Spatiotemporal Changes (1945–2020) in a Grazed Landscape of Northern Greece, in Relation to Socioeconomic Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Socioeconomic Changes
2.3. Data Acquisition and Land Use/Land Cover Changes
2.4. Spatiotemporal Transitions and Landscape Structure
3. Results and Discussion
3.1. Socioeconomic Changes
3.2. Land Use/Land Cover Changes
3.3. Spatiotemporal Transitions and Landscape Structure
3.4. Study Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tzanopoulos, J.; Vogiatzakis, I.N. Processes and patterns of landscape change on a small Aegean island: The case of Sifnos, Greece. Landsc. Urban Plan 2011, 99, 58–64. [Google Scholar] [CrossRef]
- Mallinis, G.; Emmanoloudis, D.; Giannakopoulos, V.; Maris, F.; Koutsias, N. Mapping and interpreting historical land cover/land use changes in a Natura 2000 site using earth observational data: The case of Nestos delta, Greece. Appl. Geogr. 2011, 31, 312–320. [Google Scholar] [CrossRef]
- Papanastasis, V.P. Land Use Changes. In Mediterranean Mountain Environments; Wiley: Hoboken, NJ, USA, 2012; pp. 159–184. [Google Scholar]
- Chouvardas, D.; Ispikoudis, I.; Mitka, K.; Evangelou, C.; Papanastasis, V.P. Diachronic evolution of land use/cover changes in pastoral landscapes of Greece. In Proceedings of the 9th European Dry Grassland Meeting “Dry Grasslands of Europe: Grazing and Ecosystem Services”, Prespa, Greece, 19–23 May 2012; pp. 277–282. [Google Scholar]
- Chouvardas, D.P.; Kourakli, P.; Kalaitzidis, C.; Kazakis, G.; Karatassiou, M. Spatio-temporal changes analysis (1984–2017) of a grazed Cretan landscape using Landsat satellite images. Options Méditerr. A 2021, 126, 163–168. [Google Scholar]
- Kiziridis, D.A.; Mastrogianni, A.; Pleniou, M.; Karadimou, E.; Tsiftsis, S.; Xystrakis, F.; Tsiripidis, I. Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications. Land 2022, 11, 406. [Google Scholar] [CrossRef]
- Chouvardas, D. Estimation of Diachronic Effects of Pastoral Systems and Land Uses in Landscapes with the Use of Geographic Information Systems (GIS). Ph.D. Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2007. [Google Scholar]
- Zomeni, M.; Tzanopoulos, J.; Pantis, J.D. Historical analysis of landscape change using remote sensing techniques: An explanatory tool for agricultural transformation in Greek rural areas. Landsc. Urban Plan 2008, 86, 38–46. [Google Scholar] [CrossRef]
- Sluis, T.V.D.; Kizos, T.; Pedroli, B. Landscape change in Mediterranean farmlands: Impacts of land abandonment on cultivation terraces in Portofino (Italy) and Lesvos (Greece). J. Landsc. Ecol. (Czech Repub.) 2014, 7, 23–44. [Google Scholar] [CrossRef] [Green Version]
- Rapti, D.; Chouvardas, D.; Parissi, Z. Study of temporal evolution of Kato Olympus Landscape. In Proceedings of the 9th Panhellenic Rangeland Congress, Larissa, Greece, 9–12 October 2018; pp. 82–89. [Google Scholar]
- Nasiakou, S.; Chouvardas, D.; Vrahnakis, Μ.; Kleftoyianni, V. Temporal changes analysis of Mouzaki’s landscape, western Thessaly, Greece (1960–2020). In Proceedings of the 10th Panhellenic Rangeland Congress, Florina, Greece, 4 March 2022; p. 6. [Google Scholar]
- Mamanis, G.; Vrahnakis, M.; Chouvardas, D.; Nasiakou, S.; Kleftoyanni, V. Land use demands for the clue-s spatiotemporal model in an agroforestry perspective. Land 2021, 10, 1097. [Google Scholar] [CrossRef]
- Ispikoudis, I.; Chouvardas, D.L. land use and landscape. In Animal Production and Natural Resources Utilisation in the Mediterranean Mountain Areas; Georgoudis, A., Rosati, A., Moscani, C., Eds.; Academic Publishers: Wageningen, The Netherlands, 2005; pp. 151–157. [Google Scholar]
- Sklavou, P.; Karatassiou, M.; Parissi, Z.; Galidaki, G.; Ragkos, A.; Sidiropoulou, A. The role of transhumance on land use/cover changes in Mountain Vermio, Northern Greece: A GIS based approach. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Nori, M.; Farinella, D. Migration, Agriculture and Rural Development; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Papanastasis, V.P.; Arianoutsou, M.; Papanastasis, K. Environmental conservation in classical Greece. J. Biol. Res. 2010, 14, 123–135. [Google Scholar]
