Progress of Study on Interception of Soil Mulching with an Insight into Karst Soil Leakage Control: A Review
Abstract
:1. Introduction
2. Methods
2.1. Literature Search
2.2. Selection Criteria
3. Results
3.1. Data Categorization
3.1.1. Annual Distribution of Literature
3.1.2. Classification of Literature Contents
3.1.3. Distribution of Literature Areas
3.1.4. Classification of Mulching Research
3.2. Main Progress and Landmark Achievements
3.2.1. Theoretical Research
3.2.2. Mechanism Research
3.2.3. Technology Research
3.2.4. Technical Demonstration
4. Discussion
5. Conclusions and Future Research
5.1. Conclusions
- (a)
- Theoretical research: There is a difference in the nature of the soil mulching; there are differences in the interception characteristics of soil mulching, mainly in physical and chemical properties; the infiltration characteristics under soil mulching need to analyze the soil structure, mulching amount, mulching form and other indicators; the infiltration performance of karst soil is affected by the rainfall intensity. The results can be used to monitor the changes in soil leakage indicators, understand the laws of karst soil leakage links and combine environmental factors to optimize mulching materials and can summarize the configuration mode that is beneficial to the control of soil leakage in karst areas.
- (b)
- Mechanism research: There is a coupling relationship between soil erosion and mulching measures, the main influencing factors of soil leakage in karst areas; carbon storage and soil storage capacity are feedback mechanisms to the state of underground leakage. The results can analyze the differences according to the leakage changes, summarize the adaptability relationship between soil mulching and spacetime and then propose the best solution and prevention plan.
- (c)
- Technology research: The main techniques currently used in soil erosion control are relatively traditional, including engineering, biology and farming techniques; differences in vegetation types lead to small-scale differences in mulching technology of soil leakage control; differences in topography and slope position lead to large-scale differences in mulching technology of soil leakage control. The results can provide technical support for the development of karst industries to reduce soil fragility, while the cost of soil mulching is low and the resources are used sustainably, which is helpful to improve the level of ecological governance.
- (d)
- Technology demonstration: The results can provide suggestions for the development models of industry in karst areas. This will help to improve the economic benefits of karst areas. We discussed five key scientific issues that need to be solved, combined with the current mulching measures, and looked forward to the methods of karst soil leakage resistance and control, so as to point out the future research direction and provide insights into karst soil leakage resistance and control.
5.2. Deficiencies and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gams, I. Origin of the term “karst,” and the transformation of the classical karst (kras). Environ. Geol. 1993, 21, 110–114. [Google Scholar] [CrossRef]
- Hajna, N.Z. Dinaric Karst—Geography and Geology, Encyclopedia of Caves; Academic Press: Salt Lake City, UT, USA, 2019. [Google Scholar]
- Ford, D.; Williams, P.D. Karst Hydrogeology and Geomorphology; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2007. [Google Scholar]
- Yang, M.D. On the fragility of karst environment. Yunnan Geogr. Environ. Res. 1990, 1, 21–29. [Google Scholar]
- Yan, P.; Xiong, K.N.; Wang, H.S.; Li, J.; Liu, Y. Progress of study on soil and water loss and soil and water conservation of karst region. Soil Water Conserv. China 2016, 1, 54–59+73. [Google Scholar] [CrossRef]
- Sweeting, M.M. Reflections on the development of Karst geomorphology in Europe and a comparison with its development in China. Z. Geomorphologie. Suppl. 1993, 127–136. [Google Scholar]
