The Extraction Method of Alfalfa (Medicago sativa L.) Mapping Using Different Remote Sensing Data Sources Based on Vegetation Growth Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data and Remote Sensing Data
2.3. Methodology
2.3.1. Alfalfa Extraction Method
2.3.2. NDVI Smoothing Method
2.3.3. Temporal NDVI Interpolation Method
2.3.4. Wave Peak and Valley Identification Method
3. Results
3.1. Temporal NDVI Variation Characteristics of Different Vegetation Types
3.2. Extraction Method of Alfalfa Mapping from the MODIS Data
3.3. Extraction Method of Alfalfa Mapping from the Sentinel-2 Data
3.3.1. Extraction Method of Alfalfa Mapping Based on Supervised Classification
3.3.2. Extraction Method of Alfalfa Mapping Based on NDVI Wave Peak and Valley
4. Discussion
4.1. Characteristics of Alfalfa at Different Stages
4.2. Main Influencing Factors of Alfalfa Mapping Extraction Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Testa, G.; Gresta, F.; Cosentino, S.L. Dry matter and qualitative characteristics of alfalfa as affected by harvest times and soil water content. Eur. J. Agron. 2011, 34, 144–152. [Google Scholar] [CrossRef]
- Lamb, J.F.S.; Sheaffer, C.C.; Rhodes, L.H.; Sulc, R.M.; Undersander, D.J.; Brummer, E.C. Five decades of alfalfa cultivar improvement: Impact on forage yield, persistence, and nutritive value. Crop Sci. 2006, 46, 902–909. [Google Scholar] [CrossRef] [Green Version]
- Kallenbach, R.L.; Nelson, C.J.; Coutts, J.H. Yield, quality, and persistence of grazing- and hay-type alfalfa under three harvest frequencies. Agron. J. 2002, 94, 1094–1103. [Google Scholar] [CrossRef]
- Buxton, D.R.; Hornstein, J.S.; Wedin, W.F.; Marten, G.C. Forage quality in stratified canopies of alfalfa, birdsfoot trefoil, and red clover. Crop Sci. 1985, 25, 273–279. [Google Scholar] [CrossRef]
- Sheaffer, C.C.; Martin, N.P.; Lamb, J.F.S.; Cuomo, G.R.; Jewett, J.G.; Quering, S.R. Leaf and stem properties of alfalfa entries. Agron. J. 2000, 92, 733–739. [Google Scholar] [CrossRef]
- Ventroni, L.M.; Volenec, J.J.; Cangiano, C.A. Fall dormancy and cutting frequency impact on alfalfa yield and yield components. Field Crop. Res. 2011, 119, 252–259. [Google Scholar] [CrossRef]
- Weishaar, M.A.; Brummer, E.C.; Volenec, J.J.; Moore, K.J.; Cunningham, S. Improving winter hardiness in nondormant alfalfa germplasm. Crop Sci. 2005, 45, 60–65. [Google Scholar] [CrossRef]
- Kelner, D.J.; Vessey, J.K.; Entz, M.H. The nitrogen dynamics of 1-, 2- and 3-year stands of alfalfa in a cropping system. Agric. Ecosyst. Environ. 1997, 64, 1–10. [Google Scholar] [CrossRef]
- Kayad, A.G.; Al-Gaadi, K.A.; Tola, E.; Madugundu, R.; Zeyada, A.M.; Kalaitzidis, C. Assessing the spatial variability of alfalfa yield using satellite imagery and ground-based data. PLoS ONE 2016, 11, e0157166. [Google Scholar] [CrossRef] [Green Version]
- Asgarian, A.; Soffianian, A.; Pourmanafi, S. Crop type mapping in a highly fragmented and heterogeneous agricultural landscape: A case of central Iran using multi-temporal Landsat 8 imagery. Comput. Electron. Agric. 2016, 127, 531–540. [Google Scholar] [CrossRef]
- Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210, 35–47. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Thorp, K.R.; Drajat, D. Deep machine learning with Sentinel satellite data to map paddy rice production stages across West Java, Indonesia. Remote Sens. Environ. 2021, 265, 112679. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Y.; Zhong, R.; Lin, Z.; Xu, J.; Jiang, H.; Huang, J.; Li, H.; Lin, T. DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping. Remote Sens. Environ. 2020, 247, 111946. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, F.; Qin, F. Identification and mapping of winter wheat by integrating temporal change information and Kullback-Leibler divergence. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 26–39. [Google Scholar] [CrossRef]
