Digital Tools for Quantifying the Natural Capital Benefits of Agroforestry: A Review
Abstract
:1. Introduction
- Identify tools that quantify natural capital benefits of agroforestry and shortlist those best suited to farm-scale applications in Australia;
- Evaluate the modelling capabilities of the shortlisted tools; and
- Identify key capability gaps and opportunities for future development.
2. Methods
2.1. Review Scope
- Timber production and carbon sequestration;
- Crop, pasture, and livestock production;
- Wind, shelter, and microclimate;
- Air quality and pollution;
- Erosion, runoff, and flood mitigation;
- Biodiversity;
- Crop pollination; and
- Amenity and recreation.
2.2. Identifying Tools That Quantify Natural Capital Benefits of Agroforestry
2.3. Shortlisting Tools Best Suited to Farm-Scale Agroforestry Applications in Australia
- Quantify at least one of the selected natural capital benefits of agroforestry;
- Use methods or data that are compatible with farm-scale analyses;
- Include, or allow the user to provide, supporting datasets (where required) that can be applied in Australia;
- Use methods and models that are suitable for Australian applications, or can be applied without extensive parameterisation;
- Provide functionality not implemented by existing Australian tools; and
- Are currently available for use as open-source software, via collaboration, or by web application.
2.4. Evaluating the Modelling Capabilities of Shortlisted Tools
3. Results
3.1. Identifying Tools That Quantify Natural Capital Benefits of Agroforestry and Shortlisting Those Best Suited to Farm-Scale Applications in Australia
3.2. Evaluating the Modelling Capabilities of Shortlisted Tools
3.2.1. Timber Production and Carbon Sequestration
3.2.2. Crop, Pasture, and Livestock Production
3.2.3. Wind, Shelter, and Microclimate
3.2.4. Air Quality and Pollution
3.2.5. Erosion, Runoff, and Flood Mitigation
3.2.6. Biodiversity
3.2.7. Crop Pollination
3.2.8. Amenity and Recreation
4. Discussion
4.1. Identifying Tools That Quantify Natural Capital Benefits of Agroforestry and Shortlisting Those Best Suited to Farm-Scale Applications in Australia
4.2. Evaluating the Modelling Capabilities of Shortlisted Tools
4.3. Key Capability Gaps and Opportunities for Future Development
5. Conclusions
- Explore opportunities to build upon and streamline the implementation of tools like APSIM to reduce the resources required to assess NCBs at farm scale;
- Build capacity to represent spatially dependent processes that can dynamically adapt to different scenarios and landscape configurations;
- Develop and publish high quality spatial surfaces (e.g., productivity under alternative climate and management scenarios, biophysical remote sensing models), at appropriate spatial and temporal scales, to support development of new tools;
- Repurpose existing biophysical models where possible to increase development speed and minimise barriers to adoption;
- Explore opportunities for integrating observations with process-based models to support monitoring and evaluation of existing agroforestry systems and improve model calibration;
- Develop APIs and/or implement tools with widely used open-source scripting languages to promote uptake, enable further development, and to facilitate interoperability; and
- Design tools with a level of complexity that is appropriate for the required end use.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Tool | Timber Production and Carbon Sequestration | Crop, Pasture, and Livestock Productivity | Wind, Shelter, and Microclimate | Air Quality and Pollution | Erosion, Runoff, and Flood Mitigation | Biodiversity | Crop Pollination | Amenity and Recreation | Economic Measures | Suitability Criteria not Met | Citation/Link |
---|---|---|---|---|---|---|---|---|---|---|---|
APSIM | x | x | x | x | x | x | - | [25,26], https://www.apsim.info/ (accessed 1 September 2021) | |||
ARIES (for SEEA explorer) | x | x | x | x | x | x | - | [33], https://aries.integratedmodelling.org (accessed 1 September 2021) | |||
Farm Forestry Toolbox | x | x | - | [44], https://www.farmforestrytoolbox.com/ (accessed 7 September 2021) | |||||||
FullCAM 2020 | x | x | x | - | [41], https://www.industry.gov.au/data-and-publications/full-carbon-accounting-model-fullcam (accessed 5 September 2021) | ||||||
Imagine | x | x | x | x | x | - | [31,45] | ||||
InVEST | x | x | x | x | x | x | - | [34], https://naturalcapitalproject.stanford.edu/software/invest (accessed 1 September 2021) | |||
i-Tree Eco | x | x | x | x | x | x | - | [46], https://www.itreetools.org/tools/i-tree-eco (accessed 1 September 2021)) | |||
LUCI | x | x | x | - | [47,48], https://lucitools.org/ (accessed 15 September 2021) | ||||||
SolVES | x | - | [49], https://pubs.er.usgs.gov/publication/tm7C25 (accessed 9 October 2021) | ||||||||
Agroforestry Design Tool | a | https://www.agroforestryx.com/ (accessed 1 October 2021) | |||||||||
ASSET | x | x | x | x | b,c,d | https://assist.ceh.ac.uk/asset-assist-scenario-exploration-tool (accessed 20 September 2021) | |||||
Atlas of Living Australia (ALA) 1 | x | a | https://www.ala.org.au/ (accessed 1 October 2021) | ||||||||
AusFarm Decision Support Software 2 | x | x | a | https://doi.org/10.25919/d07h-pr78 (accessed 20 September 2021) | |||||||
B£ST | x | x | x | x | x | d | https://www.susdrain.org/resources/best.html (accessed 20 September 2021) | ||||
CMSi Site Management | a | https://www.esdm.co.uk/cmsi-introduction (accessed 20 September 2021) | |||||||||
COMP8 | a,f | [175] | |||||||||
Co$ting Nature | x | x | x | x | x | x | b | http://www.policysupport.org/costingnature (accessed 22 September 2021) | |||
Crop Livestock Enterprise Model (CLEM) | x | a | [176]; https://www.apsim.info/clem/Content/Details/Overview.htm (accessed 3 September 2021) | ||||||||
Digital Agricultural Services (DAS) 2 | x | x | a | https://digitalagricultureservices.com/ (accessed 5 September 2021) | |||||||
Decision Support System for Agrotechnology Transfer (DSSAT) 2 | x | x | a | [65] | |||||||
DynACof | x | x | x | x | d | [177] | |||||
EcoServ-GIS | x | x | x | x | x | x | c | https://www.nature.scot/doc/naturescot-research-report-954-ecoserv-gis-v33-toolkit-mapping-ecosystem-services-gb-scale (accessed 20 September 2021) | |||
EcoservR | x | x | x | x | x | x | e | https://ecoservr.github.io/EcoservR/ (accessed 20 September 2021) | |||