- Hadjigeorgiou, I. Past, present and future of pastoralism in Greece. Pastoralism 2011, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Sidiropoulou, A.; Karatassiou, M.; Galidaki, G.; Sklavou, P. Landscape Pattern Changes in Response to Transhumance Abandonment on Mountain Vermio (North Greece). Sustainability 2015, 7, 15652–15673. [Google Scholar] [CrossRef]
- Peñuelas, J.; Sardans, J. Global change and forest disturbances in the mediterranean basin: Breakthroughs, knowledge gaps, and recommendations. Forests 2021, 12, 603. [Google Scholar] [CrossRef]
- Levers, C.; Schneider, M.; Prishchepov, A.V.; Estel, S.; Kuemmerle, T. Spatial variation in determinants of agricultural land abandonment in Europe. Sci. Total Environ. 2018, 644, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Nocentini, S.; Travaglini, D.; Muys, B. Managing Mediterranean Forests for Multiple Ecosystem Services: Research Progress and Knowledge Gaps. Curr. For. Rep. 2022, 8, 229–256. [Google Scholar] [CrossRef]
- Delgado-Artés, R.; Garófano-Gómez, V.; Oliver-Villanueva, J.V.; Rojas-Briales, E. Land use/cover change analysis in the Mediterranean region: A regional case study of forest evolution in Castelló (Spain) over 50 years. Land Use Policy 2022, 114, 105967. [Google Scholar] [CrossRef]
- Millington, J.D.A.; Perry, G.L.W.; Romero-Calcerrada, R. Regression Techniques for Examining Land Use/Cover Change: A Case Study of a Mediterranean Landscape. Ecosyst 2007, 10, 562–578. [Google Scholar] [CrossRef]
- Henkin, Z. The role of brush encroachment in Mediterranean ecosystems: A review. Isr. J. Plant Sci. 2021, 76, bja10039. [Google Scholar] [CrossRef]
- Ameztegui, A.; Morán-Ordóñez, A.; Márquez, A.; Blázquez-Casado, Á.; Pla, M.; Villero, D.; García, M.B.; Errea, M.P.; Coll, L. Forest expansion in mountain protected areas: Trends and consequences for the landscape. Landsc Urban Plan 2021, 216, 104240. [Google Scholar] [CrossRef]
- Tsioras, P.A. Perspectives of the forest workers in Greece. iForest 2010, 3, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Tsioras, P.A. Status and Job Satisfaction of Greek Forest Workers. Small-Scale For. 2012, 11, 1–14. [Google Scholar] [CrossRef]
- Santoro, A.; Venturi, M.; Piras, F.; Fiore, B.; Corrieri, F.; Agnoletti, M. Forest Area Changes in Cinque Terre National Park in the Last 80 Years. Consequences on Landslides and Forest Fire Risks. Land 2021, 10, 293. [Google Scholar] [CrossRef]
- Tsioras, P.A. Forest operations as a means for rural development. In Proceedings of the Scientific Symposium “Forest and Sustainable Development”, Brasov, Romania, 25–27 October 2008; pp. 577–584. [Google Scholar]
- Guarino, R.; Vrahnakis, M.; Rojo, M.P.R.; Giuga, L.; Pasta, S. Grasslands and shrublands of the Mediterranean region. In Encyclopedia of the World’s Biomes; Elsevier: Amsterdam, The Netherlands, 2020; Volume 3–5, pp. 638–655. [Google Scholar]
- Mantero, G.; Morresi, D.; Marzano, R.; Motta, R.; Mladenoff, D.J.; Garbarino, M. The influence of land abandonment on forest disturbance regimes: A global review. Landsc. Ecol. 2020, 35, 2723–2744. [Google Scholar] [CrossRef]
- Chouvardas, D.; Vrahnakis, M.S. A semi-empirical model for the near future evolution of the lake Koronia landscape. J. Environ. Prot. Ecol. 2009, 10, 867–876. [Google Scholar]
- Sirami, C.; Nespoulous, A.; Cheylan, J.P.; Marty, P.; Hvenegaard, G.T.; Geniez, P.; Schatz, B.; Martin, J.L. Long-term anthropogenic and ecological dynamics of a Mediterranean landscape: Impacts on multiple taxa. Landsc Urban Plan 2010, 96, 214–223. [Google Scholar] [CrossRef]
- Janssen, J.A.M.; Rodwell, J.S.; Garcia Criado, M.; Arts, G.H.P.; Bijlsma, R.J.; Schaminee, J.H.J. European Red List of Habitats; European Union: Mestreech, The Netherlands, 2016. [Google Scholar]
- Hoekstra, J.M.; Boucher, T.M.; Ricketts, T.H.; Roberts, C. Confronting a biome crisis: Global disparities of habitat loss and protection. Ecol. Lett. 2005, 8, 23–29. [Google Scholar] [CrossRef]