- Konduri, V.S.; Kumar, J.; Hargrove, W.W.; Hoffman, F.M.; Ganguly, A.R. Mapping crops within the growing season across the United States. Remote Sens. Environ. 2020, 251, 112048. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens. Environ. 2012, 124, 334–347. [Google Scholar] [CrossRef]
- Hemmerling, J.; Pflugmacher, D.; Hostert, P. Mapping temperate forest tree species using dense Sentinel-2 time series. Remote Sens. Environ. 2021, 267, 112743. [Google Scholar] [CrossRef]
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High resolution wheat yield mapping using Sentinel-2. Remote Sens. Environ. 2019, 233, 111410. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS-J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Xu, D.; Chen, B.; Shen, B.; Wang, X.; Yan, Y.; Xu, L.; Xin, X. The classification of grassland types based on object-based image analysis with multisource data. Rangel. Ecol. Manag. 2019, 72, 318–326. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Chandel, A.K.; Khot, L.R.; Yu, L. Alfalfa (Medicago sativa L.) crop vigor and yield characterization using high-resolution aerial multispectral and thermal infrared imaging technique. Comput. Electron. Agric. 2021, 182, 105999. [Google Scholar] [CrossRef]
- Yadav, K.; Geli, H.M.E. Prediction of crop yield for New Mexico based on climate and remote sensing data for the 1920–2019 period. Land 2021, 10, 1389. [Google Scholar] [CrossRef]
- Zeyliger, A.M.; Ermolaeva, O.S. Water stress regime of irrigated crops based on remote sensing and ground-based data. Agronomy 2021, 11, 1117. [Google Scholar] [CrossRef]
- Starks, P.J.; Brown, M.A.; Turner, K.E.; Venuto, B.C. Canopy visible and near-infrared reflectance data to estimate alfalfa nutritive attributes before harvest. Crop Sci. 2016, 56, 484–494. [Google Scholar] [CrossRef]
- Zhou, Y.; Flynn, K.C.; Gowda, P.H.; Wagle, P.; Ma, S.; Kakani, V.G.; Steiner, J.L. The potential of active and passive remote sensing to detect frequent harvesting of alfalfa. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102539. [Google Scholar] [CrossRef]
- Zhan, Y.; Muhammad, S.; Hao, P.; Niu, Z. The effect of EVI time series density on crop classification accuracy. Optik 2018, 157, 1065–1072. [Google Scholar] [CrossRef]
- Seydi, S.T.; Amani, M.; Ghorbanian, A. A dual attention convolutional neural network for crop classification using time-series Sentinel-2 imagery. Remote Sens. 2022, 14, 498. [Google Scholar] [CrossRef]
- Ashourloo, D.; Shahrabi, H.S.; Azadbakht, M.; Aghighi, H.; Matkan, A.A.; Radiom, S. A novel automatic method for alfalfa mapping using time series of Landsat-8 OLI data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 4478–4487. [Google Scholar] [CrossRef]
- Hong, G.; Zhang, A.; Zhou, F.; Brisco, B. Integration of optical and synthetic aperture radar (SAR) images to differentiate grassland and alfalfa in Prairie area. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 12–19. [Google Scholar] [CrossRef]
- Chen, J.; Jonsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Haagenson, D.M.; Cunningham, S.M.; Volenec, J.J. Root physiology of less fall dormant, winter hardy alfalfa selections. Crop Sci. 2003, 43, 1441–1447. [Google Scholar] [CrossRef] [Green Version]
- Brink, G.; Hall, M.; Shewmaker, G.; Undersander, D.; Martin, N.; Walgenbach, R. Changes in alfalfa yield and nutritive value within individual harvest periods. Agron. J. 2010, 102, 1274–1282. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Jonsson, P.; Jin, H.; Eklundh, L. Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data. Remote Sens. 2017, 9, 1271. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Lunetta, R.S.; Wheeler, B.; Iiames, J.S.; Campbell, J.B. An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data. Remote Sens. Environ. 2016, 174, 258–265. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sens. Environ. 2004, 93, 107–117. [Google Scholar] [CrossRef]