EnSym 3 | x | x | x | x | f | https://ensym.biodiversity.vic.gov.au/cms/ (accessed 1 September 2021) | |||||
EPIC | x | x | x | x | x | x | d,e | [178] | |||
ESAT-A | x | x | x | f | [179] | ||||||
European Forest Information Scenario model (EFISCEN) | x | d | [180]; https://efi.int/knowledge/models/efiscen/documentation (accessed 27 September 2021) | ||||||||
FarmMap4D | a | https://www.farmmap4d.com.au/ (accessed 1 September 2021) | |||||||||
Farm-SAFE 4 | x | a | [181]; https://www.agforward.eu/ (accessed 20 September 2021) | ||||||||
Figured | x | a | https://www.figured.com/ (accessed 1 September 2021) | ||||||||
FlintPro | x | e | https://flintpro.com/ (accessed 1 October 2021) | ||||||||
Forecaster | x | x | d | https://www.scionresearch.com/services/software-and-applications (accessed 20 September 2021) | |||||||
Forest Investment Framework (FIF) | x | x | x | x | x | c,d,e | [182] | ||||
FRAGSTATS 5 | x | a | [142] | ||||||||
GrassGro 2 | x | x | a | [50] | |||||||
Green Infrastructure Valuation Toolkit | x | x | x | x | x | d | https://www.merseyforest.org.uk/services/gi-val/ (accessed 20 September 2021) | ||||
Greenkeeper | x | x | x | x | x | c,d | https://www.greenkeeperuk.co.uk/the-tool/ (accessed 20 September 2021) | ||||
GuidosToolbox 3 | x | a | [143]; https://ec.europa.eu/jrc/en/scientific-tool/guidos-toolbox (accessed 2 September 2021) | ||||||||
Hi-SAFE | x | x | x | d,e | [22] | ||||||
HyPAR | x | x | x | d | [75] | ||||||
ICBM/N | x | d,e,f | [183] | ||||||||
InForest | x | x | x | x | c | http://inforest.frec.vt.edu/ (accessed 20 September 2021) | |||||
Integrated Biodiversity Assessment Tool (IBAT) 1 | x | a | https://www.ibat-alliance.org/ (accessed 1 September 2021) | ||||||||
i-Tree Canopy | a,c | [46]; https://www.itreetools.org/ (accessed 1 September 2021) | |||||||||
i-Tree Design | x | x | x | x | c | [46]; https://www.itreetools.org/ (accessed 1 September 2021) | |||||
i-Tree Landscape | x | x | x | x | c | [46]; https://www.itreetools.org/ (accessed 1 September 2021) | |||||
Land Use Trade-Offs (LUTO) Model | x | x | x | x | b | [184] | |||||
LOOC-C | x | e | https://looc-c.farm/ (accessed 15 September 2021) | ||||||||
MESH | a | https://naturalcapitalproject.stanford.edu/software/mesh; http://justinandrewjohnson.com/mesh/ (accessed 20 September 2021) | |||||||||
NEVO (Natural Environment Valuation Online tool) | x | x | x | x | b,c | https://www.leep.exeter.ac.uk/nevo/ (accessed 12 October 2021) | |||||
OPAL | a | https://naturalcapitalproject.stanford.edu/software/opal (accessed 20 September 2021) | |||||||||
ORVal (Outdoor Recreation Valuation Tool) | x | x | c | [167]; https://www.leep.exeter.ac.uk/orval/ (accessed 12 October 2021) | |||||||
Pollution removal by vegetation | x | c | https://shiny-apps.ceh.ac.uk/pollutionremoval/ | ||||||||
SBELTS | x | x | x | x | d,f | [185] | |||||
Scenario Planning and Investment Framework Tool (SPIF) | x | x | x | x | f | [186] | |||||
SCUAF | x | x | x | d,e,f | [23] | ||||||
SENCE (Spatial Evidence for Natural Capital Evaluation) | x | x | c,f | https://www.envsys.co.uk/sence/ (accessed 20 September 2021) | |||||||
Simulateur mulTIdisciplinaire pour les Cultures Standard (STICS) 2 | x | a | [66] | ||||||||
TESSA (Toolkit for Ecosystem Service Site-based Assessment) 6 | x | x | x | x | x | a | http://tessa.tools/ (accessed 15 September 2021) | ||||
Viridian HydroloGIS | x | x | x | x | x | x | c,f | https://viridianlogic.com/ (accessed 15 September 2021) | |||
WaNuLCAS | x | x | x | d | [21] | ||||||
WIMISA | x | x | f | [187] | |||||||
Yield-SAFE | x | x | d | [188] |
References
- IUCN. Guidance for Using the IUCN Global Standard for Nature-Based Solutions; A user-friendly framework for the verification, design and scaling up of Nature-based Solutions; International Union for the Conservation of Nature and Natural Resources: Gland, Switzerland, 2020; p. 78. [Google Scholar]
- FAO. FAOSTAT. 2021. Available online: www.fao.org/faostat/ (accessed on 15 March 2022).
- Bradshaw, C.J.; Bowman, D.M.; Bond, N.R.; Murphy, B.P.; Moore, A.D.; Fordham, D.A.; Thackway, R.; Lawes, M.J.; McCallum, H.; Gregory, S.D.; et al. Brave new green world—Consequences of a carbon economy for the conservation of Australian biodiversity. Biol. Conserv. 2013, 161, 71–90. [Google Scholar] [CrossRef]
- Bryan, B.; Nolan, M.; Harwood, T.; Connor, J.; Garcia, F.J.N.; King, D.; Summers, D.; Newth, D.; Cai, Y.; Grigg, N.; et al. Supply of carbon sequestration and biodiversity services from Australia’s agricultural land under global change. Glob. Environ. Change 2014, 28, 166–181. [Google Scholar] [CrossRef]
- Nair, P.K.R. An Introduction to Agroforestry; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- O’Grady, A.P.; Mitchell, P.J. Agroforestry: Realising the Triple Bottom Line Benefits of Trees in the Landscape; CSIRO: Hobart, Tasmania, 2018; p. 71. [Google Scholar]
- Marais, Z.E.; Baker, T.P.; O’Grady, A.P.; England, J.R.; Tinch, D.; Hunt, M.A. A Natural Capital Approach to Agroforestry Decision-Making at the Farm Scale. Forests 2019, 10, 980. [Google Scholar] [CrossRef]
- Quandt, A.; Neufeldt, H.; McCabe, J.T. Building livelihood resilience: What role does agroforestry play? Clim. Dev. 2019, 11, 485–500. [Google Scholar] [CrossRef]
- Wilson, M.H.; Lovell, S.T. Agroforestry—The Next Step in Sustainable and Resilient Agriculture. Sustainability 2016, 8, 574. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for conserving and enhancing biodiversity. Agrofor. Syst. 2012, 85, 1–8. [Google Scholar] [CrossRef]
- Torralba, M.; Fagerholm, N.; Burgess, P.J.; Moreno, G.; Plieninger, T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar] [CrossRef]
- Marais, Z.E.; Baker, T.P.; Hunt, M.A.; Mendham, D. Shelterbelt species composition and age determine structure: Consequences for ecosystem services. Agric. Ecosyst. Environ. 2022, 329, 107884. [Google Scholar] [CrossRef]
- Fleming, A.; O’Grady, A.P.; Mendham, D.; England, J.; Mitchell, P.; Moroni, M.; Lyons, A. Understanding the values behind farmer perceptions of trees on farms to increase adoption of agroforestry in Australia. Agron. Sustain. Dev. 2019, 39, 9. [Google Scholar] [CrossRef]
- Baker, T.P.; Moroni, M.T.; Mendham, D.S.; Smith, R.; Hunt, M. Impacts of windbreak shelter on crop and livestock production. Crop Pasture Sci. 2018, 69, 785. [Google Scholar] [CrossRef]
- OECD. OECD Guidelines for Multinational Enterprises. 2011. Available online: www.oecd.org/corporate/mne/ (accessed on 23 July 2022).
