Assessing the Potential of Vegetation Carbon Uptake from Optimal Land Management in the Greater Guangzhou Area
Abstract
:1. Introduction
2. Study Area, Data Sources, and Methodology
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Mapping NPP to Indicate Carbon Uptake from Urban Vegetation
2.3.2. Carbon Uptake Potential by Segmenting Urban Environments and Neighborhood-Based Analysis
3. Results
3.1. Carbon Uptake Patterns in the Urban Ecosystems
3.2. Potential of Carbon Uptake from Optimal LMPs
4. Discussions
4.1. Optimal Land Management Practices
4.2. Implication of Carbon Uptake Potential to Policies
4.3. Parameterization and Uncertainties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Garouani, A.; Mulla, D.J.; El Garouani, S.; Knight, J. Analysis of urban growth and sprawl from remote sensing data: Case of Fez, Morocco. Int. J. Sustain. Built Environ. 2017, 6, 160–169. [Google Scholar] [CrossRef]
- Churkina, G. The role of urbanization in the global carbon cycle. Front. Ecol. Evol. 2016, 3, 144. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Qu, Z.; Xu, R.; Pan, K.; Xu, B.; Min, Y.; Ren, Y.; Yang, G.; Ge, Y. Assessing the ecosystem services provided by urban green spaces along urban center-edge gradients. Sci. Rep. 2017, 7, 11226. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.; Wang, L.; Guo, Q.; Li, Y.; Liu, M.; Xu, G. Evaluating Cultural Ecosystem Services of Urban Residential Green Spaces from the Perspective of Residents’ Satisfaction with Green Space. Front. Public Health 2020, 8, 226. [Google Scholar] [CrossRef]
- Wei, T.; Wu, J.; Chen, S. Keeping Track of Greenhouse Gas Emission Reduction Progress and Targets in 167 Cities Worldwide. Front. Sustain. Cities 2021, 3, 64. [Google Scholar]
- Seto, K.C.; Churkina, G.; Hsu, A.; Keller, M.; Newman, P.W.G.; Qin, B.; Ramaswami, A. From Low- to Net-Zero Carbon Cities: The Next Global Agenda. Annu. Rev. Environ. Resour. 2021, 46, 377–415. [Google Scholar] [CrossRef]
- Krarti, M.; Aldubyan, M. Role of energy efficiency and distributed renewable energy in designing carbon neutral residential buildings and communities: Case study of Saudi Arabia. Energy Build. 2021, 250, 111309. [Google Scholar] [CrossRef]
- Smith, P.; Adams, J.; Beerling, D.J.; Beringer, T.; Calvin, K.V.; Fuss, S.; Griscom, B.; Hagemann, N.; Kammann, C.; Kraxner, F.; et al. Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annu. Rev. Environ. Resour. 2019, 44, 255–286. [Google Scholar] [CrossRef]
- Du, J.; Fu, Q.; Fang, S.; Wu, J.; He, P.; Quan, Z. Effects of rapid urbanization on vegetation cover in the metropolises of China over the last four decades. Ecol. Indic. 2019, 107, 105458. [Google Scholar] [CrossRef]
- Jia, J.; Cui, W.; Liu, J. Urban Catchment-Scale Blue-Green-Gray Infrastructure Classification with Unmanned Aerial Vehicle Images and Machine Learning Algorithms. Front. Environ. Sci. 2022, 9, 734. [Google Scholar] [CrossRef]
- Sun, Y.; Frankenberg, C.; Wood, J.D.; Schimel, D.S.; Jung, M.; Guanter, L.; Drewry, D.T.; Verma, M.; Porcar-Castell, A.; Griffis, T.J.; et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 2017, 358, eaam5747. [Google Scholar] [CrossRef] [Green Version]
- Landsberg, J.J.; Waring, R.H.; Williams, M. The assessment of NPP/GPP ratio. Tree Physiol. 2020, 40, 695–699. [Google Scholar] [CrossRef]