Alfalfa | Oats | Corn | Sunflower | Grassland Vegetation | Total | |
---|---|---|---|---|---|---|
Sentinel-2 | 177 | 92 | 98 | 25 | 100 | 492 |
MODIS | 107 | 40 | 11 | 5 | 16 | 179 |
Alfalfa | Oats | Corn | Sunflower | Grassland Vegetation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Wave peak | Wave valley | Wave peak | Wave valley | Wave peak | Wave valley | Wave peak | Wave valley | Wave peak | Wave valley | |
Greater than 2 | Greater than 1 | Less than 3 | Less than 2 | Less than 2 | Less than 1 | Less than 2 | Less than 1 | Less than 3 | Less than 2 | |
Number | 104 | 98 | 18 | 37 | 7 | 6 | 5 | 1 | 16 | 14 |
Proportion | 97.2% | 91.6% | 45.0% | 92.5% | 63.6% | 54.5% | 100.0% | 20.0% | 100.0% | 87.5% |
Peak Growth Stage (2 August 2020) | ||||
---|---|---|---|---|
Alfalfa | Oats | Corn | Sunflower | |
Oats | 1.5810 | — | ||
Corn | 2.0000 | 1.9965 | — | |
Sunflower | 1.9182 | 1.9826 | 2.0000 | — |
Grassland vegetation | 1.7966 | 1.7073 | 2.0000 | 1.9900 |
Pre-wintering stage (23 October 2020) | ||||
Alfalfa | Oats | Corn | Sunflower | |
Oats | 1.9715 | — | ||
Corn | 1.9989 | 1.9398 | — | |
Sunflower | 1.9974 | 1.9912 | 1.9967 | — |
Grassland vegetation | 1.9630 | 1.9844 | 1.9988 | 1.9478 |
Spring regreening stage (21 April 2021) | ||||
Alfalfa | Oats | Corn | Sunflower | |
Oats | 1.6875 | — | ||
Corn | 1.9250 | 1.6117 | — | |
Sunflower | 1.9783 | 1.9322 | 1.7451 | — |
Grassland vegetation | 1.8197 | 1.7708 | 1.8820 | 1.8763 |
Alfalfa | Oats | Corn | Sunflower | Grassland Vegetation | ||
---|---|---|---|---|---|---|
Alfalfa | Oats | Corn | Sunflower | Grassland Vegetation |
---|---|---|---|---|
Alfalfa | Oats | Corn | Sunflower | Grassland Vegetation | |
---|---|---|---|---|---|
Alfalfa | 71 | 1 | 4 | 0 | 0 |
Oats | 0 | 31 | 0 | 0 | 0 |
Corn | 0 | 5 | 35 | 0 | 0 |
Sunflower | 0 | 0 | 0 | 6 | 0 |
Grassland vegetation | 0 | 0 | 0 | 4 | 40 |
Alfalfa | Oats | Corn | Sunflower | Grassland Vegetation | |
---|---|---|---|---|---|
Alfalfa | Oats | Corn | Sunflower | Grassland Vegetation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Wave peak | Wave valley | Wave peak | Wave valley | Wave peak | Wave valley | Wave peak | Wave valley | Wave peak | Wave valley | |
Greater than 2 | Greater than 1 | Less than 3 | Less than 2 | Less than 2 | Less than 1 | Less than 2 | Less than 1 | Less than 3 | Less than 2 | |
Number | 159 | 154 | 39 | 82 | 16 | 52 | 25 | 4 | 82 | 82 |
Proportion | 89.8% | 87.0% | 42.4% | 89.1% | 16.3% | 53.1% | 100.0% | 16.0% | 82.0% | 82.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Shi, F.; Xu, D. The Extraction Method of Alfalfa (Medicago sativa L.) Mapping Using Different Remote Sensing Data Sources Based on Vegetation Growth Properties. Land 2022, 11, 1996. https://doi.org/10.3390/land11111996
Wang R, Shi F, Xu D. The Extraction Method of Alfalfa (Medicago sativa L.) Mapping Using Different Remote Sensing Data Sources Based on Vegetation Growth Properties. Land. 2022; 11(11):1996. https://doi.org/10.3390/land11111996
Chicago/Turabian StyleWang, Ruifeng, Fengling Shi, and Dawei Xu. 2022. "The Extraction Method of Alfalfa (Medicago sativa L.) Mapping Using Different Remote Sensing Data Sources Based on Vegetation Growth Properties" Land 11, no. 11: 1996. https://doi.org/10.3390/land11111996
APA StyleWang, R., Shi, F., & Xu, D. (2022). The Extraction Method of Alfalfa (Medicago sativa L.) Mapping Using Different Remote Sensing Data Sources Based on Vegetation Growth Properties. Land, 11(11), 1996. https://doi.org/10.3390/land11111996