- Kiraly, L.; Perrochet, P.; Rossier, Y. Effect of the epikarst on the hydrograph of karst springs: A numerical approach. Bull. Cent. Hydrogeol. 1995, 14, 199–200. [Google Scholar]
- Yang, M.D. The geomorphological regularities of karst water occurences in Guizhou plateau. Carsol. Sin. 1982, 2, 81–87. [Google Scholar]
- Jiang, Z.C.; Luo, W.Q.; Tong, L.Q.; Cheng, Y.; Yang, Q.Y.; Wu, Z.Y.; Liang, J.H. Evolution features of rocky desertification and influence in karst areas of Southwest China in the 21st century. Carsol. Sin. 2016, 35, 461–468. [Google Scholar] [CrossRef]
- Xiong, K.N.; Li, P.; Zhou, Z.F.; An, Y.L.; Lv, T.; Lan, A.J. A Typical Study of Remote Sensing-GIS of Karst Desertification: Guizhou Province as an Example; Geological Publishing House: Beijing, China, 2002. [Google Scholar]
- Zhang, X.B.; Wang, S.J. A discussion on the definition of soil leaking in a karst catchment. Carsol. Sin. 2016, 35, 602–603. [Google Scholar]
- Zhou, N.Q.; Li, C.X.; Jiang, S.M.; Tang, Y.Q. Models of soil and water loss and soil leakage in Puding karst area. Bull. Soil Water Conserv. 2009, 29, 7–11. [Google Scholar]
- Gupta, J.P.; Gupta, G.K. Effect of tillage and mulching on soil environment and cowpea seedling growth under arid conditions. Soil Tillage Res. 1986, 7, 233–240. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Hao, M.; Li, J. Effects of straw covering methods on runoff and soil erosion in summer maize field on the loess plateau of China. Plant Soil Environ. 2015, 61, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Adimassu, Z.; Alemu, G.; Tamene, L. Effects of tillage and crop residue management on runoff, soil loss and crop yield in the Humid Highlands of Ethiopia. Agric. Syst. 2019, 168, 11–18. [Google Scholar] [CrossRef]
- Jordán, A.; Zavala, L.M.; Gil, J. Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. CATENA 2010, 81, 77–85. [Google Scholar] [CrossRef]
- Gao, Y.J.; Li, S.X. Cause and mechanism of crop yield reduction under straw mulch in dryland. Trans. Chin. Soc. Agric. Eng. 2005, 21, 15–19. [Google Scholar]
- Han, X.J.; Zhang, X.Z. Effects of Treating Different Crop Straw Returning to Field with Decomposition on the Physico-chemical Properties of Soil and Crop Yield. Anhui Agron. Bull. 2013, 19, 80–82. [Google Scholar]
- Long, T.Y.; Liu, J.H.; Liu, X.Z.; Cao, H.L.; Tian, D.L. Effects of Surface Mulching on Interflow and Nitrate Migration Process in a Sloping Farmland of Purple Soil. Res. Soil Water Conserv. 2018, 25, 68–73. [Google Scholar]
- Cook, H.F.; Valdes, G.; Lee, H.C. Mulch effects on rainfall interception, soil physical characteristics and temperature under Zea mays L. Soil Tillage Res. 2006, 91, 227–235. [Google Scholar] [CrossRef]
- Mustanoja, K.J.; Leaf, A.L. Forest fertilization research, 1957–1964. Bot. Rev. 1965, 31, 151–235. [Google Scholar] [CrossRef]
- Wagenbrenner, J.W.; MacDonald, L.H.; Rough, D. Effectiveness of three post-fire rehabilitation treatments in the Colorado Front Range. Hydrol. Process. 2006, 20, 2989–3006. [Google Scholar] [CrossRef]
- Giménez-Morera, A.; Ruiz Sinoga, J.D.; Cerdà, A. The impact of cotton geotextiles on soil and water losses from Mediterranean rainfed agricultural land. Land Degrad. Dev. 2010, 21, 210–217. [Google Scholar] [CrossRef]
- Shao, X.G.; Yang, R. Simulation on variations of soil moisture under different mulching techniques in karst areas. Bull. Soil Water Conserv. 2011, 31, 250–253. [Google Scholar]
- Li, X.; Niu, J.; Xie, B. The effect of leaf litter cover on surface runoff and soil erosion in Northern China. PLoS ONE 2014, 9, e107789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.F.; Wang, Q.J.; Hu, H.; Chen, W.Z.; Wang, X.L.; Rabi, G. Effect of Maize Straw Mulching on Water and Soil Conservation in Sandy Soil and Loam Soil of North China. Trans. Chin. Soc. Agric. Mach. 2016, 47, 138–145+154. [Google Scholar]