- Howell, P.E.; Terhune, T.M.; Martin, J.A. Edge density affects demography of an exploited grassland bird. Ecosphere 2021, 12, 3499. [Google Scholar] [CrossRef]
- Carta, A.; Taboada, T.; Müller, J.V. Diachronic analysis using aerial photographs across fifty years reveals significant land use and vegetation changes on a Mediterranean island. Appl. Geogr. 2018, 98, 78–86. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Teferi, E.; Bewket, W.; Uhlenbrook, S.; Wenninger, J. Understanding recent land use and land cover dynamics in the source region of the Upper Blue Nile, Ethiopia: Spatially explicit statistical modeling of systematic transitions. Agric. Ecosyst. Environ. 2013, 165, 98–117. [Google Scholar] [CrossRef]
- Attri, P.; Chaudhry, S.; Sharma, S. Remote Sensing & GIS based Approaches for LULC Change Detection—A Review. Int. J. Curr. Eng. Technol. 2015, 5, 3126–3137. [Google Scholar]
- Perakis, G.; Faraslis, N.; Moisiadis, K. Remote Sensing in Thirteen Chapters; Kallipos: Open Academic Editions: Athens, Greece, 2015; p. 231. [Google Scholar]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Munthali, M.G.; Botai, J.O.; Davis, N.; Adeolal, A.M. Multi-temporal Analysis of Land Use and Land Cover Change Detection for Dedza District of Malawi using Geospatial Techniques. Int. J. Appl. Eng. Res. 2019, 14, 1151–1162. [Google Scholar]
- Cribari, V.; Strager, M.P.; Maxwell, A.E.; Yuill, C. Landscape changes in the southern coalfields of West Virginia: Multi-level intensity analysis and surface mining transitions in the headwaters of the coal river from 1976 to 2016. Land 2021, 10, 748. [Google Scholar] [CrossRef]
- de Souza, J.M.; Morgado, P.; da Costa, E.M.; de Novaes Vianna, L.F. Modeling of Land Use and Land Cover (LULC) Change Based on Artificial Neural Networks for the Chapecó River Ecological Corridor, Santa Catarina/Brazil. Sustainability 2022, 14, 4038. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; p. 122.
- Farina, A. Landscape Ecology in Action; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Leitão, A.B. Measuring Landscapes: A Planner’s Handbook; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Otero, I.; Boada, M.; Tàbara, J.D. Social–ecological heritage and the conservation of Mediterranean landscapes under global change. A case study in Olzinelles (Catalonia). Land Use Policy 2013, 30, 25–37. [Google Scholar] [CrossRef]
- Aune, S.; Bryn, A.; Hovstad, K.A. Loss of semi-natural grassland in a boreal landscape: Impacts of agricultural intensification and abandonment. J. Land Use Sci. 2018, 13, 375–390. [Google Scholar] [CrossRef]
- Scherreiks, P.; Gossner, M.M.; Ambarlı, D.; Ayasse, M.; Blüthgen, N.; Fischer, M.; Klaus, V.H.; Kleinebecker, T.; Neff, F.; Prati, D.; et al. Present and historical landscape structure shapes current species richness in Central European grasslands. Landsc Ecol. 2022, 37, 745–762. [Google Scholar] [CrossRef]
- Rescia, A.J.; Pons, A.; Lomba, I.; Esteban, C.; Dover, J.W. Reformulating the social-ecological system in a cultural rural mountain landscape in the Picos de Europa region (northern Spain). Landsc. Urban Plan 2008, 88, 23–33. [Google Scholar] [CrossRef]
- Parcerisas, L.; Marull, J.; Pino, J.; Tello, E.; Coll, F.; Basnou, C. Land use changes, landscape ecology and their socioeconomic driving forces in the Spanish Mediterranean coast (El Maresme County, 1850–2005). Environ. Sci. Policy 2012, 23, 120–132. [Google Scholar] [CrossRef]
- Yirsaw, E.; Wu, W.; Temesgen, H.; Bekele, B. Socioeconomic drivers of spatio-temporal land use/land cover changes in a rapidly urbanizing area of China, the Su-Xi-Chang region. Appl. Ecol. Environ. Res. 2017, 15, 809–827. [Google Scholar] [CrossRef]
- Rovani, I.L.; Decian, V.S.; Zanin, E.M.; Brandalise, M.; Quadros, F.R.; Hepp, L.U. Socioeconomic changes and land use and land cover of the Northern Region of Rio Grande do Sul, Brazil. Floresta Ambiente 2020, 27, 25818. [Google Scholar] [CrossRef]
- Natura 2000 Network Viewer. Available online: https://natura2000.eea.europa.eu/ (accessed on 10 September 2022).