- Mefford, R.N. The Economic Value of a Sustainable Supply Chain. Bus. Soc. Rev. 2011, 116, 109–143. [Google Scholar] [CrossRef]
- Koberg, E.; Longoni, A. A systematic review of sustainable supply chain management in global supply chains. J. Clean. Prod. 2019, 207, 1084–1098. [Google Scholar] [CrossRef]
- Sullivan, S. Making nature investable: From legibility to leverageability in fabricating ‘nature’ as ‘natural capital’. Sci. Technol. Stud. 2018, 31, 47–76. [Google Scholar] [CrossRef]
- Powell, J. Fifteen Years of Joint Venture Agroforestry Proogram-Foundation for Australiua Tree Crop Revolution; Rural Industries Research and Development Corporation: Canberra, Australia, 2009. [Google Scholar]
- Ellis, E.; Bentrup, G.; Schoeneberger, M. Computer-based tools for decision support in agroforestry: Current state and future needs. Agrofor. Syst. 2004, 61, 401–421. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Lusiana, B. WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems. In Agroforestry for Sustainable Land-Use Fundamental Research and Modelling with Emphasis on Temperate and Mediterranean Applications: Selected Papers from a Workshop Held in Montpellier, France, 23–29 June 1997; Auclair, D., Dupraz, C., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 217–242. [Google Scholar]
- Dupraz, C.; Wolz, K.J.; Lecomte, I.; Talbot, G.; Vincent, G.; Mulia, R.; Bussière, F.; Ozier-Lafontaine, H.; Andrianarisoa, S.; Jackson, N.; et al. Hi-sAFe: A 3D Agroforestry Model for Integrating Dynamic Tree–Crop Interactions. Sustainability 2019, 11, 2293. [Google Scholar] [CrossRef]
- Young, A.; Muraya, P. SCUAF: Soil Changes Under Agroforestry; ICRAF: Nairobi, Kenya, 1990; p. 124. [Google Scholar]
- Mobbs, D.C.; Cannell, M.G.R.; Crout, N.M.J.; Lawson, G.J.; Friend, A.D.; Arah, J. Complementarity of light and water use in tropical agroforests: I. Theoretical model outline, performance and sensitivity. For. Ecol. Manag. 1998, 102, 259–274. [Google Scholar] [CrossRef]
- Holzworth, D.; Huth, N.; Fainges, J.; Brown, H.; Zurcher, E.; Cichota, R.; Verrall, S.; Herrmann, N.; Zheng, B.; Snow, V. APSIM Next Generation: Overcoming challenges in modernising a farming systems model. Environ. Model. Softw. 2018, 103, 43–51. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; Devoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Luedeling, E.; Smethurst, P.J.; Baudron, F.; Bayala, J.; Huth, N.I.; van Noordwijk, M.; Ong, C.K.; Mulia, R.; Lusiana, B.; Muthuri, C.; et al. Field-scale modeling of tree–crop interactions: Challenges and development needs. Agric. Syst. 2016, 142, 51–69. [Google Scholar] [CrossRef]
- Kraft, P.; Rezaei, E.E.; Breuer, L.; Ewert, F.; Große-Stoltenberg, A.; Kleinebecker, T.; Seserman, D.-M.; Nendel, C. Modelling Agroforestry’s Contributions to People—A Review of Available Models. Agronomy 2021, 11, 2106. [Google Scholar] [CrossRef]
- Huth, N.; Carberry, P.; Poulton, P.; Brennan, L.; Keating, B. A framework for simulating agroforestry options for the low rainfall areas of Australia using APSIM. Eur. J. Agron. 2002, 18, 171–185. [Google Scholar] [CrossRef]
- Dilla, A.; Smethurst, P.; Huth, N.; Barry, K. Plot-Scale Agroforestry Modeling Explores Tree Pruning and Fertilizer Interactions for Maize Production in a Faidherbia Parkland. Forests 2020, 11, 1175. [Google Scholar] [CrossRef]
- Greijdanus, A.; Kragt, M.E. A Summary of Four Australian Bio-Economic Models Formixed Grain Farming Systems; University of Western Australia, School of Agricultural and Resource Economics: Perth, Australia, 2014. [Google Scholar]
- Peh, K.S.-H.; Balmford, A.; Bradbury, R.B.; Brown, C.; Butchart, S.H.; Hughes, F.M.; Stattersfield, A.; Thomas, D.H.; Walpole, M.; Bayliss, J.; et al. TESSA: A toolkit for rapid assessment of ecosystem services at sites of biodiversity conservation importance. Ecosyst. Serv. 2013, 5, 51–57. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzák, M.; Batker, D. A Methodology for Adaptable and Robust Ecosystem Services Assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.10.2.post17+ug.g0e9e2ef User’s Guide, The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. 2020. Available online: https://invest-userguide.readthedocs.io/en/latest/index.html (accessed on 22 September 2022).