- Donjadee, S.; Tingsanchali, T. Soil and water conservation on steep slopes by mulching using rice straw and vetiver grass clippings. Agric. Nat. Resour. 2016, 50, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerdà, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jourgholami, M.; Abari, M.E. Effectiveness of sawdust and straw mulching on postharvest runoff and soil erosion of a skid trail in a mixed forest. Ecol. Eng. 2017, 109, 15–24. [Google Scholar] [CrossRef]
- Jourgholami, M.; Labelle, E.R.; Feghhi, J. Efficacy of leaf litter mulch to mitigate runoff and sediment yield following mechanized operations in the Hyrcanian mixed forests. J. Soils Sediments 2019, 19, 2076–2088. [Google Scholar] [CrossRef]
- Jourgholami, M.; Ahmadi, M.; Tavankar, F.; Picchio, R. Effectiveness of three post-harvest rehabilitation treatments for runoff and sediment reduction on skid trails in the hyrcanian forests. Croat. J. For. Eng. 2020, 41, 1–16. [Google Scholar] [CrossRef]
- Bombino, G.; Denisi, P.; Gómez, J.A.; Zema, D.A. Mulching as best management practice to reduce surface runoff and erosion in steep clayey olive groves. Int. Soil Water Conserv. Res. 2021, 9, 26–36. [Google Scholar] [CrossRef]
- Díaz, M.G.; Lucas-Borja, M.E.; Gonzalez-Romero, J.; Plaza-Alvarez, P.A.; Navidi, M.; Liu, Y.-F.; Wu, G.-L.; Zema, D.A. Effects of post-fire mulching with straw and wood chips on soil hydrology in pine forests under Mediterranean conditions. Ecol. Eng. 2022, 182, 106720. [Google Scholar] [CrossRef]
- Ram, H.; Singh, Y.; Saini, K.S.; Kler, D.S.; Timsina, J.; Humphreys, E.J. Agronomic and economic evaluation of permanent raised beds, no tillage and straw mulching for an irrigated maize-wheat system in northwest India. Exp. Agric. 2012, 48, 21–38. [Google Scholar] [CrossRef]
- Yin, W.; Shi, Q.; Guo, Y.; Feng, F.; Zhao, C.; Yu, A.; Chai, Q. Short-term response of farmland carbon emission to straw return, two-year plastic film mulching and intercropping. Chin. J. Eco-Agric. 2016, 24, 716–724. [Google Scholar]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover crop management and water conservation in vineyard and olive orchards. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Wu, J.; Guo, X.; Lu, J.; Wang, Y.; Zhang, X.; Xu, Z. Effects of Continuous Straw Mulching on Supply Characteristics of Soil Inorganic Nitrogen and Crop Yields. Sci. Agric. Sin. 2012, 45, 1741–1749. [Google Scholar]
- Fu, X.; Wang, J. Effects of different mulching measures on soil aggregate and organic carbon content in aggregates in a rainfed winter wheat field. In Proceedings of the The 13th National Congress of the Soil Science Society of China and the 11th Cross-Strait Soil and Fertilizer Academic Exchange Seminar, Xi’an, China, 19 September 2016. [Google Scholar]
- Gao, X.Y.; Chen, P. The basic properties and comprehensive utilization of fly ash status. Energy Environ. Prot. 2012, 26, 5–7. [Google Scholar]
- Wang, J.; Huang, J.; Zhao, X.; Wu, P.; Horwath, W.R.; Li, H.; Jing, Z.; Chen, X. Simulated study on effects of ground managements on soil water and available nutrients in jujube orchards. Land Degrad. Dev. 2014, 27, 35–42. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Singh, R.G.; Mahajan, G. Ecology and management of weeds under conservation agriculture: A review. Crop Prot. 2012, 38, 57–65. [Google Scholar] [CrossRef]
- Souza, M.; Júnior, V.M.; Kurtz, C.; Ventura, B.D.S.; Lourenzi, C.R.; Lazzari, C.J.R.; Ferreira, G.W.; Brunetto, G.; Loss, A.; Comin, J.J. Soil chemical properties and yield of onion crops grown for eight years under no-tillage system with cover crops. Soil Tillage Res. 2020, 208, 104897. [Google Scholar] [CrossRef]
- Luna, L.; Vignozzi, N.; Miralles, I.; Solé-Benet, A. Organic amendments and mulches modify soil porosity and infiltration in semiarid mine soils. Land Degrad. Dev. 2018, 29, 1019–1030. [Google Scholar] [CrossRef]