- Ramsar Sites Information Service. Available online: https://rsis.ramsar.org/ris-search/?f[0]=regionCountry_en_ss%3AGreece (accessed on 10 September 2022).
- Chatzimichali, A. Sarakatsanoi, 2nd ed.; Angeliki Chatzimichali Foundation: Athens, Greece, 2007. [Google Scholar]
- Papanastasis, V.P.; Chouvardas, D. Application of the state-and-transition approach to conservation management of a grazed mediterranean landscape in greece. Isr. J. Plant Sci. 2005, 53, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Bakker, M.M.; Govers, G.; van Doorn, A.; Quetier, F.; Chouvardas, D.; Rounsevell, M. The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology 2008, 98, 213–226. [Google Scholar] [CrossRef]
- Puyravaud, J.P. Standardizing the calculation of the annual rate of deforestation. For Ecol. Manag. 2003, 177, 593–596. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Shusas, E.; McEachern, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Elkie, P.; Rempel, R.; Carr, A. Patch Analyst User’s Manual. A Tool for Quantifying Landscape Structure; NWST: Ontario, ON, Canada, 1999. [Google Scholar]
- Levers, C.; Müller, D.; Erb, K.; Haberl, H.; Jepsen, M.R.; Metzger, M.J.; Meyfroidt, P.; Plieninger, T.; Plutzar, C.; Stürck, J.; et al. Archetypical patterns and trajectories of land systems in Europe. Reg. Environ. Chang. 2018, 18, 715–732. [Google Scholar] [CrossRef]
- Ragkos, A. Transhumance in Greece: Multifunctionality as an Asset for Sustainable Development. In Grazing Communities: Pastoralism on the Move and Biocultural Heritage Frictions; Bindi, L., Ed.; Berghahn: New York, NY, USA; Oxford, UK, 2022; Volume 29, pp. 23–43. [Google Scholar]
- Ragkos, A.; Abraham, E.M.; Papadopoulou, A.; Kyriazopoulos, A.P.; Parissi, Z.M.; Hadjigeorgiou, I. Effects of European Union agricultural policies on the sustainability of grazingland use in a typical Greek rural area. Land Use Policy 2017, 66, 196–204. [Google Scholar] [CrossRef]
- Delattre, L.; Debolini, M.; Paoli, J.C.; Napoleone, C.; Moulery, M.; Leonelli, L.; Santucci, P. Understanding the Relationships between Extensive Livestock Systems, Land-Cover Changes, and CAP Support in Less-Favored Mediterranean Areas. Land 2020, 9, 518. [Google Scholar] [CrossRef]
- Tsioras, P.A.; Khooshdohbat, M.; Nikooy, M.; Naghdi, R.; Heidari, M. The Impact of Body Posture on Heart Rate Strain during Tree Felling. Int. J. Env. Res. Public Health 2022, 19, 11198. [Google Scholar] [CrossRef]
- Arman, Z.; Nikkoy, M.; Tsioras, P.A.; Heidari, M.J.; Majnounian, B. Mental Workload, Occupational Fatigue and Musculoskeletal Disorders of Forestry Professionals: The Case of a Loblolly Plantation in Northern Iran. Croat. J. For. Eng. 2022, 43, 403–424. [Google Scholar] [CrossRef]
- Tsioras, P.A.; Rottensteiner, C.; Stampfer, K. Wood harvesting accidents in the Austrian State Forest Enterprise 2000–2009. Saf. Sci. 2014, 62, 400–408. [Google Scholar] [CrossRef]