- Sharps, K.; Masante, D.; Thomas, A.; Jackson, B.; Redhead, J.; May, L.; Prosser, H.; Cosby, B.; Emmett, B.; Jones, L. Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment. Sci. Total Environ. 2017, 584–585, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Bagstad, K.J.; Semmens, D.J.; Winthrop, R. Comparing approaches to spatially explicit ecosystem service modeling: A case study from the San Pedro River, Arizona. Ecosyst. Serv. 2013, 5, 40–50. [Google Scholar] [CrossRef]
- Capriolo, A.; Boschetto, R.; Mascolo, R.; Balbi, S.; Villa, F. Biophysical and economic assessment of four ecosystem services for natural capital accounting in Italy. Ecosyst. Serv. 2020, 46, 101207. [Google Scholar] [CrossRef]
- Hamel, P.; Guerry, A.D.; Polasky, S.; Han, B.; Douglass, J.A.; Hamann, M.; Janke, B.; Kuiper, J.J.; Levrel, H.; Liu, H.; et al. Mapping the benefits of nature in cities with the InVEST software. Npj Urban Sustain. 2021, 1, 25. [Google Scholar] [CrossRef]
- Redhead, J.W.; May, L.; Oliver, T.H.; Hamel, P.; Sharp, R.; Bullock, J.M. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci. Total Environ. 2018, 610–611, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Waterworth, R.; de Ligt, R.; Kurz, W.A.; Olguin-Alvarez, M.I. Spatially and temporally resolved outputs from spatially and temporally resolved activity data and modeling approaches-getting more out of land sector data with the Full Lands Integration Tool (FLINT). In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2018; p. GC21I–1219. [Google Scholar]
- Kesteven, J.; Landsberg, J. Developing a National Forest Productivity Model; Technical report no. 23; National Carbon Accounting System: Caberra, Australia, 2004. [Google Scholar]
- Bagstad, K.J.; Ingram, J.C.; Shapiro, C.D.; La Notte, A.; Maes, J.; Vallecillo, S.; Casey, C.F.; Glynn, P.D.; Heris, M.P.; Johnson, J.A.; et al. Lessons learned from development of natural capital accounts in the United States and European Union. Ecosyst. Serv. 2021, 52, 101359. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthrop, R. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst. Serv. 2013, 5, 27–39. [Google Scholar] [CrossRef]
- Warner, A. Farm Forestry Toolbox Version 5.0: Helping Australian Growers to Manage Their Trees: A Report for the RIRDC/L & WA/FWPRDC Joint Venture Agroforestry Program; Rural Industries Research and Development Corporation: Kingston, Australia, 2007. [Google Scholar]
- Mendham, D. Modelling the Costs and Benefits of Agroforestry Systems. Application of the Imagine Bioeconomic Model at Four Case Study Sites in Tasmania; CSIRO: Canberra, Australia, 2018. [Google Scholar]
- Nowak, D.J.; Maco, S.; Binkley, M.J.A.C. i-Tree: Global tools to assess tree benefits and risks to improve forest management. Arboric. Consult. 2018, 51, 10–13. [Google Scholar]
- Jackson, B.; Pagella, T.; Sinclair, F.; Orellana, B.; Henshaw, A.; Reynolds, B.; Mcintyre, N.; Wheater, H.; Eycott, A. Polyscape: A GIS mapping framework providing efficient and spatially explicit landscape-scale valuation of multiple ecosystem services. Landsc. Urban Plan. 2013, 112, 74–88. [Google Scholar] [CrossRef]
- Trodahl, M.I.; Jackson, B.M.; Deslippe, J.R.; Metherell, A.K. Investigating trade-offs between water quality and agricultural productivity using the Land Utilisation and Capability Indicator (LUCI)–A New Zealand application. Ecosyst. Serv. 2017, 26, 388–399. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J.; Ancona, Z.H. Social Values for Ecosystem Services (SolVES): Open-source spatial modeling of cultural services. Environ. Model. Softw. 2022, 148, 105259. [Google Scholar] [CrossRef]
- Clark, S.G.; Donnelly, J.R.; Moore, A.D. The GrassGro decision support tool: Its effectiveness in simulating pasture and animal production and value in determining research priorities. Aust. J. Exp. Agric. 2000, 40, 247–256. [Google Scholar] [CrossRef]
- Ruesch, A.; Gibbs, H.K. New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000. 2008. Available online: https://cdiac.ess-dive.lbl.gov/epubs/ndp/global_carbon/carbon_documentation.html (accessed on 7 February 2022). [CrossRef]
- Battaglia, M.; Sands, P.; White, D.; Mummery, D. CABALA: A linked carbon, water and nitrogen model of forest growth for silvicultural decision support. For. Ecol. Manag. 2004, 193, 251–282. [Google Scholar] [CrossRef]
- Landsberg, J.J.; Waring, R.H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For. Ecol. Manag. 1997, 95, 209–228. [Google Scholar] [CrossRef]
- Coops, N.; Waring, R. The use of multiscale remote sensing imagery to derive regional estimates of forest growth capacity using 3-PGS. Remote Sens. Environ. 2001, 75, 324–334. [Google Scholar] [CrossRef]
- Landsberg, J.; Waring, R.; Coops, N. Performance of the forest productivity model 3-PG applied to a wide range of forest types. For. Ecol. Manag. 2003, 172, 199–214. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, L.K. The process-based forest growth model 3-PG for use in forest management: A review. Ecol. Model. 2019, 397, 55–73. [Google Scholar] [CrossRef]
- Quegan, S.; Le Toan, T.; Chave, J.; Dall, J.; Exbrayat, J.-F.; Minh, D.H.T.; Lomas, M.; D’Alessandro, M.M.; Paillou, P.; Papathanassiou, K.; et al. The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sens. Environ. 2019, 227, 44–60. [Google Scholar] [CrossRef]
- Zolkos, S.; Goetz, S.; Dubayah, R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens. Environ. 2012, 128, 289–298. [Google Scholar] [CrossRef]