- Bond-lamberty, B.; Epron, D.; Harden, J.; Harmon, M.E.; Hoffman, F.; Kumar, J.; Mcguire, A.D.; Vargas, R. Estimating heterotrophic respiration at large scales: Challenges, approaches, and next steps. Ecosphere 2016, 7, e01380. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Li, J.; Huang, Z.; Xiao, R. Impact of Rapid Urbanization on Vulnerability of Land System from Complex Networks View: A Methodological Approach. Complexity 2018, 2018, 8561675. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Vermaat, J.E.; Ke, X. Variability of agroecosystems and landscape service provision on the urban–rural fringe of Wuhan, Central China. Urban Ecosyst. 2019, 22, 1207–1214. [Google Scholar] [CrossRef]
- Niemelä, J.; Breuste, J.H.; Elmqvist, T.; Guntenspergen, G.; James, P.; McIntyre, N.E. Urban Ecology: Patterns, Processes, and Applications; Oxford University Press: Oxford, UK, 2011; ISBN 9780199563562. [Google Scholar]
- Berger, C.; Laurent, F. Trunk injection of plant protection products to protect trees from pests and diseases. Crop Prot. 2019, 124, 104831. [Google Scholar] [CrossRef]
- Bogaert, J.; Barima, Y.S.S.; Mongo, L.I.W.; Bamba, I.; Mama, A.; Toyi, M.; Lafortezza, R. Forest Fragmentation: Causes, Ecological Impacts and Implications for Landscape Management. In Landscape Ecology in Forest Management and Conservation; Springer: Berlin/Heidelberg, Germany, 2011; pp. 273–296. [Google Scholar]
- Threlfall, C.G.; Williams, N.S.G.; Hahs, A.K.; Livesley, S.J. Approaches to urban vegetation management and the impacts on urban bird and bat assemblages. Landsc. Urban Plan. 2016, 153, 28–39. [Google Scholar] [CrossRef]
- Tan, B.A.; Gaw, L.Y.F.; Masoudi, M.; Richards, D.R. Nature-Based Solutions for Urban Sustainability: An Ecosystem Services Assessment of Plans for Singapore’s First “Forest Town. ” Front. Environ. Sci. 2021, 9, 610155. [Google Scholar] [CrossRef]
- Fujimori, S.; Wu, W.; Doelman, J.; Frank, S.; Hristov, J.; Kyle, P.; Sands, R.; van Zeist, W.J.; Havlik, P.; Domínguez, I.P.; et al. Land-based climate change mitigation measures can affect agricultural markets and food security. Nat. Food 2022, 3, 110–121. [Google Scholar] [CrossRef]
- Field, C.B.; Randerson, J.T.; Malmström, C.M. Global net primary production: Combining ecology and remote sensing. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Hazarika, M.K.; Yasuoka, Y.; Ito, A.; Dye, D. Estimation of net primary productivity by integrating remote sensing data with an ecosystem model. Remote Sens. Environ. 2005, 94, 298–310. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.X.; Yang, R. Influence of land urbanization on carbon sequestration of urban vegetation: A temporal cooperativity analysis in Guangzhou as an example. Sci. Total Environ. 2018, 635, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Shen, H.; Wu, W.; Liu, Y.; Wang, Y. Net primary productivity (NPP) dynamics and associated urbanization driving forces in metropolitan areas: A case study in Beijing City, China. Landsc. Ecol. 2016, 31, 1077–1092. [Google Scholar] [CrossRef]
- Pan, S.; Tian, H.; Dangal, S.R.S.; Ouyang, Z.; Tao, B.; Ren, W.; Lu, C.; Running, S. Modeling and monitoring terrestrial primary production in a changing global environment: Toward a multiscale synthesis of observation and simulation. Adv. Meteorol. 2014, 2014, 965936. [Google Scholar] [CrossRef] [Green Version]