- Kader, M.A.; Singha, A.; Begum, M.A.; Jewel, A.; Khan, F.H.; Khan, N.I. Mulching as water-saving technique in dryland agriculture: Review article. Bull. Natl. Res. Cent. 2019, 43, 147. [Google Scholar] [CrossRef] [Green Version]
- Larentzaki, E.; Plate, J.; Nault, B.A.; Shelton, A.M. Impact of straw mulch on populations of onion thrips (Thysanoptera: Thripidae) in onion. J. Econ. Entomol. 2008, 101, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.T.; Merwin, I.A. Soil physical conditions in a New York orchard after eight years under different groundcover management systems. Plant Soil 2001, 234, 233–237. [Google Scholar] [CrossRef]
- Yang, C.G.; Chai, S.X.; Chang, L. Influences of different plastic film mulches on soil water use and yield of winter wheat in semiarid rain-fed region. Acta Ecol Sin. 2015, 35, 2676–2685. [Google Scholar]
- Yao, X.L.; Cheng, Y.S. Soil Physics; Agriculture Press: Beijing, China, 1986; pp. 20–46. [Google Scholar]
- Zhu, Z.J. Hydrological Dynamic Process of Cover and Soil Layer. Master’s Thesis, Beijing Forestry University, Beijing, China, 2019. [Google Scholar]
- Mulumba, L.N.; Lal, R. Mulching effects on selected soil physical properties. Soil Tillage Res. 2008, 98, 106–111. [Google Scholar] [CrossRef]
- Zhu, F.F.; Cheng, J.H.; Zheng, X.H.; Yao, C.H. Soil Infiltration Characteristics Under Different Litter Covers in Pinus massoniana Forest. J. Soil Water Conserv. 2020, 34, 85–90+97. [Google Scholar]
- Ranaivoson, L.; Naudin, K.; Ripoche, A.; Affholder, F.; Rabeharisoa, L.; Corbeels, M. Agro-ecological functions of crop residues under conservation agriculture. A review. Agron. Sustain. Dev. 2017, 37, 26. [Google Scholar] [CrossRef]
- Nawaz, A.; Lal, R.; Shrestha, R.K.; Farooq, M. Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in Alfisol of central Ohio. Land Degrad. Dev. 2017, 28, 673–681. [Google Scholar] [CrossRef]
- Alletto, L.; Coquet, Y.; Benoit, P.; Heddadj, D.; Barriuso, E. Tillage management effects on pesticide fate in soils. A review. Agron. Sustain. Dev. 2010, 30, 367–400. [Google Scholar] [CrossRef]
- Gao, M.S.; Wen, X.X.; Huang, J.H.; Yin, R.J.; Liao, Y.C.; Zheng, Y.Q. Effect of stubble mulch and tillage managements on apple orchard soil moisture reserves and soil enzyme activity in the Weibei Plateau. J. China Agric. Univ. 2009, 14, 91–97. [Google Scholar]
- Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcántara, L.; Jordán, A.; Cerdà, A. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 2016, 551–552, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Mwango, S.B.; Msanya, B.M.; Mtakwa, P.W.; Kimaro, D.N.; Deckers, J.; Poesen, J. Effectiveness of mulching under miraba in controlling soil erosion, fertility restoration and crop yield in the Usambara Mountains, Tanzania. Land Degrad. Dev. 2016, 27, 1266–1275. [Google Scholar] [CrossRef]
- Zeng, T. Karst rocky desertification makes drought “worse”. China Meteorol. News 2010, 4, 06. [Google Scholar] [CrossRef]
- Chandler, D.G.; Bisogni, J.J., Jr. The use of alkalinity as a conservative tracer in a study of near-surface hydrologic change in tropical karst. J. Hydrol. 1999, 216, 172–182. [Google Scholar] [CrossRef]
- Wang, J.; Zou, B.; Liu, Y.; Tang, Y.; Zhang, X.; Yang, P. Erosion-creep-collapse mechanism of underground soil loss for the karst rocky desertification in Chenqi village, Puding county, Guizhou, China. Environ. Earth Sci. 2014, 72, 2751–2764. [Google Scholar] [CrossRef]
- Peng, X.; Dai, Q.; Ding, G.; Li, C. Role of underground leakage in soil, water and nutrient loss from a rock-mantled slope in the karst rocky desertification area. J. Hydrol. 2019, 578, 124086. [Google Scholar] [CrossRef]
- Jiang, G.H.; Wu, J.C.; Guo, F.; Li, H.J.; Sun, H.L. Threshold value of epikarst runoff in forest karst mountain area. Adv. Water Sci. 2008, 19, 72–77. [Google Scholar] [CrossRef]
- Khan, M.N.; Gong, Y.; Hu, T.; Lal, R.; Zheng, J.; Justine, M.F.; Azhar, M.; Che, M.; Zhang, H. Effect of Slope, Rainfall Intensity and Mulch on Erosion and Infiltration under Simulated Rain on Purple Soil of South-Western Sichuan Province, China. Water 2016, 8, 528. [Google Scholar] [CrossRef]