- Silva, C.A.; Duncanson, L.; Hancock, S.; Neuenschwander, A.; Thomas, N.; Hofton, M.; Fatoyinbo, L.; Simard, M.; Marshak, C.Z.; Armston, J.; et al. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sens. Environ. 2021, 253, 112234. [Google Scholar] [CrossRef]
- Duncanson, L.; Kellner, J.R.; Armston, J.; Dubayah, R.; Minor, D.M.; Hancock, S.; Healey, S.P.; Patterson, P.L.; Saarela, S.; Marselis, S.; et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sens. Environ. 2022, 270, 112845. [Google Scholar] [CrossRef]
- Liao, Z.; Van Dijk, A.I.; He, B.; Larraondo, P.R.; Scarth, P.F. Woody vegetation cover, height and biomass at 25-m resolution across Australia derived from multiple site, airborne and satellite observations. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2020, 93, 102209. [Google Scholar] [CrossRef]
- Huth, N.; Holzworth, D.; Smethurst, P. Cutting through the complexity of biophysical models: Seeing the forest for the trees. In Proceedings of the World Congress on Agroforestry, Montpellier, France, 20–22 May 2019. [Google Scholar]
- Smethurst, P.J.; Huth, N.I.; Masikati, P.; Sileshi, G.W.; Akinnifesi, F.K.; Wilson, J.; Sinclair, F. Accurate crop yield predictions from modelling tree-crop interactions in gliricidia-maize agroforestry. Agric. Syst. 2017, 155, 70–77. [Google Scholar] [CrossRef]
- Carter, J.O.; Hall, W.B.; Brook, K.D.; McKeon, G.M.; Day, K.A.; Paull, C.J. Aussie Grass: Australian Grassland and Rangeland Assessment by Spatial Simulation. In Applications of Seasonal Climate Forecasting in Agricultural and Natural Ecosystems; Hammer, G.L., Nicholls, N., Mitchell, C., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 329–349. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An overview of the crop model stics. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Grant, R.H.; Heisler, G.M.; Gao, W. Estimation of Pedestrian Level UV Exposure Under Trees. Photochem. Photobiol. 2007, 75, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Baker, T.; Moroni, M.; Hunt, M.; Worledge, D.; Mendham, D. Temporal, environmental and spatial changes in the effect of windbreaks on pasture microclimate. Agric. For. Meteorol. 2021, 297, 108265. [Google Scholar] [CrossRef]
- Cleugh, H.A. Effects of windbreaks on airflow, microclimates and crop yields. Agrofor. Syst. 1998, 41, 55–84. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Hughes, D.E. Impact of shelter on crop microclimates: A synthesis of results from wind tunnel and field experiments. Aust. J. Exp. Agric. 2002, 42, 679–701. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Prinsley, R.; Bird, P.R.; Brooks, S.J.; Carberry, P.S.; Crawford, M.C.; Jackson, T.T.; Meinke, H.; Mylius, S.J.; Nuberg, I.K.; et al. The Australian National Windbreaks Program: Overview and summary of results. Aust. J. Exp. Agric. 2002, 42, 649–664. [Google Scholar] [CrossRef]
- Broster, J.C.; Robertson, S.M.; Dehaan, R.L.; King, B.J.; Friend, M.A. Evaluating seasonal risk and the potential for windspeed reductions to reduce chill index at six locations using GrassGro. Anim. Prod. Sci. 2012, 52, 921–928. [Google Scholar] [CrossRef]
- Baker, T.P.; Marais, Z.E.; Davidson, N.J.; Worledge, D.; Mendham, D.S. The role of open woodland in mitigating microclimatic extremes in agricultural landscapes. Ecol. Manag. Restor. 2021, 22, 118–126. [Google Scholar] [CrossRef]
- Winn, J.P.; Bellamy, C.C.; Fisher, T. EcoServ-GIS: A Toolkit for Mapping Ecosystem Services. 2018. Scottish Natural Heritage Research Report No. 954. Inverness, UK. Available online: https://www.nature.scot/doc/naturescot-research-report-954-ecoserv-gis-v33-toolkit-mapping-ecosystem-services-gb-scale (accessed on 22 September 2022).
- Mobbs, D.; Lawson, G.; Friend, A.; Crout, N.; Arah, J.; Hodnett, M. HyPAR Model for Agroforestry Systems: Technical Manual: Model Description for Version 3.0. 1999. Available online: https://agris.fao.org/agris-search/search.do?recordID=GB2012107732 (accessed on 22 September 2022).
- Pyatt, D.G. Guide to Site Types in Forest of North and Mid-Wales; Forestry Commission: West Pennant Hills, New South Wales, 1969. [Google Scholar]
- Miller, K.F. Windthrow Hazard Classification; Forestry Commission, HMSO: London, UK, 1985. [Google Scholar]
- Booth, T.H. Windthrow Hazard Classification; Forestry Commission: Edinburgh, Scotland, 1977. [Google Scholar]
- Smith, R. Forest and Wind Risk in Tasmania; A guide for foresters, landowners and planners; Private Forests Tasmania: Hobart, Tasmania, 2016. [Google Scholar]
- Nixon-Smith, W.F. The Forecasting of Chill Risk Ratings for New Born Lambs and Off-Shears Sheep by the Use of a Cooling Factor Derived from Synoptic Data; Bureau of Meteorology: Canberra, Australia, 1972. [Google Scholar]
- Donnelly, J. The productivity of breeding ewes grazing on lucerne or grass and clover pastures on the tablelands of Southern Australia. III. Lamb mortality and weaning percentage. Aust. J. Agric. Res. 1984, 35, 709–721. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [PubMed]
- WHO. Review of Evidence on Health Aspects of Air Pollution: REVIHAAP Project; Technical report; World Health Organization: Copenhagen, Denmark, 2013; p. 309. [Google Scholar]
- Chapman, R.L. Algae: The world’s most important “plants”—An introduction. Mitig. Adapt. Strat. Glob. Change 2010, 18, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Kesselmeier, J.; Staudt, M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 1999, 33, 23–88. [Google Scholar] [CrossRef]
- Hellén, H.; Tykkä, T.; Hakola, H. Importance of monoterpenes and isoprene in urban air in northern Europe. Atmos. Environ. 2012, 59, 59–66. [Google Scholar] [CrossRef]
