
- Onur, E.M.; Shakoor, A. Relationships Between Grain Size Distribution Indexes and Permeability of Sands; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; Volume 3, pp. 287–290. [Google Scholar]
- Hou, K.; Qian, H.; Zhang, Y.; Qu, W.; Ren, W.; Wang, H. Relationship between fractal characteristics of grain-size and physical properties: Insights from a typical loess profile of the loess Plateau. Catena 2021, 207, 105653. [Google Scholar] [CrossRef]
- Sahu, B.K. Depositional Mechanisms from the Size Analysis of Clastic Sediments. J. Sediment. Res. 1964, 34, 73–83. [Google Scholar]
- Visher, G.S. Grain Size Distributions and Depositional Processes. J. Sediment. Res. 1969, 39, 1074–1106. [Google Scholar]
- Purkait, B. The use of grain-size distribution patterns to elucidate aeolian processes on a transverse dune of Thar Desert. India Earth Surf. Proc. Land. 2010, 35, 525–530. [Google Scholar] [CrossRef]
- Beke, G.J.; Lindwall, C.W.; Entz, T.; Channappa, T.C. Sediment and runoff water characteristics as influenced by cropping and tillage practices. Can. J. Soil Sci. 1989, 69, 639–647. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, X.; Xia, J.; Cai, C. Relationship between granitic soil particle-size distribution and shrinkage properties based on multifractal method. Pedosphere 2020, 30, 853–862. [Google Scholar] [CrossRef]
- Bayat, H.; Rastho, M.; Zadeh, M.M.; Vereecken, H. Particle size distribution models, their characteristics and fitting capability. J. Hydrol. 2015, 529, 872–889. [Google Scholar] [CrossRef]
- Buchan, G.D.; Grewal, K.S.; Robson, A.B. Improved Models of Particle-Size Distribution: An Illustration of Model Comparison Techniques. Soil Sci. Soc. Am. J. 1993, 57, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Bagarello, V.; Provenzano, G.; Sgroi, A. Fitting particle size distribution models to data from Burundian soils for the BEST procedure and other purposes. Biosyst. Eng. 2009, 104, 435–441. [Google Scholar] [CrossRef]
- Hwang, S.I. Effect of texture on the performance of soil particle-size distribution models. Geoderma 2004, 123, 363–371. [Google Scholar] [CrossRef]
- Zhao, P.; Shao, M.; Horton, R. Performance of soil particle-size distribution models for describing deposited soils adjacent to constructed dams in the China Loess Plateau. Acta Geophys. 2011, 59, 124–138. [Google Scholar] [CrossRef]
- Bayat, H.; Rastgou, M.; Nemes, A.; Mansourizadehc, M.; Zamani, P. Mathematical models for soil particle-size distribution and their overall and fraction-wise fitting to measurements. Eur. J. Soil Sci. 2017, 68, 345–364. [Google Scholar] [CrossRef]
- Afrasiabi, F.; Khodaverdiloo, H.; Asadzadeh, F.; Genuchten, M.T. Comparison of alternative soil particle-size distribution models and their correlation with soil physical attributes. J. Hydrol. Hydromech. 2019, 67, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zou, D.; Liu, J.; Zhou, C.; Zheng, B. Experimental study to evaluate the effect of particle size on the small strain shear modulus of coarse-grained soils. Measurement 2020, 163, 107954. [Google Scholar] [CrossRef]
- Sakaki, T.; Komatsu, M.; Takahashi, M. Rules-of-Thumb for Predicting Air-Entry Value of Disturbed Sands from Particle Size. Soil Sci. Soc. Am. J. 2014, 78, 454–464. [Google Scholar] [CrossRef]
- Mohammed, A.; Mahmood, W. Estimating the efficiency of the sandy soils-cement based grout interactions from Particle size distribution (PSD). Geomech. Geoengin. 2019, 16, 81–98. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Chai, X.; Shi, S. Experimental Study on Measurement of Drag Coefficient of Sandy Soil Nonlinear Vadose. Adv. Civ. Eng. 2022. [Google Scholar] [CrossRef]