- Hou, X.L. Effect of Slope Gradients and Rainfall Intensity on Hydrological Process on Land-Slope for Red Soil. Master’s Thesis, Hunan Normal University, Changsha, China, 2013. [Google Scholar]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching practices for reducing soil water erosion: A review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Tam, H.M.; Wani, S.P.; Long, T.D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crop. Res. 2006, 95, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, M.N.; Fernández-Ondoño, E.; Ripoll, M.; Castro-Rodríguez, J.; Huntsinger, L.; Navarro, F.B. Stones and organic mulches improve the Quercus ilex L. afforestation success under Mediterranean climatic conditions. Land Degrad. Dev. 2016, 27, 357–365. [Google Scholar] [CrossRef]
- He, Y.F.; Shen, H.O.; Zhang, Y.; Zhao, Z.J.; Mu, T.S. Analysis of soil and water conservation effects of different straw returning patterns in sloping farmland in the Chinese black soil region. J. Soil Water Conserv. 2020, 34, 89–94. [Google Scholar]
- Wu, J.; Zhu, Z.L.; Zheng, J.G.; Jiang, X.L. Influences of straw mulching treatment on soil physical and chemical properties and crop yields. Southwest China J. Agric. Sci. 2006, 19, 192–195. [Google Scholar]
- Li, H.J. Effects of Different Film Mulches on Growth Characteristics and Water Use Efficiency of Summer Maize. Master’s Thesis, Shandong Agricultural University, Taian, China, 2020. [Google Scholar]
- Gómez-Rey, M.X.; Madeira, M.; Vasconcelos, E. Effects of organic residue management and legume cover on growth of pine seedlings, nutrient leaching and soil properties. Ann. For. Sci. 2008, 65, 807. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Xu, Y.Q.; Zhang, R.; Xiong, K.N.; Lan, A.J. Soil erosion monitoring and its implication in a limestone land suffering from rocky desertification in the Huajiang Canyon, Guizhou, Southwest China. Env. Earth Sci. 2013, 69, 831–841. [Google Scholar] [CrossRef]
- Peng, X.D.; Dai, Q.H.; Li, C.L. Research Progress on the Process and Mechanism of Soil Water Loss or Leakage on Slope in Southwest Karst of China. J. Soil Water Conserv. 2017, 31, 1–8. [Google Scholar]
- Jomaa, S.; Barry, D.; Brovelli, A.; Heng, B.; Sander, G.; Parlange, J.-Y.; Rose, C. Rain splash soil erosion estimation in the presence of rock fragments. CATENA 2012, 92, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.H.; Chen, H.S.; Fu, Z.Y.; Ren, H.M.; Lan, X. Effect of Soil Macropore Structures on Soil and Water Loss Progress in Karst Areas. J. Soil Water Conserv. 2020, 34, 70–76. [Google Scholar]
- Kang, L.; Sun, C.Z.; Yin, L.; Tang, Z.M.; He, S.X. Effects of Soil and Water Conservation of Algae Crust in Hilly and Gully Regions on Loess Plateau. J. Soil Water Conserv. 2012, 26, 47–52. [Google Scholar]
- Wu, F.Q.; Fan, W.B. Effects of soil encrustation on rainfall infiltration, runoff and sediment generation. Sci. Soil Water Conserv. 2005, 3, 97–101. [Google Scholar] [CrossRef]
- Hu, Z.L.; Pan, G.X.; Li, L.Q.; Du, Y.X.; Wang, X.Z. Changes in pools and heterogeneity of soil organic carbon, nitrogen and phosphorus under different vegetation types in Karst mountainous area of central Guizhou Province, China. Acta Ecol Sin. 2009, 29, 4187–4195. [Google Scholar]
- Jiang, Z.C.; Luo, W.Q.; Deng, Y.; Cao, J.H.; Qin, X.M.; Li, Y.Q.; Yang, Q.Y. The Leakage of Water and Soil in the Karst Peak Cluster Depression and Its Prevention and Treatment. Acta Geosci. Sin. 2014, 35, 535–542. [Google Scholar]
- Yang, Z.; Dai, Q.H.; Huang, Q.H.; Wu, X.Q. Experimental Study of Runoff Processes on Typical Karst Slope. J. Soil Water Conserv. 2010, 24, 78–81. [Google Scholar]
- Chen, F.; Zhang, W.; Ma, J.; Yang, Y.; Zhang, S.; Chen, R. Experimental study on the effects of underground CO2 leakage on soil microbial consortia. Int. J. Greenh. Gas Control 2017, 63, 241–248. [Google Scholar] [CrossRef]