- Baartman, J.E.M.; Temme, A.J.A.M.; Saco, P.M. The effect of landform variation on vegetation patterning and related sediment dynamics. Earth Surf. Process. Landf. 2018, 43, 2121–2135. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, K.; Zhang, T.; Zhu, J.; Di, Y. Soil nutrient availability regulated global carbon use efficiency. Glob. Planet. Change 2019, 173, 47–52. [Google Scholar] [CrossRef]
- Del Grosso, S.; Parton, W.; Stohlgren, T.; Zheng, D.; Bachelet, D.; Prince, S.; Hibbard, K.; Olson, R. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 2008, 89, 2117–2126. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Li, W.; Hsu, C.-Y. Automated terrain feature identification from remote sensing imagery: A deep learning approach. Int. J. Geogr. Inf. Sci. 2020, 34, 637–660. [Google Scholar] [CrossRef]
- Xu, S.; Wu, C.; Wang, L.; Gonsamo, A.; Shen, Y.; Niu, Z. A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics. Remote Sens. Environ. 2015, 162, 119–140. [Google Scholar] [CrossRef]
- Levizzani, V.; Cattani, E. Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate. Remote Sens. 2019, 11, 2301. [Google Scholar] [CrossRef] [Green Version]
- Greve, M.H.; Greve, M.B.; Kheir, R.B.; Bøcher, P.K.; Larsen, R.; McCloy, K. Comparing Decision Tree Modeling and Indicator Kriging for Mapping the Extent of Organic Soils in Denmark; Springer: Dordrecht, The Netherlands, 2010; Volume 2. [Google Scholar]
- He, L.; Chen, J.M.; Croft, H.; Gonsamo, A.; Luo, X.; Liu, J.; Zheng, T.; Liu, R.; Liu, Y. Nitrogen Availability Dampens the Positive Impacts of CO2 Fertilization on Terrestrial Ecosystem Carbon and Water Cycles. Geophys. Res. Lett. 2017, 44, 11590–11600. [Google Scholar] [CrossRef] [Green Version]
- Sha, Z.; Bai, Y.; Li, R.; Lan, H.; Zhang, X.; Li, J.; Liu, X.; Chang, S.; Xie, Y. The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management. Commun. Earth Environ. 2022, 3, 8. [Google Scholar] [CrossRef]
- Wang, H. Earth Human Settlement Ecosystem and Underground Space Research. Procedia Eng. 2016, 165, 765–781. [Google Scholar] [CrossRef]
- Wang, X.; Li, R.; Ding, H.; Fu, Y. Fine-Scale Improved Carbon Bookkeeping Model Using Landsat Time Series for Subtropical Forest, Southern China. Remote Sens. 2022, 14, 753. [Google Scholar] [CrossRef]
- Guo, L.; Xi, X.; Yang, W.; Liang, L. Monitoring Land Use/Cover Change Using Remotely Sensed Data in Guangzhou of China. Sustainability 2021, 13, 2944. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Z. Quantitative assessment of human-induced impacts based on net primary productivity in Guangzhou, China. Environ. Sci. Pollut. Res. 2018, 25, 11384–11399. [Google Scholar] [CrossRef]
- Vanella, D.; Longo-Minnolo, G.; Belfiore, O.R.; Ramírez-Cuesta, J.M.; Pappalardo, S.; Consoli, S.; D’Urso, G.; Chirico, G.B.; Coppola, A.; Comegna, A.; et al. Comparing the use of ERA5 reanalysis dataset and ground-based agrometeorological data under different climates and topography in Italy. J. Hydrol. Reg. Stud. 2022, 42, 101182. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [PubMed]
- Runge, A.; Grosse, G. Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions. Remote Sens. 2020, 12, 2471. [Google Scholar] [CrossRef]
- Ebel, P.; Meraner, A.; Schmitt, M.; Zhu, X.X. Multisensor Data Fusion for Cloud Removal in Global and All-Season Sentinel-2 Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5866–5878. [Google Scholar] [CrossRef]
- Karlsen, S.R.; Stendardi, L.; Tømmervik, H.; Nilsen, L.; Arntzen, I.; Cooper, E.J. Time-series of cloud-free sentinel-2 ndvi data used in mapping the onset of growth of central spitsbergen, svalbard. Remote Sens. 2021, 13, 3031. [Google Scholar] [CrossRef]