- Karatassiou, M.; Parissi, Z.M.; Sklavou, P. Interaction of climatic conditions and transhumant livestock system on two mountainous rangelands in Greece. In The Value Chains of Mediterranean Sheep and Goat Products. Organisation of the Industry, Marketing Strategies, Feeding and Production Systems; Ben Salem, H., Boutonnet, J.P., Gabiña, D., López-Francos, A., Napoléone, M., Eds.; Ciheam: Zaragoza, Spain, 2016; Volume 115, pp. 661–665. [Google Scholar]
- Lasanta-Martínez, T.; Vicente-Serrano, S.M.; Cuadrat-Prats, J.M. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: A study of the Spanish Central Pyrenees. Appl. Geogr. 2005, 25, 47–65. [Google Scholar] [CrossRef]
- Pelorosso, R.; Leone, A.; Boccia, L. Land cover and land use change in the Italian central Apennines: A comparison of assessment methods. Appl. Geogr. 2009, 29, 35–48. [Google Scholar] [CrossRef]
- Tsioras, P.A. Required profile of trainers and instructors of forest workers in Greece. Bull. Transilv. Univ. Bras. Ser. II For. Wood Ind. Agric. Food Eng. 2017, 10, 27–36. [Google Scholar]
- Haddaway, N.R.; Styles, D.; Pullin, A.S. Evidence on the environmental impacts of farm land abandonment in high altitude/mountain regions: A systematic map. Environ. Evid. 2014, 3, 17. [Google Scholar] [CrossRef]
- Perino, A.; Pereira, H.M.; Navarro, L.M.; Fernández, N.; Bullock, J.M.; Ceaușu, S.; Cortés-Avizanda, A.; van Klink, R.; Kuemmerle, T.; Lomba, A.; et al. Rewilding complex ecosystems. Science 2019, 364, aav5570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- García-Ruiz, J.M.; Lasanta, T.; Nadal-Romero, E.; Lana-Renault, N.; Álvarez-Farizo, B. Rewilding and restoring cultural landscapes in Mediterranean mountains: Opportunities and challenges. Land Use Policy 2020, 99, 104850. [Google Scholar] [CrossRef]
- Medeiros, A.; Fernandes, C.; Gonçalves, J.F.; Farinha-Marques, P. A diagnostic framework for assessing land-use change impacts on landscape pattern and character—A case-study from the Douro region, Portugal. Landsc Urban Plan 2022, 228, 104580. [Google Scholar] [CrossRef]
- Sankey, T.T. Woody–Herbaceous–Livestock Species Interaction. In Ecotones Between Forest and Grassland; Myster, R.W., Ed.; Springer: New York, NY, USA, 2012; pp. 89–114. [Google Scholar]
- Theron, K.J.; Pryke, J.S.; Samways, M.J. Maintaining functional connectivity in grassland corridors between plantation forests promotes high-quality habitat and conserves range restricted grasshoppers. Landsc. Ecol. 2022, 37, 2081–2097. [Google Scholar] [CrossRef]
- Habel, J.C.; Schmitt, T.; Gros, P.; Ulrich, W. Breakpoints in butterfly decline in Central Europe over the last century. Sci. Total Environ. 2022, 851, 158315. [Google Scholar] [CrossRef] [PubMed]
- Porqueddu, C.; Franca, A.; Lombardi, G.; Molle, G.; Peratoner, G.; Hopkins, A. Grassland Resources for Extensive Farming Systems in Marginal Lands: Major Drivers and Future Scenarios; Wageningen Academic Publishers: Wageningen, Greece, 2017; Volume 22, p. 681. [Google Scholar]