- Peng, X.; Dai, Q.; Ding, G.; Shi, D.; Li, C. The role of soil water retention functions of near-surface fissures with different vegetation types in a rocky desertification area. Plant Soil 2019, 441, 587–599. [Google Scholar] [CrossRef]
- Kahlon, M.S.; Lal, R.; Ann-Varughese, M. Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil Tillage Res. 2013, 126, 151–158. [Google Scholar] [CrossRef]
- Liang, Y.S. Study on Water Conservation Mechanism of Ramie with Different Root Types in Red Soil Region. Master’s Thesis, Hunan Normal University, Changsha, China, 2019. [Google Scholar]
- Su, W.C.; Pan, Z.Z.; Guo, X.N.; Yang, J.; Yi, W.Y.; Li, Y.L.; Yang, Z.H.; Xie, L.J. Study of ecological remediation modes for rocky desertification in typical karst peak-cluster depression surrounding south Guizhou FAST: An example of the periphery of Liujiawan, Kedu town, Pingtang county. Carsol. Sin. 2016, 35, 503–512. [Google Scholar]
- Yang, S.M.; Xiong, K.N.; Yu, Y.H.; Liu, X.Y.; Dong, X.C. Identification and Modification of Vegetation Recovery Model at China’s Karst Rockified Areas. World For. Res. 2017, 30, 91–96. [Google Scholar]
- Tamene, L.; Adimassu, Z.; Ellison, J.; Yaekob, T.; Woldearegay, K.; Mekonnen, K.; Thorne, P.; Le, Q.B. Mapping soil erosion hotspots and assessing the potential impacts of land management practices in the highlands of Ethiopia. Geomorphology 2017, 292, 153–163. [Google Scholar] [CrossRef]
- He, Q.; Dai, X.; Chen, S. Assessing the effects of vegetation and precipitation on soil erosion in the Three-River Headwaters Region of the Qinghai-Tibet Plateau, China. J. Arid Land 2020, 12, 865–886. [Google Scholar] [CrossRef]
- Bargués Tobella, A.; Reese, H.; Almaw, A.; Bayala, J.; Malmer, A.; Laudon, H.; Ilstedt, U. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso. Water Resour. Res. 2014, 50, 3342–3354. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ma, F.; Meng, Q.Q.; Ma, Y.H.; Wu, F.Q. Using the Green-Ampt Model to Analyze Enhanced Infiltration in Slope Corn Field in the Loess Plateau. J. Irrig. Drain 2018, 37, 99–105+120. [Google Scholar] [CrossRef]
- Bao, G.; Liang, J.F.; Wang, Q.; Yang, R. Characteristics of soil water storage under different Eco-vegetation types in Huajiang karst rocky desertification. Res. Soil Water Conserv. 2017, 24, 18–24. [Google Scholar]
- Vesterdal, L.; Elberling, B.; Christiansen, J.R.; Callesen, I.; Schmidt, I.K. Soil respiration and rates of soil carbon turnover differ among six common European tree species. For. Ecol. Manag. 2012, 264, 185–196. [Google Scholar] [CrossRef]
- Gan, F.; He, B.; Qin, Z.; Li, W. Role of rock dip angle in runoff and soil erosion processes on dip/anti-dip slopes in a karst trough valley. J. Hydrol. 2020, 588, 125093. [Google Scholar] [CrossRef]
- Guo, H.Y.; Zhou, J.X. Underground soil and water leakage in Karst rocky desertification areas. Sci. Soil Water Conserv. 2012, 10, 71–76. [Google Scholar]
- Zhang, X.B.; Wang, S.J.; Cao, J.H.; Wang, K.L.; Meng, T.Y.; Bai, X.Y. Characteristics of water loss and soil erosion and some scientific problems on karst rocky desertification in Southwest China karst area. Carsol. Sin. 2010, 29, 274–279. [Google Scholar]
- Huang, P.; Cao, H.; Zhang, R.X.; Ji, T.; Li, Y.G.; Yang, H.Q. Different Response of Apple Root Physiology and Leaf Photosynthesis to Mulching of Different Materials. Sci. Agric. Sin. 2018, 51, 160–169. [Google Scholar]
- Deng, X.H.; Jiang, Z.C.; Qin, X.Q.; Shen, L.N. Epi-hydrogeochemical effects of karst vegetation in Nongla Guangxi. Mt. Res. 2008, 26, 170–179. [Google Scholar]
- Liu, H.Y.; Huang, J.G.; Guo, Y.N. Impacts of Different Vegetation Types and Soil Properties on Runoff Chemical Characteristics. Environ. Sci. 2006, 27, 655–660. [Google Scholar]
- Cao, J.H.; Lu, S.L.; Yang, D.S.; Jiang, Z.C.; Kang, Z.Q. Process of soil and water loss and its control measures in karst regions southwestern China. Sci. Soil Water Conserv. 2011, 9, 52–56. [Google Scholar]