- Jones, P.G.; Thornton, P.K. Representative soil profiles for the Harmonized World Soil Database at different spatial resolutions for agricultural modelling applications. Agric. Syst. 2015, 139, 93–99. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Virtual Conference, 12–16 July 2021; pp. 4704–4707. [Google Scholar]
- Iwahashi, J.; Pike, R.J. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 2007, 86, 409–440. [Google Scholar] [CrossRef]
- Jian, J.; Du, X.; Stewart, R.D. A database for global soil health assessment. Sci. Data 2020, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, X.; Huang, L.; Yang, G.; Fan, L.; Wei, P.; Chen, G. An improved CASA model for estimating winter wheat yield from remote sensing images. Remote Sens. 2019, 11, 1088. [Google Scholar] [CrossRef] [Green Version]
- Landsberg, J.J.; Waring, R.H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For. Ecol. Manag. 1997, 95, 209–228. [Google Scholar] [CrossRef]
- Coops, N.C.; Waring, R.H.; Landsberg, J.J. Estimation of potential forest productivity across the Oregon transect using satellite data and monthly weather records. Int. J. Remote Sens. 2001, 22, 3797–3812. [Google Scholar] [CrossRef]
- Nolè, A.; Law, B.E.; Magnani, F.; Matteucci, G.; Ferrara, A.; Ripullone, F.; Borghetti, M. Application of the 3-PGS model to assess carbon accumulation in forest ecosystems at a regional level. Can. J. For. Res. 2009, 39, 1647–1661. [Google Scholar] [CrossRef]
- Coops, N.C.; Waring, R.H.; Landsberg, J.J. Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity. For. Ecol. Manag. 1998, 104, 113–127. [Google Scholar] [CrossRef]
- Li, X.; Song, J.; Lin, T.; Dixon, J.; Zhang, G.; Ye, H. Urbanization and health in China, thinking at the national, local and individual levels. Environ. Health A Glob. Access Sci. Source 2016, 15, S32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallahi, H.-R.; Mahmoodi, S. Impact of water availability and fertilization management on saffron (Crocus sativus L.) biomass allocation. J. Hortic. Postharvest Res. 2018, 1, 131–146. [Google Scholar]
- Bayle, G.K. Ecological and social impacts of eucalyptus tree plantation on the environment. J. Biodivers. Conserv. Bioresour. Manag. 2019, 5, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Hou, Z.; Liu, H.; Cao, C.; Qi, J. The sustainability assessment of CO2 capture, utilization and storage (CCUS) and the conversion of cropland to forestland program (CCFP) in the Water–Energy–Food (WEF) framework towards China’s carbon neutrality by 2060. Environ. Earth Sci. 2021, 80, 468. [Google Scholar] [CrossRef]
- Peroni, F.; Pristeri, G.; Codato, D.; Pappalardo, S.E.; De Marchi, M. Biotope Area Factor: An Ecological Urban Index to Geovisualize Soil Sealing in Padua, Italy. Sustainability 2019, 12, 150. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, L.; Meitner, M.J.; Girling, C.; Sheppard, S.R.J.; Lu, Y. Who has access to urban vegetation? A spatial analysis of distributional green equity in 10 US cities. Landsc. Urban Plan. 2019, 181, 51–79. [Google Scholar] [CrossRef]
- Pei, N.; Wang, C.; Sun, R.; Xu, X.; He, Q.; Shi, X.; Gu, L.; Jin, J.; Liao, J.; Li, J.; et al. Towards an integrated research approach for urban forestry: The case of China. Urban For. Urban Green. 2019, 46, 126472. [Google Scholar] [CrossRef]