- Fitzky, A.C.; Sandén, H.; Karl, T.; Fares, S.; Calfapietra, C.; Grote, R.; Saunier, A.; Rewald, B. The Interplay between Ozone and Urban Vegetation—BVOC Emissions, Ozone Deposition, and Tree Ecophysiology. Front. For. Glob. Change 2019, 2. [Google Scholar] [CrossRef]
- Calfapietra, C.; Fares, S.; Manes, F.; Morani, A.; Sgrigna, G.; Loreto, F. Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review. Environ. Pollut. 2013, 183, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.J.; Macdonald, B.C.T.; Xing, H.; Denmead, O.T.; Wang, E.; McLachlan, G.; Tuomi, S.; Turner, D.; Chen, D. Measurements and APSIM modelling of soil C and N dynamics. Soil Res. 2020, 58, 41–61. [Google Scholar] [CrossRef]
- Giltrap, D.; Vogeler, I.; Cichota, R.; Luo, J.; van der Weerden, T.; de Klein, C. Comparison between APSIM and NZ-DNDC models when describing N-dynamics under urine patches. N. Z. J. Agric. Res. 2015, 58, 131–155. [Google Scholar] [CrossRef]
- Setälä, H.; Viippola, V.; Rantalainen, A.-L.; Pennanen, A.; Yli-Pelkonen, V. Does urban vegetation mitigate air pollution in northern conditions? Environ. Pollut. 2013, 183, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Vieno, M.; Fitch, A.; Carnell, E.; Steadman, C.; Cryle, P.; Holland, M.; Nemitz, E.; Morton, D.; Hall, J.; et al. Urban natural capital accounts: Developing a novel approach to quantify air pollution removal by vegetation. J. Environ. Econ. Policy 2019, 8, 413–428. [Google Scholar] [CrossRef]
- Whitlow, T.H.; Pataki, D.A.; Alberti, M.; Pincetl, S.; Setälä, H.; Cadenasso, M.; Felson, A.; McComas, K. Comments on “Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects” by Nowak et al. (2013). Environ. Pollut. 2014, 191, 256. [Google Scholar] [CrossRef]
- AIHW. Australia’s Health 2020: Data Insights; Australian Institute of Health and Welfare: Canberra, Australian, 2020; p. 46. [Google Scholar]
- Vieno, M.; Heal, M.R.; Williams, M.L.; Carnell, E.J.; Nemitz, E.; Stedman, J.R.; Reis, S. The sensitivities of emissions reductions for the mitigation of UK PM2.5. Atmos. Chem. Phys. 2016, 16, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised universal soil loss equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar]
- Thomas, I.; Jordan, P.; Shine, O.; Fenton, O.; Mellander, P.-E.; Dunlop, P.; Murphy, P. Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2017, 54, 38–52. [Google Scholar] [CrossRef]
- López-Vicente, M.; Álvarez, S. Influence of DEM resolution on modelling hydrological connectivity in a complex agricultural catchment with woody crops. Earth Surf. Process. Landforms 2018, 43, 1403–1415. [Google Scholar] [CrossRef]
- Freebairn, D.; Wockner, G. A study of soil erosion on vertisols of the eastern Darling Downs, Queensland. I. Effects of surface conditions on soil movement within Contour Bay catchments. Soil Res. 1986, 24, 135–158. [Google Scholar] [CrossRef]
- Jones, C.A.; Kiniry, J.R. CERES-Maize A Simulation Model of Maize Growth and Development; Texas A & M University Press: College Station, TX, USA, 1986. [Google Scholar]
- Littleboy, M.; Silburn, D.; Freebairn, D.; Woodruff, D.; Hammer, G.; Leslie, J. Impact of soil erosion on production in cropping systems. I. Development and validation of a simulation model. Soil Res. 1992, 30, 757–774. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, W02502. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. CATENA 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Fewtrell, T.J.; Duncan, A.; Sampson, C.C.; Neal, J.C.; Bates, P.D. Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data. Phys. Chem. Earth Parts A/B/C 2011, 36, 281–291. [Google Scholar] [CrossRef]
- Schoorl, J.M.; Sonneveld, M.P.W.; Veldkamp, A. Three-dimensional landscape process modelling: The effect of DEM resolution. Earth Surf. Processes Landf. 2000, 25, 1025–1034. [Google Scholar] [CrossRef]
- Hengl, T. Finding the right pixel size. Comput. Geosci. 2006, 32, 1283–1298. [Google Scholar] [CrossRef]
- Connolly, R. Modelling effects of soil structure on the water balance of soil–crop systems: A review. Soil Tillage Res. 1998, 48, 1–19. [Google Scholar] [CrossRef]
- Fatichi, S.; Or, D.; Walko, R.; Vereecken, H.; Young, M.H.; Ghezzehei, T.A.; Hengl, T.; Kollet, S.; Agam, N.; Avissar, R. Soil structure is an important omission in Earth System Models. Nat. Commun. 2020, 11, 522. [Google Scholar] [CrossRef]
- Jarrah, M.; Mayel, S.; Tatarko, J.; Funk, R.; Kuka, K. A review of wind erosion models: Data requirements, processes, and validity. CATENA 2020, 187, 104388. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Panagos, P.; Vanwalleghem, T.; Hayas, A.; Foerster, S.; Borrelli, P.; Rossi, M.; Torri, D.; Casali, J.; Borselli, L.; et al. Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-Sci. Rev. 2021, 218, 103637. [Google Scholar] [CrossRef]
- Daly, E.R.; Miller, R.B.; Fox, G.A. Modeling streambank erosion and failure along protected and unprotected composite streambanks. Adv. Water Resour. 2015, 81, 114–127. [Google Scholar] [CrossRef]
- Alam, M.J.; Dutta, D. Modelling of Nutrient Pollution Dynamics in River Basins: A Review with a Perspective of a Distributed Modelling Approach. Geosciences 2021, 11, 369. [Google Scholar] [CrossRef]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Weeks, A.; Christy, B.; Lowell, K.; Beverly, C. The Catchment Analysis Tool: Demonstrating the Benefits of Interconnected Biophysical Models. In Landscape Analysis and Visualisation: Spatial Models for Natural Resource Management and Planning; Pettit, C., Cartwright, W., Bishop, I., Lowell, K., Pullar, D., Duncan, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 49–71. [Google Scholar]