- Jiang, Z.C.; Cao, J.H.; Yang, D.S.; Luo, W.Q. Current status and comprehensive counter measures of soil erosion for Karst rocky desertification areas in the Southwestern China. Sci. Soil Water Conserv. 2008, 6, 37–42. [Google Scholar]
- Knicker, H.; Hilscher, A.; González-Vila, F.J.; Almendros, G. A new conceptual model for the structural properties of char produced during vegetation fires. Org. Geochem. 2008, 39, 935–939. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.H. Hydrological Process of Karst Slope Land and Control Technology of Soil and Water Loss in Agroforestry. Master’s Thesis, Guizhou Normal University, Guiyang, China, 2022. [Google Scholar]
- Montenegro, A.; Abrantes, J.; de Lima, J.; Singh, V.; Santos, T. Impact of mulching on soil and water dynamics under intermittent simulated rainfall. CATENA 2013, 109, 139–149. [Google Scholar] [CrossRef]
- Yuan, D.X. Scientific innovation in karst resources and environmental research field of China. Carsol. Sin. 2015, 34, 98–100. [Google Scholar]
- Dai, Q.; Peng, X.; Zhao, L.; Shao, H.; Yang, Z. Effects of Underground Pore Fissures on Soil Erosion and Sediment Yield on Karst Slopes. Land Degrad. Dev. 2017, 28, 1922–1932. [Google Scholar] [CrossRef]
- Dai, Q.; Peng, X.; Yang, Z.; Zhao, L. Runoff and erosion processes on bare slopes in the Karst Rocky Desertification Area. CATENA 2017, 152, 218–226. [Google Scholar] [CrossRef]
- Peng, X.; Dai, Q.; Li, C.; Yuan, Y.; Zhao, L. Effect of simulated rainfall intensities and underground pore fissure degrees on soil nutrient loss from slope farmlands in Karst Region. Trans. Chin. Soc. Agric. Eng. 2017, 33, 131–140. [Google Scholar]
- Fu, W.B.; Dai, Q.H.; Yan, Y.J. The response of soil erosion in karst slope and its shallow underground crevasse ratios. J. Soil Water Conserv. 2015, 29, 11–16. [Google Scholar]
- Hu, Y.; Dai, Q.H.; Wang, P.J. Runoff features and the influencing factors on karst sloping farmland. J. Soil Water Conserv. 2012, 26, 46–51. [Google Scholar]
- Zheng, W.; Wang, Z.M. Laboratorial simulation influences of different rainfall intensities on soil erosion in karst area, China. Res. Soil Water Conserv. 2016, 23, 333–339. [Google Scholar]
- Jiao, J.Y.; Wang, Z.J.; Zhao, G.J.; Wang, W.Z.; Xingmin, M.U. Changes in sediment discharge in a sediment-rich region of the Yellow River from 1955 to 2010: Implications for further soil erosion control. J. Arid. Land 2014, 6, 540–549. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.Q.; Lv, X.X.; Cao, Y.; Dong, X.C. Physicochemical Properties of Underground Leakage Water and Soil in Rocky Desertification Area of Guizhou, China. J. Soil Water Conserv. 2016, 30, 111–117. [Google Scholar]
- Peng, T.; Yang, T.; Wang, S.J.; Zhang, X.B.; Chen, B.; Wang, J.Y. Monitoring Results of Soil Loss in Karst Slopes. Earth Environ. 2009, 37, 126–130. [Google Scholar]
Database | Retrieval String | Number | Search Date |
---|---|---|---|
WoS | First search string: “soil erosion“; second search string: “mulching“ | 460 | 30 June 2022 |
First search string: “soil erosion“; second search string: “interceptions“ | 179 | 30 June 2022 | |
First search string: “mulching“; second search string: “interceptions“ | 62 | 30 June 2022 | |
CNKI | “Soil erosion“ and “mulching“ and “measure“; not “remote sensing“ or “GIS“ or “space“ or ”Engineering” | 364 | 30 June 2022 |
First search string: “soil erosion“; second search string: “interceptions“ | 142 | 30 June 2022 | |
First search string: “mulching“; second search string: “interceptions“ | 63 | 30 June 2022 | |
Total | 1251 | 30 June 2022 |
References | Sl | Ss | Mm | Type | Ar | Er | Sc | Sc- Reduced | R- Reduced | Ir | Cy |
---|---|---|---|---|---|---|---|---|---|---|---|
(g·m−2) | (Mg·ha−1·yr−1) | (g·L−1) | (%) | (%) | (mm·min−1) | ||||||
Wagenbrenner et al. (2006) [22] | USA | hills- lope | SF | SM | 50–225 | 149.5–203.5 | 95 | ||||