- Nasiakou, S.; Vrahnakis, M.; Chouvardas, D.; Mamanis, G.; Kleftoyanni, V. Land Use Changes for Investments in Silvoarable Agriculture Projected by the CLUE-S Spatio-Temporal Model. Land 2022, 11, 598. [Google Scholar] [CrossRef]
Land Use/Land Cover Types | Description | Codes |
---|---|---|
Arable lands | Areas covered with temporary or permanent field crops | AL |
Grasslands | Areas dominated by herbaceous plants, with woody shrubs or/with tree cover of less than 10% | GR |
Open Shrublands | Areas dominated by sparse woody shrubs with a cover less than 40% | OS |
Dense Shrublands | Areas dominated by dense woody shrubs with a cover higher than 40% | DS |
Silvopastoral areas | Open grazed forest with a tree cover between 10 and 40% | SP |
Forests | Forest areas with a tree cover higher than 40% | F |
Barren areas | Bare lands with little or no vegetation | B |
Urban areas | Areas with manmade features mainly villages | UR |
Villages | 1961 | 1991 | 2001 | 2011 | ||||
---|---|---|---|---|---|---|---|---|
(0–44) | (≥45) | (0–44) | (≥45) | (0–44) | (≥45) | (0–44) | (≥45) | |
Kolchiko | 75.16 | 24.84 | 56.58 | 43.42 | 54.58 | 45.42 | 52.81 | 47.19 |
Exalofos | 76.09 | 23.91 | 58.18 | 41.82 | 54.32 | 45.68 | 44.25 | 55.75 |
Lofiskos | 79.00 | 21.00 | 55.28 | 44.72 | 44.24 | 55.76 | 40.94 | 59.06 |
Ossa | 71.14 | 28.86 | 49.33 | 50.67 | 40.99 | 59.01 | 35.75 | 64.25 |
Kryoneri | 79.00 | 21.00 | 60.27 | 39.73 | 52.89 | 47.11 | 48.70 | 51.30 |
Total | 76.08 | 23.92 | 55.93 | 44.07 | 49.40 | 50.60 | 44.49 | 55.51 |
Year | Total Active Workforce | Employees in the Primary Sector | Employment in the Primary Sector (%) |
---|---|---|---|
1961 | 4031 | 3780 | 93.77 |
1991 | 2350 | 969 | 41.23 |
2001 | 1996 | 764 | 38.28 |
2011 | 1266 | 385 | 30.41 |
Animals | 1961 | 1991 | 2001 | 2011 | Δ% 1961–2011 | Δ% 2001–2011 |
---|---|---|---|---|---|---|
Cattle | 4111 | 1750 | 1691 | 2216 | −46.10 | 30.00 |
Sheep | 21,343 | 13,425 | 13,338 | 9883 | −53.69 | −25.74 |
Goats | 17,410 | 14,951 | 16,575 | 13,009 | −25.28 | −23.85 |
Total | 42,864 | 30,126 | 31,604 | 25,108 | −41.42 | −21.56 |
Villages | 1961 | 1991 | 2001 | 2011 | Δ% 1961–2011 | Δ% 2001–2011 |
---|---|---|---|---|---|---|
Kolchiko | 11,090 | 7457 | 8148 | 7606 | −31.42 | −7.27 |
Exalofos | 5550 | 2414 | 2361 | 1904 | −65.69 | −18.93 |
Lofiskos | 10,165 | 5572 | 5240 | 3591 | −64.67 | −29.59 |
Ossa | 8041 | 4842 | 4585 | 3502 | −56.45 | −22.37 |
Kryoneri | 8018 | 9841 | 11,270 | 8505 | 6.07 | −28.10 |
Total | 42,864 | 30,126 | 31,604 | 25,108 | −41.42 | −21.56 |
Land Use/Land Cover Type | Area (ha) | Change (ha) | Change (%) | |||
---|---|---|---|---|---|---|
1945 | 1960 | 1993 | 2020 | 1945–2020 | 1945–2020 | |
Arable lands | 7411.16 | 7533.20 | 8308.26 | 7995.26 | 584.10 | 7.88 |
Grasslands | 5869.14 | 4446.61 | 1280.71 | 717.26 | −5151.88 | −87.78 |
Open shrublands (10–40% cover) | 3520.33 | 3820.25 | 2943.74 | 2159.38 | −1360.95 | −38.66 |
Dense shrublands (>40% cover) | 3334.33 | 3818.21 | 5571.99 | 6099.15 | 2764.82 | 82.92 |
Silvopastoral areas (10–40% cover) | 1600.56 | 1425.78 | 1734.50 | 1268.73 | −331.83 | −20.73 |