- Vaze, J.; Viney, N.; Stenson, M.; Renzullo, L.J.; Van Dijk, A.I.J.M.; Dutta, D.; Crosbie, R.S.; Lerat, J.; Penton, D.; Vleeshouwer, J.; et al. The Australian Water Resource Assessment Modelling System (AWRA). In Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013. [Google Scholar]
- Mateo, C.M.R.; Vaze, J.; Wang, B. Improving a continental hydrological model by enhancing its hydrological representation and implementing at 1km spatial resolution. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020. [Google Scholar]
- Schymanski, S.; Sivapalan, M.; Roderick, M.; Hutley, L.; Beringer, J. An optimality-based model of the dynamic feedbacks between natural vegetation and the water balance. Water Resour. Res. 2009, 45, W01412. [Google Scholar] [CrossRef]
- Naimi, B.; Hamm, N.; Groen, T.; Skidmore, A.K.; Toxopeus, A.G.; Alibakhshi, S. ELSA: Entropy-based local indicator of spatial association. Spat. Stat. 2019, 29, 66–88. [Google Scholar] [CrossRef]
- Plummer, S.; Lecomte, P.; Doherty, M. The ESA Climate Change Initiative (CCI): A European contribution to the generation of the Global Climate Observing System. Remote Sens. Environ. 2017, 203, 2–8. [Google Scholar] [CrossRef]
- Lerman, S.B.; Nislow, K.H.; Nowak, D.J.; DeStefano, S.; King, D.I.; Jones-Farrand, D.T. Using urban forest assessment tools to model bird habitat potential. Landsc. Urban Plan. 2014, 122, 29–40. [Google Scholar] [CrossRef]
- Ritter, C.D.; Faurby, S.; Bennett, D.J.; Naka, L.N.; ter Steege, H.; Zizka, A.; Haenel, Q.; Nilsson, H.; Antonelli, A. The pitfalls of biodiversity proxies: Differences in richness patterns of birds, trees and understudied diversity across Amazonia. Sci. Rep. 2019, 9, 19205. [Google Scholar] [CrossRef]
- Cushman, S.A.; McKELVEY, K.S.; Noon, B.R.; McGARIGAL, K. Use of Abundance of One Species as a Surrogate for Abundance of Others. Conserv. Biol. 2010, 24, 830–840. [Google Scholar] [CrossRef]
- Loman, Z.G.; Deluca, W.V.; Harrison, D.J.; Loftin, C.S.; Schwenk, W.S.; Wood, P.B. How well do proxy species models inform conservation of surrogate species? Landsc. Ecol. 2021, 36, 2863–2877. [Google Scholar] [CrossRef]
- Alkemade, R.; Van Oorschot, M.; Miles, L.; Nellemann, C.; Bakkenes, M.; Brink, B.T. GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss. Ecosystems 2009, 12, 374–390. [Google Scholar] [CrossRef]
- Schipper, A.M.; Hilbers, J.P.; Meijer, J.R.; Antão, L.H.; Benítez-López, A.; de Jonge, M.M.J.; Leemans, L.H.; Scheper, E.; Alkemade, R.; Doelman, J.C.; et al. Projecting terrestrial biodiversity intactness with GLOBIO 4. Glob. Change Biol. 2020, 26, 760–771. [Google Scholar] [CrossRef]
- Lemelin, L.-V.; Darveau, M. Coarse and fine filters, gap analysis, and systematic conservation planning. For. Chron. 2006, 82, 802–805. [Google Scholar] [CrossRef]
- Wilson, B.A.; Neldner, V.J.; Accad, A. The extent and status of remnant vegetation in Queensland and its implications for statewide vegetation management and legislation. Rangel. J. 2002, 24, 6–35. [Google Scholar] [CrossRef]
- Department of Environment Land Water and Planning. Bioregions and EVC Benchmarks. Available online: https://www.environment.vic.gov.au/biodiversity/bioregions-and-evc-benchmarks (accessed on 20 March 2022).
- Keith, D.A.; Rodríguez, J.P.; Brooks, T.M.; Burgman, M.A.; Barrow, E.G.; Bland, L.; Comer, P.J.; Franklin, J.; Link, J.; McCarthy, M.A.; et al. The IUCN red list of ecosystems: Motivations, challenges, and applications. Conserv. Lett. 2015, 8, 214–226. [Google Scholar] [CrossRef] [Green Version]
- Cushman, S.A.; McKelvey, K.S.; Flather, C.; McGarigal, K. Do forest community types provide a sufficient basis to evaluate biological diversity? Front. Ecol. Environ. 2008, 6, 13–17. [Google Scholar] [CrossRef]
- Mateo, R.G.; Mokany, K.; Guisan, A. Biodiversity Models: What If Unsaturation Is the Rule? Trends Ecol. Evol. 2017, 32, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Dubuis, A.; Pottier, J.; Rion, V.; Pellissier, L.; Theurillat, J.-P.; Guisan, A. Predicting spatial patterns of plant species richness: A comparison of direct macroecological and species stacking modelling approaches. Divers. Distrib. 2011, 17, 1122–1131. [Google Scholar] [CrossRef]
- Ferrier, S.; Manion, G.; Elith, J.; Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 2007, 13, 252–264. [Google Scholar] [CrossRef]
- Allnutt, T.F.; Ferrier, S.; Manion, G.; Powell, G.V.N.; Ricketts, T.H.; Fisher, B.L.; Harper, G.J.; Irwin, M.E.; Kremen, C.; Labat, J.-N.; et al. A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conserv. Lett. 2008, 1, 173–181. [Google Scholar] [CrossRef]
- Mokany, K.; Ferrier, S.; Harwood, T.D.; Ware, C.; Di Marco, M.; Grantham, H.S.; Venter, O.; Hoskins, A.J.; Watson, J.E.M. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl. Acad. Sci. USA 2020, 117, 9906–9911. [Google Scholar] [CrossRef]
- Di Marco, M.; Harwood, T.D.; Hoskins, A.J.; Ware, C.; Hill, S.L.L.; Ferrier, S. Projecting impacts of global climate and land-use scenarios on plant biodiversity using compositional-turnover modelling. Glob. Change Biol. 2019, 25, 2763–2778. [Google Scholar] [CrossRef]
- Hoskins, A.J.; Harwood, T.D.; Ware, C.; Williams, K.J.; Perry, J.J.; Ota, N.; Croft, J.R.; Yeates, D.K.; Jetz, W.; Golebiewski, M.; et al. BILBI: Supporting global biodiversity assessment through high-resolution macroecological modelling. Environ. Model. Softw. 2020, 132, 104806. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS. Spatial Pattern Analysis Program for Quantifying Landscape Structure; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 1995; Volume 351.