- Nemes, A.; Schaap, M.G.; Leij, F.J.; Wösten, J.H.M. Description of the unsaturated soil hydraulic database UNSODA version 2.0. J. Hydrol. 2001, 251, 151–162. [Google Scholar] [CrossRef]
- Gardner, W.R. Representation of Soil Aggregate-Size Distribution by a Logarithmic-Normal Distribution. Soil Sci. Soc. Am. J. 1956, 20, 151–153. [Google Scholar] [CrossRef]
- Buchan, G.D. Applicability of the simple lognormal model to particle-size distribution in soils. Soil Sci. 1989, 147, 155–161. [Google Scholar] [CrossRef]
- Fredlund, M.D.; Fredlund, D.G.; Wilson, G.W. An equation to represent grain-size distribution. Can. Geotech. J. 2000, 37, 817–827. [Google Scholar] [CrossRef]
- Jaky, J. Soil Mechanics; Egyetemi Nyomada: Budapest, Hungary, 1944. [Google Scholar]
- Vipulanandan, C.; Asce, M.; Ozgurel, H.G. Simplified Relationships for Particle-Size Distribution and Permeation Groutability Limits for Soils. J. Geotech. Geoenviron. 2009, 135, 1190–1197. [Google Scholar] [CrossRef]
- Kolev, B.; Rousseva, S.; Dimitrov, D. Derivation of soil water capacity parameters from standard soil texture information for Bulgarian soils. Ecol. Model. 1996, 84, 315–319. [Google Scholar] [CrossRef]
- Zhuang, J.; Jin, Y.; Miyazaki, T. Estimating water retention characteristic from soil particle-size distribution using a non-similar media concept. Soil Sci. 2001, 166, 308–321. [Google Scholar] [CrossRef]
- Nemes, A.; Wösten, J.H.M.; Lilly, A.; Voshaar, J.H.O. Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases. Geoderma 1999, 90, 187–202. [Google Scholar] [CrossRef]
- Rosin, P.; Rammler, E. The Laws Governing the Fineness of Powdered Coal. J. Inst. Fuel 1933, 7, 9–36. [Google Scholar]
- Bennet, J. Broken coal. J. Inst. Fuel 1936, 10, 22–39. [Google Scholar]
- Li, Y.; Huang, C.; Wang, B.; Tian, X.; Liu, J. A unified expression for grain size distribution of soils. Geoderma 2017, 288, 105–119. [Google Scholar]
- Tyler, S.W.; Wheatcraft, S.W. Fractal Scaling of Soil Particle-Size Distributions: Analysis and Limitations. Soil Sci. Soc. Am. J. 1992, 56, 362–369. [Google Scholar] [CrossRef]
- Millán, H.; González-Posada, M.; Aguilar, M.; Domínguez, J.; Céspedes, L. On the fractal scaling of soil data. Particle-size distributions. Geoderma 2003, 117, 117–128. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Zhao, B.; Zhang, J.; Li, X.; Yan, Y. Critical Evaluation of Particle Size Distribution Models Using Soil Data Obtained with a Laser Diffraction Method. PLoS ONE 2015, 10, 1–18. [Google Scholar]
- Haverkamp, R.; Parlange, J.Y. Predicting The Water-retention Curve From Particle-size Distribution: Sandy Soils without Organic Matter. Soil Sci. 1986, 142, 325–339. [Google Scholar] [CrossRef]
- Skaggs, T.H.; Arya, L.M.; Shouse, P.J.; Mohanty, B.P. Estimating particle-size distribution from limited soil texture data. Soil Sci. Soc. Am. J. 2001, 65, 1038–1044. [Google Scholar] [CrossRef]
- Lassabatère, L.; Angulo-Jaramillo, R.; Soria Ugalde, J.M.; Cuenca, R.; Braud, I.; Haverkamp, R. Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments—BEST. Soil Sci. Soc. Am. J. 2006, 70, 521–532. [Google Scholar] [CrossRef]
- Guo, Z.; Chang, C.; Zou, X.; Wang, R.; Li, J.; Li, Q. A model for characterizing dry soil aggregate size distribution. Catena 2020, 198, 105018. [Google Scholar] [CrossRef]
- Shirazi, M.A.; Boersma, L.; Hart, J.W. A Unifying Quantitative Analysis of Soil Texture: Improvement of Precision and Extension of Scale. Soil Sci. Soc. Am. J. 1988, 52, 181–190. [Google Scholar] [CrossRef]
- Rastgou, M.; Bayat, H.; Mansoorizadeh, M. Developing conceptual and empirical models for well- and gap-graded soil particle size distribution (PSD) curve. Arch. Agron. Soil Sci. 2021, 13, 1770–1782. [Google Scholar] [CrossRef]