- Wei, S.; Chen, Q.; Wu, W.; Ma, J. Quantifying the indirect effects of urbanization on urban vegetation carbon uptake in the megacity of Shanghai, China. Environ. Res. Lett. 2021, 16, 064088. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Zhou, J. Spatial and Temporal Change of Urban Vegetation Distribution in Beijing. In Ecology, Planning, and Management of Urban Forests; Springer: New York, NY, USA, 2008; pp. 346–356. [Google Scholar]
- Li, D.; Wu, S.; Liang, Z.; Li, S. The impacts of urbanization and climate change on urban vegetation dynamics in China. Urban For. Urban Green. 2020, 54, 126764. [Google Scholar] [CrossRef]
- Li, M.; Zhang, G.; Liu, Y.; Cao, Y.; Zhou, C. Determinants of urban expansion and spatial heterogeneity in China. Int. J. Environ. Res. Public Health 2019, 16, 3706. [Google Scholar] [CrossRef] [PubMed]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Sha, Z.; Bai, Y.; Lan, H.; Liu, X.; Li, R.; Xie, Y. Can more carbon be captured by grasslands? A case study of Inner Mongolia, China. Sci. Total Environ. 2020, 723, 138085. [Google Scholar] [CrossRef] [PubMed]
- Hird, J.N.; McDermid, G.J. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sens. Environ. 2009, 113, 248–258. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189–190, 11–18. [Google Scholar] [CrossRef]
- Gu, F.; Zhang, Y.; Tao, B.; Wang, Q.; Yu, G.; Zhang, L.; Li, K. Modeling the effects of nitrogen deposition on carbon budget in two temperate forests. Ecol. Complex. 2010, 7, 139–148. [Google Scholar] [CrossRef]
Class # | Area (%) | Classification | Examples |
---|---|---|---|
1 | 12.7 | Waters | Rivers, ponds, lakes, oceans, flooded salt plains. |
2 | 45.4 | Trees/forests | Wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamps or mangroves. |
5 | 7.9 | Crops | Corn, wheat, soy, fallow plots of structured land. |
7 | 32.2 | Urbanized areas | Houses, dense villages/towns/cities, paved roads, asphalt. |
11 | 1.3 | Rangelands | Natural meadows and fields with sparse to no tree cover; open savanna with few to no trees; parks/golf courses/lawns; pastures; moderate to sparse cover of bushes, shrubs, and tufts of grass; savannas with very sparse grasses, trees, or other plants. |
Data Type | Data Description and Variables | Data Sources |
---|---|---|
Climate data | A number of variables are included: monthly minimum, mean and maximum temperature, monthly precipitation, monthly sun shortwave radiation, average dewpoint temperature, surface pressure, soil moisture, vapor pressure deficit (VPD), and reference evapotranspiration | ERA5-L and TerraClimate, both at monthly scale, are combined; it provides a consistent view of the evolution of land variables over several decades at a spatial resolution 5 km [43]. TerraClimate is a dataset of monthly climate and climatic water balance for global terrestrial surfaces, with coarser spatial resolution (~10 km) [44]. |
NDVI | Dynamics of vegetation greenness proxied by monthly maximum NDVI which indicates the part, or the effective absorption, of solar radiation and thus vegetation productivity. | Sentinel-2 multispectral instrument (MSI), Level-2A, at 10 m in spatial resolution and a combined revisit time of 5 days. The monthly NDVI can be obtained by maximum composite and cloud gap filling [46]. |
Soil cover | Soil properties are largely reflected in soil classes. The same soil type usually shows similar contribution/constraint to vegetation growth. Soil cover data can map the difference in soil type distribution. | Harmonized World Soil Database (HWSD) at ~1 km in spatial resolution and 194 classes [51]. |