Forests (>40% cover) | 2426.96 | 3105.03 | 4384.48 | 5943.85 | 3516.89 | 144.91 |
Barren areas | 121.49 | 110.16 | 35.27 | 26.71 | −94.78 | −78.01 |
Urban areas | 150.42 | 195.63 | 285.29 | 379.73 | 229.31 | 152.44 |
Total | 24,434.39 | 24,454.87 | 24,544.24 | 24,590.07 | 155.65 | 0.64 |
Land Use/Land Cover Type | Annual Rate of Change (% Per Year) | |||
---|---|---|---|---|
1945–1960 | 1960–1993 | 1993–2020 | 1945–2020 | |
Arable lands | 0.11 | 0.30 | −0.14 | 0.10 |
Grasslands | −1.85 | −3.77 | −2.15 | −2.80 |
Open shrublands (10–40% cover) | 0.55 | −0.79 | −1.15 | −0.65 |
Dense shrublands (>40% cover) | 0.90 | 1.15 | 0.33 | 0.81 |
Silvopastoral areas (10–40% cover) | −0.77 | 0.59 | −1.16 | −0.31 |
Forest (>40% cover) | 1.64 | 1.05 | 1.13 | 1.19 |
Barren areas | −0.65 | −3.45 | −1.03 | −2.02 |
Urban areas | 1.75 | 1.14 | 1.06 | 1.23 |
2020 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1945 | AL | GR | OS | DS | SP | F | B | UR | Total 1945 | Loss |
AL | 24.52 | 0.19 | 0.95 | 1.29 | 0.76 | 2.09 | 0.02 | 0.54 | 30.36 | 5.84 |
GR | 4.85 | 2.11 | 4.91 | 4.87 | 3.15 | 3.93 | 0.00 | 0.20 | 24.02 | 21.91 |
OS | 0.99 | 0.17 | 2.23 | 8.90 | 0.26 | 1.76 | 0.00 | 0.10 | 14.41 | 12.18 |
DS | 0.81 | 0.05 | 0.55 | 9.50 | 0.04 | 2.68 | 0.00 | 0.01 | 13.64 | 4.14 |
SP | 0.41 | 0.05 | 0.05 | 0.19 | 0.54 | 5.31 | 0.00 | 0.00 | 6.55 | 6.01 |
F | 0.63 | 0.05 | 0.05 | 0.22 | 0.44 | 8.53 | 0.00 | 0.01 | 9.93 | 1.40 |
B | 0.27 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.09 | 0.10 | 0.49 | 0.40 |
UR | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.59 | 0.60 | 0.01 |
Total 2020 | 32.49 | 2.62 | 8.74 | 24.97 | 5.20 | 24.32 | 0.11 | 1.55 | 100.00 | 51.89 |
Gain | 7.97 | 0.51 | 6.51 | 15.47 | 4.66 | 15.79 | 0.02 | 0.96 | 51.89 |
Time Period | LULC Type | Gain | Loss | Total Change | Swap | Absolute Value of Net Change |
---|---|---|---|---|---|---|
Arable lands | 4.64 | 4.14 | 8.78 | 8.28 | 0.50 | |
Grasslands | 3.58 | 9.40 | 12.98 | 7.16 | 5.82 | |
Open shrublands | 5.51 | 4.28 | 9.79 | 8.56 | 1.23 | |
Dense shrublands | 4.17 | 2.19 | 6.36 | 4.38 | 1.98 | |
1945–1960 | Silvopastoral areas | 2.25 | 2.97 | 5.22 | 4.50 | 0.72 |
Forests | 4.50 | 1.73 | 6.23 | 3.46 | 2.77 | |
Barren areas | 0.09 | 0.21 | 0.30 | 0.18 | 0.12 | |
Urban areas | 0.20 | 0.02 | 0.22 | 0.04 | 0.18 | |
Landscape | 24.94 | 24.94 | 24.94 | 18.28 | 6.66 | |
Arable lands | 7.68 | 4.59 | 12.27 | 9.18 | 3.09 | |
Grasslands | 1.32 | 14.49 | 15.81 | 2.64 | 13.17 | |
Open shrublands | 7.07 | 10.66 | 17.73 | 14.14 | 3.59 | |
Dense shrublands | 11.24 | 4.07 | 15.31 | 8.14 | 7.17 | |
1960–1993 | Silvopastoral areas | 5.31 | 4.04 | 9.35 | 8.08 | 1.27 |
Forests | 7.62 | 2.39 | 10.01 | 4.78 | 5.23 | |
Barren areas | 0.01 | 0.38 | 0.39 | 0.02 | 0.37 | |
Urban areas | 0.39 | 0.02 | 0.41 | 0.04 | 0.37 | |
Landscape | 40.64 | 40.64 | 40.64 | 23.51 | 17.13 | |
Arable lands | 4.31 | 5.58 | 9.89 | 8.62 | 1.27 | |
Grasslands | 0.85 | 3.27 | 4.12 | 1.70 | 2.42 | |
Open shrublands | 2.65 | 5.90 | 8.55 | 5.30 | 3.25 | |