- Yang, S.; Li, R.; Wu, T.; Wu, X.; Zhao, L.; Hu, G.; Zhu, X.; Du, Y.; Xiao, Y.; Zhang, Y.; et al. Evaluation of soil thermal conductivity schemes incorporated into CLM5.0 in permafrost regions on the Tibetan Plateau. Geoderma 2021, 401, 115330. [Google Scholar] [CrossRef]
- Brunke, M.A.; Fairall, C.W.; Zeng, X.; Eymard, L.; Curry, J. Which Bulk Aerodynamic Algorithms are Least Problematic in Computing Ocean Surface Turbulent Fluxes? J. Clim. 2003, 16, 619–635. [Google Scholar] [CrossRef]
- Wang, A.; Zeng, X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res. 2012, 117, D05102. [Google Scholar] [CrossRef]
Texture Class | UNSODA Codes |
---|---|
loamy sand (LS) | 1010 1013 1015 1030 1031 1032 1051 1062 1090 1111 1143 1150 1160 1203 3130 3131 3160 3171 4050 |
sand (S) | 1014 1020 1024 1042 1052 1054 1060 1072 1075 1110 1142 1460 2342 3060 3070 3080 3140 4001 4021 4660 |
sandy loam (SL) | 1091 1101 1131 1161 1202 1204 1210 1213 1380 1381 1430 1440 1450 3010 3200 3290 3291 |
clay (C) | 1162 1163 2340 2360 2362 |
sandy clay loam (SCL) | 1092 1102 1116 1117 1122 1133 1152 1164 1166 1201 1382 2341 3202 4291 |
sandy clay (SC) | 1134 1135 |
clay loam (CL) | 1123 1191 1192 1193 1194 1200 3031 3032 3033 |
loam (L) | 1190 1212 1370 2320 2321 3190 3191 3192 3195 3293 3303 4574 |
silt (Si) | 3214 4670 |
silt loam (SiL) | 1280 1281 1282 1340 1341 1342 1350 1351 1352 1490 2000 2001 2002 2010 2011 2012 2351 2464 3090 3091 3210 3262 3360 4030 4040 4672 |
silty clay (SiC) | 1360 1361 1383 2350 3030 |
silty clay loam (SiCL) | 1362 1371 1372 2463 3100 3101 3102 3103 3110 3111 3112 3113 3212 |
Model Name | Model | Parameter |
---|---|---|
Fred [16] (Fredlund et at., 2000) | ||
K( Kolev) [31] (Kolev et al., 1996) | ||
Wb (Weibull) [38] (Millan et al., 2003) | ||
R (Rosin) [34] (Rosin et al., 1933) | ||
W (Wang Weipeng) [39] (Wang Weipeng et al., 2015) | ||
VG [40] (Haverkamp et al., 1986) | ||
S [41] (Skaggs et al., 2001) | ||
Best [42] (Lassabatere et al., 2006) | ||
Z [43] (Zhongling Guo et al., 2020) |
Model Name | Fred | K | Wb | R | W | VG | S | Best | Z | Sample Point |
---|---|---|---|---|---|---|---|---|---|---|
Mass proportion | 0.500 | 0.410 | 0.465 | 0.460 | 0.482 | 0.483 | 0.483 | 0.426 | 0.512 | 0.499 |
0.542 | 0.380 | 0.424 | 0.433 | 0.513 | 0.378 | 0.511 | 0.387 | 0.541 |
Criteria | Equations | Explanation |
---|---|---|
Coefficient of Determination | measured data values. predicted data values. number of observed data points. average value of measured data. the number of model parameters sum of squared errors of prediction | |
Root-Mean-Square Error | ||
Mean Absolute Error | ||
Corrected Akaike’s Information Criterion |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, C.; Chen, Z.; Kang, Q.; Xu, X.; Gao, T. Performance Comparison of Different Particle Size Distribution Models in the Prediction of Soil Particle Size Characteristics. Land 2022, 11, 2068. https://doi.org/10.3390/land11112068
Zhang H, Wang C, Chen Z, Kang Q, Xu X, Gao T. Performance Comparison of Different Particle Size Distribution Models in the Prediction of Soil Particle Size Characteristics. Land. 2022; 11(11):2068. https://doi.org/10.3390/land11112068
Chicago/Turabian StyleZhang, Hao, Chong Wang, Zhengyan Chen, Qingyu Kang, Xiaohua Xu, and Tianpeng Gao. 2022. "Performance Comparison of Different Particle Size Distribution Models in the Prediction of Soil Particle Size Characteristics" Land 11, no. 11: 2068. https://doi.org/10.3390/land11112068
APA StyleZhang, H., Wang, C., Chen, Z., Kang, Q., Xu, X., & Gao, T. (2022). Performance Comparison of Different Particle Size Distribution Models in the Prediction of Soil Particle Size Characteristics. Land, 11(11), 2068. https://doi.org/10.3390/land11112068