Landforms | Landforms represent the combined effect of slope, surface roughness, and local convexity for a given location, which is important for vegetation growth. | European Soil Data Centre (ESDAC) at ~1 km, with 16 landform labels [50]. |
Vegetation (land) cover | Vegetation (land) cover determines the base level for vegetation productivity. For example, forests usually outperform grassland in vegetation productivity. Carbon uptake potential can be evaluated for the same land cover type. | Land cover with 10 classes at 10 m, derived from Sentinel-2 and a deep learning algorithm, by Environmental Systems Research Institute (ESRI) [49]. |
Items | Forests | Croplands | Urbanized | Rangelands | Average # | Total |
---|---|---|---|---|---|---|
Land area (×108 m2) (%) | 36.7 (52.3) | 6.4 (9.1) | 26.0 (37.1) | 1.1 (1.5) | / | 70.2 (100) |
NPP flux (gC m−2 yr−1) | 883.3 | 521.5 | 281.5 | 608.7 | 622.2 | / |
Carbon potential flux (gC m−2 yr−1) | 60.4 | 209.4 | 353.9 | 249.2 | 185.0 | / |
Total NPP (×1011 gC yr−1) (%) | 32.4 (74.1) | 3.4 (7.7) | 7.3 (16.8) | 0.6 (1.5) | / | 43.7 (100) |
Total potential (×1011 gC yr−1) (%) | 2.2 (16.9) | 1.3 (10.3) | 9.2 (70.7) | 0.3 (2.0) | / | 13.0 (100) |
Ratio (Carbon potential/NPP) | 0.07 | 0.40 | 1.25 | 0.41 | 0.30 | 0.30 |
Strategies | Example | Description | Outcome |
---|---|---|---|
Increased vegetation proportion | Artificially plant trees to increase vegetation proportion [62] | Turn previously barren or discarded lands into human-made parks | More greenspace (parks) in urban areas enhances ecosystem services to local residents |
Optimized vegetation cover density | Manage urban forests to increase vegetation density [63] | Improve trees in forest area to optimize landscape patterns and tree density | The higher tree density improves vegetation productivity and provides green welfares for residents |
Optimized vegetation landscapes | Apply landscape design to increase vegetation complexity [64,65] | Scatter vegetation cover over space and improve fragmentation or reduce connectivity of vegetation landscape patterns | The increased fragmentation or reduced connectivity in vegetation cover promotes vegetation carbon uptake |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sha, Z.; Qiu, D.; Fang, H.; Xie, Y.; Tu, J.; Tan, X.; Li, X.; Chen, J. Assessing the Potential of Vegetation Carbon Uptake from Optimal Land Management in the Greater Guangzhou Area. Land 2022, 11, 1878. https://doi.org/10.3390/land11111878
Sha Z, Qiu D, Fang H, Xie Y, Tu J, Tan X, Li X, Chen J. Assessing the Potential of Vegetation Carbon Uptake from Optimal Land Management in the Greater Guangzhou Area. Land. 2022; 11(11):1878. https://doi.org/10.3390/land11111878
Chicago/Turabian StyleSha, Zongyao, Dai Qiu, Husheng Fang, Yichun Xie, Jiangguang Tu, Xicheng Tan, Xiaolei Li, and Jiangping Chen. 2022. "Assessing the Potential of Vegetation Carbon Uptake from Optimal Land Management in the Greater Guangzhou Area" Land 11, no. 11: 1878. https://doi.org/10.3390/land11111878
APA StyleSha, Z., Qiu, D., Fang, H., Xie, Y., Tu, J., Tan, X., Li, X., & Chen, J. (2022). Assessing the Potential of Vegetation Carbon Uptake from Optimal Land Management in the Greater Guangzhou Area. Land, 11(11), 1878. https://doi.org/10.3390/land11111878