Dense shrublands | 6.82 | 4.67 | 11.49 | 9.34 | 2.15 | |
1993–2020 | Silvopastoral areas | 2.41 | 4.31 | 6.72 | 4.82 | 1.90 |
Forests | 8.89 | 2.54 | 11.43 | 5.08 | 6.35 | |
Barren areas | 0.05 | 0.09 | 0.14 | 0.10 | 0.04 | |
Urban areas | 0.48 | 0.10 | 0.58 | 0.20 | 0.38 | |
Landscape | 26.46 | 26.46 | 26.46 | 17.58 | 8.88 | |
Arable lands | 7.97 | 5.84 | 13.81 | 11.68 | 2.13 | |
Grasslands | 0.51 | 21.91 | 22.42 | 1.02 | 21.40 | |
Open shrublands | 6.51 | 12.18 | 18.69 | 13.02 | 5.67 | |
Dense shrublands | 15.47 | 4.14 | 19.61 | 8.28 | 11.33 | |
1945–2020 | Silvopastoral areas | 4.66 | 6.01 | 10.67 | 9.32 | 1.35 |
Forests | 15.79 | 1.40 | 17.19 | 2.80 | 14.39 | |
Barren areas | 0.02 | 0.40 | 0.42 | 0.04 | 0.38 | |
Urban areas | 0.96 | 0.01 | 0.97 | 0.02 | 0.95 | |
Landscape | 51.89 | 51.89 | 51.89 | 23.09 | 28.80 |
Transitions | Gains (%) | Losses (%) | ||
---|---|---|---|---|
Dij | Rij | Dij | Rij | |
AL to DS | −4.15 | −0.76 | −0.87 | −0.41 |
AL to F | −3.23 | −0.61 | −0.01 | −0.01 |
GR to AL | 2.10 | 0.76 | −4.52 | −0.48 |
GR to OS | 3.08 | 1.69 | 2.39 | 0.95 |
GR to DS | 0.57 | 0.13 | −2.32 | −0.32 |
GR to SP | 1.95 | 1.63 | 1.65 | 1.10 |
GR to F | −0.28 | −0.07 | −3.09 | −0.44 |
OS to DS | 6.32 | 2.45 | 5.57 | 1.67 |
OS to F | −0.77 | −0.30 | −1.49 | −0.46 |
DS to F | 0.29 | 0.12 | 1.34 | 1.00 |
SP to F | 4.16 | 3.62 | 3.77 | 2.44 |
Years | NumP 1 | MPS 2 | ED 3 | IJI 4 | SDI 5 | SEI 6 |
---|---|---|---|---|---|---|
1945 | 653 | 37.42 | 164.49 | 75.89 | 1.72 | 0.83 |
1960 | 567 | 43.13 | 141.63 | 77.22 | 1.74 | 0.84 |
1993 | 392 | 62.61 | 114.48 | 75.04 | 1.67 | 0.80 |
2020 | 487 | 50.49 | 115.20 | 71.29 | 1.60 | 0.77 |
Years | NumP 1 | MPS 2 | ED 3 | MNN 4 |
---|---|---|---|---|
1945 | 176 | 33.35 | 45.37 | 152.49 |
1960 | 160 | 27.79 | 30.62 | 149.05 |
1993 | 68 | 18.83 | 9.73 | 230.46 |
2020 | 38 | 18.88 | 4.87 | 506.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chouvardas, D.; Karatassiou, M.; Tsioras, P.; Tsividis, I.; Palaiochorinos, S. Spatiotemporal Changes (1945–2020) in a Grazed Landscape of Northern Greece, in Relation to Socioeconomic Changes. Land 2022, 11, 1987. https://doi.org/10.3390/land11111987
Chouvardas D, Karatassiou M, Tsioras P, Tsividis I, Palaiochorinos S. Spatiotemporal Changes (1945–2020) in a Grazed Landscape of Northern Greece, in Relation to Socioeconomic Changes. Land. 2022; 11(11):1987. https://doi.org/10.3390/land11111987
Chicago/Turabian StyleChouvardas, Dimitrios, Maria Karatassiou, Petros Tsioras, Ioannis Tsividis, and Stefanos Palaiochorinos. 2022. "Spatiotemporal Changes (1945–2020) in a Grazed Landscape of Northern Greece, in Relation to Socioeconomic Changes" Land 11, no. 11: 1987. https://doi.org/10.3390/land11111987
APA StyleChouvardas, D., Karatassiou, M., Tsioras, P., Tsividis, I., & Palaiochorinos, S. (2022). Spatiotemporal Changes (1945–2020) in a Grazed Landscape of Northern Greece, in Relation to Socioeconomic Changes. Land, 11(11), 1987. https://doi.org/10.3390/land11111987