Giménez-Morera et al. (2010) [23] | Spain | fine | RP | C | 0 | 14 | −8 | ||||
CG | 8 mm * | 0·1 | −16 | ↑ * | |||||||
Shao and Yang (2011) [24] | China | very fine | S | C | 0 * | 5.44 | |||||
LM | 1 * | 0.37 | |||||||||
PM | 0.5 * | 2.66 | |||||||||
PM | 1 * | 0 | |||||||||
CM | 1 * | 7.42 | |||||||||
Li et al. (2014) [25] | China | fine | RP | LM 1 | 1000 | 85.1 | 29.5 | ||||
LM 2 | 1000 | 79.9 | 31.3 | ||||||||
Zhang et al. (2015) [26] | China | fine | RS | SM | 1400 | 34.1–48.0 | 17.9–38.7 | ||||
Donjadee and Tingsanchali (2016) [27] | Thailand | fine | SF | C | 100–750 | 1.50–16.7 | 0 | ||||
RM | 100–750 | 2.6–5.3 | 25.8–52.5 | ||||||||
GM | 100–750 | 3.1–4.9 | 24.7–49.8 | ||||||||
Prosdocimi et al. (2016) [28] | Spain | very fine | RP | C | 0 | 2.81 | 9.8 | ||||
SM | 75 | 0.63 | 3.0 | ↑ * | |||||||
Jourgholami and Abari (2017) [29] | Iran | fine | RP | SM | 16500 | 51.9 | 36.5 | ||||
WM | 2800 | 94.9 | 72.8 | ||||||||
Jourgholami et al. (2019) [30] | Iran | fine | RP | LM | 420 | 6 | 49 | ||||
LM | 810 | 85 | 67 | ||||||||
LM | 1310 | 90 | 75 | ||||||||
LM | 1690 | 93 | 79 | ||||||||
Jourgholami et al. (2020) [31] | Iran | fine | RP | SM | 620 | 58.3 | 41.5–60.6 | ||||
LM | 1240 | 60.8 | 38.1–55.1 | ||||||||
WM | 1860 | 91.2 | 70.8–88.1 | ||||||||
Bombino et al. (2021) [32] | Italy | fine | RS | MT | 0 | 45 | 39 | ||||
MP + NT | 350 | 11 | 14.7 | ||||||||
MP + NT | 1750 | 9 | 12.8 | ||||||||
Díaz et al. (2022) [33] | Spain | very fine | RS | SM | 300 | 31 | +40 | ||||
WM | 2000 | 18 | +17 |
Area | Type | Ar | Sbd | Tp | Shc | Cmc | Fc | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|---|
(kg·m−2) | (g·cm−3) | (%) | (m·d−1) | (%) | (%) | (%) | (%) | (%) | ||
I * | C | 1 | 1.39 ± 0.11 | 47.96 ± 3.50 | 20.68 ± 20.27 | 33.35 ± 3.84 | 33.51 ± 4.01 | 43.29 ± 5.00 | 49.56 ± 5.31 | 7.15 ± 1.29 |
SAP + CM | 1 | 1.34 ± 0.06 | 49.84 ± 2.01 | 14.51 ± 11.52 | 34.86 ± 2.84 | 35.06 ± 2.92 | 51.93 ± 10.74 | 42.21 ± 10.04 | 5.86 ± 0.90 | |
GM | 1 | 1.35 ± 0.05 | 49.34 ± 1.81 | 17.47 ± 11.39 | 35.01 ± 2.79 | 35.05 ± 2.70 | 48.46 ± 2.43 | 44.96 ± 1.26 | 6.58 ± 1.55 | |
WM | 1 | 1.34 ± 0.06 | 49.71 ± 1.92 | 19.76 ± 17.42 | 33.69 ± 2.64 | 33.81 ± 2.60 | 44.67 ± 5.03 | 47.05 ± 5.03 | 8.28 ± 0.02 | |
SM | 1 | 1.38 ± 0.06 | 48.41 ± 2.07 | 14.93 ± 8.18 | 33.97 ± 2.04 | 34.01 ± 1.92 | 40.63 ± 1.69 | 50.28 ± 1.69 | 9.09 ± 1.11 |
Area | Type | Ar | SOM | TN | TP | TK | AN | AP | AK |
---|---|---|---|---|---|---|---|---|---|
(kg·m−2) | (g·kg−1) | (g·kg−1) | (g·kg−1) | (g·kg−1) | (mg·kg−1) | (mg·kg−1) | (mg·kg−1) | ||
Ⅱ * | C | 1 | - | 0.77 ± 0.12 | 0.56 ± 0.03 | 12.78 ± 0.19 | 61.66 ± 3.24 | 11.94 ± 1.32 | 161.92 ± 4.87 |
SAP + CM | 1 | 16.02 ± 2.80 | 1.06 ± 0.11 | 0.68 ± 0.09 | 13.43 ± 1.14 | 82.69 ± 2.87 | 16.62 ± 0.38 | 288.05 ± 2.52 | |
GM | 1 | 17.16 ± 0.81 | 1.19 ± 0.07 | 0.70 ± 0.04 | 14.67 ± 0.88 | 107.85 ± 3.19 | 12.65 ± 0.54 | 268.87 ± 3.38 | |
SM | 1 | 15.61 ± 1.98 | 1.05 ± 0.10 | 0.86 ± 0.15 | 12.15 ± 0.92 | 81.33 ± 2.96 | 13.77 ± 0.71 | 297.80 ± 3.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Xiong, K.; Luo, D.; Gu, X. Progress of Study on Interception of Soil Mulching with an Insight into Karst Soil Leakage Control: A Review. Land 2022, 11, 1984. https://doi.org/10.3390/land11111984
Wu C, Xiong K, Luo D, Gu X. Progress of Study on Interception of Soil Mulching with an Insight into Karst Soil Leakage Control: A Review. Land. 2022; 11(11):1984. https://doi.org/10.3390/land11111984
Chicago/Turabian StyleWu, Chenxu, Kangning Xiong, Ding Luo, and Xing Gu. 2022. "Progress of Study on Interception of Soil Mulching with an Insight into Karst Soil Leakage Control: A Review" Land 11, no. 11: 1984. https://doi.org/10.3390/land11111984
APA StyleWu, C., Xiong, K., Luo, D., & Gu, X. (2022). Progress of Study on Interception of Soil Mulching with an Insight into Karst Soil Leakage Control: A Review. Land, 11(11), 1984. https://doi.org/10.3390/land11111984