- Vogt, P.; Riitters, K. GuidosToolbox: Universal digital image object analysis. Eur. J. Remote Sens. 2017, 50, 352–361. [Google Scholar] [CrossRef]
- Riitters, K.H.; Wickham, J.D. Decline of forest interior conditions in the conterminous United States. Sci. Rep. 2012, 2, 653. [Google Scholar] [CrossRef] [PubMed]
- Dramstad, W.E. Spatial metrics–useful indicators for society or mainly fun tools for landscape ecologists? Nor. Geogr. Tidsskr.-Nor. J. Geogr. 2009, 63, 246–254. [Google Scholar] [CrossRef]
- Kupfer, J.A. Landscape ecology and biogeography: Rethinking landscape metrics in a post-FRAGSTATS landscape. Prog. Phys. Geogr. Earth Environ. 2012, 36, 400–420. [Google Scholar] [CrossRef]
- Cardille, J.; Turner, M.; Clayton, M.; Gergel, S.; Price, S. METALAND: Characterizing Spatial Patterns and Statistical Context of Landscape Metrics. BioScience 2005, 55, 983–988. [Google Scholar] [CrossRef]
- Lonsdorf, E.; Kremen, C.; Ricketts, T.; Winfree, R.; Williams, N.; Greenleaf, S. Modelling pollination services across agricultural landscapes. Ann. Bot. 2009, 103, 1589–1600. [Google Scholar] [CrossRef]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef]
- Olsson, O.; Bolin, A.; Smith, H.G.; Lonsdorf, E. Modeling pollinating bee visitation rates in heterogeneous landscapes from foraging theory. Ecol. Model. 2015, 316, 133–143. [Google Scholar] [CrossRef]
- Martínez-López, J.; Bagstad, K.J.; Balbi, S.; Magrach, A.; Voigt, B.; Athanasiadis, I.; Pascual, M.; Willcock, S.; Villa, F. Towards globally customizable ecosystem service models. Sci. Total Environ. 2019, 650, 2325–2336. [Google Scholar] [CrossRef]
- Breeze, T.D.; Gallai, N.; Garibaldi, L.A.; Li, X.S. Economic Measures of Pollination Services: Shortcomings and Future Directions. Trends Ecol. Evol. 2016, 31, 927–939. [Google Scholar] [CrossRef]
- Joseph, J.; Santibáñez, F.; Laguna, M.F.; Abramson, G.; Kuperman, M.N.; Garibaldi, L.A. A spatially extended model to assess the role of landscape structure on the pollination service of Apis mellifera. Ecol. Model. 2020, 431, 109201. [Google Scholar] [CrossRef]
- Perennes, M.; Diekötter, T.; Groß, J.; Burkhard, B. A hierarchical framework for mapping pollination ecosystem service potential at the local scale. Ecol. Model. 2021, 444, 109484. [Google Scholar] [CrossRef]
- Mulligan, M.; Guerry, A.; Arkema, K.; Bagstad, K.; Villa, F. Capturing and quantifying the flow of ecosystem services. In Framing The Flow: Innovative Approaches to Understand, Protect and Value Ecosystem Services across Linked Habitats; UNEP World Conservation Monitoring Centre: Cambridge, UK, 2010; pp. 26–33. [Google Scholar]
- Schulp, C.; Lautenbach, S.; Verburg, P. Quantifying and mapping ecosystem services: Demand and supply of pollination in the European Union. Ecol. Indic. 2014, 36, 131–141. [Google Scholar] [CrossRef]
- Binner, A.; Smith, G.; Bateman, I.J.; Day, B.; Agarwala, M.; Harwood, A. Valuing the Social and Environmental Contribution of Woodlands and Trees in England, Scotland and Wales; Forestry Commission: Edinburgh, Scotland, 2017. [Google Scholar]
- Polyakov, M.; Pannell, D.J.; Pandit, R.; Tapsuwan, S.; Park, G. Capitalized Amenity Value of Native Vegetation in a Multifunctional Rural Landscape. Am. J. Agric. Econ. 2014, 97, 299–314. [Google Scholar] [CrossRef]
- Wood, S.A.; Guerry, A.D.; Silver, J.M.; Lacayo, M. Using social media to quantify nature-based tourism and recreation. Sci. Rep. 2013, 3, 2976. [Google Scholar] [CrossRef]
- Byczek, C.; Longaretti, P.-Y.; Renaud, J.; Lavorel, S. Benefits of crowd-sourced GPS information for modelling the recreation ecosystem service. PLoS ONE 2018, 13, e0202645. [Google Scholar] [CrossRef]
- Semmens, D.J.; Sherrouse, B.C.; Ancona, Z.H. Using social-context matching to improve spatial function-transfer performance for cultural ecosystem service models. Ecosyst. Serv. 2019, 38, 100945. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J.; Clement, J.M. An application of Social Values for Ecosystem Services (SolVES) to three national forests in Colorado and Wyoming. Ecol. Indic. 2014, 36, 68–79. [Google Scholar] [CrossRef]
- Fisher, D.M.; Wood, S.A.; White, E.M.; Blahna, D.J.; Lange, S.; Weinberg, A.; Tomco, M.; Lia, E. Recreational use in dispersed public lands measured using social media data and on-site counts. J. Environ. Manag. 2018, 222, 465–474. [Google Scholar] [CrossRef]
- Merrill, N.H.; Atkinson, S.F.; Mulvaney, K.K.; Mazzotta, M.J.; Bousquin, J. Using data derived from cellular phone locations to estimate visitation to natural areas: An application to water recreation in New England, USA. PLoS ONE 2020, 15, e0231863. [Google Scholar] [CrossRef]
- Willis, K.G.; Garrod, G.D. An Individual Travel-Cost Method of Evaluating Forest Recreation. J. Agric. Econ. 1991, 42, 33–42. [Google Scholar] [CrossRef]
- Zandersen, M.; Tol, R.S. A meta-analysis of forest recreation values in Europe. J. For. Econ. 2009, 15, 109–130. [Google Scholar] [CrossRef]
- Day, B.H.; Smith, G.S. Outdoor Recreation Valuation (ORVal) User Guide, Version 2.0; University of Exeter: Exeter, UK, 2018. [Google Scholar]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 23 June 2022).
- Commonwealth of Australia. Reef 2050 Long-Term Sustainability Plan 2021-25. 2021. Available online: https://www.dcceew.gov.au/parks-heritage/great-barrier-reef/long-term-sustainability-plan (accessed on 23 June 2022).
- Donatelli, M.; Magarey, R.D.; Bregaglio, S.; Willocquet, L.; Whish, J.P.M.; Savary, S. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 2017, 155, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Hurley, P.J.; Physick, W.L.; Luhar, A.K. TAPM: A practical approach to prognostic meteorological and air pollution modelling. Environ. Model. Softw. 2005, 20, 737–752. [Google Scholar] [CrossRef]
- Trotsiuk, V.; Hartig, F.; Forrester, D.I. r3PG—An r package for simulating forest growth using the 3-PG process-based model. Methods Ecol. Evol. 2020, 11, 1470–1475. [Google Scholar] [CrossRef]
- Song, X.; Song, Y. Introducing 3-PG2Py, an open-source forest growth model in Python. Environ. Model. Softw. 2022, 150, 105358. [Google Scholar] [CrossRef]
- Miguez, F. apsimx: Inspect, Read, Edit and Run ‘APSIM’ “Next Generation” and ‘APSIM’ Classic. 2022. R package version 2.3.1. Available online: https://cran.r-project.org/web/packages/apsimx/index.html (accessed on 22 September 2022).
- Smethurst, P.J.; Comerford, N.B. Potassium and Phosphorus Uptake by Competing Pine and Grass: Observations and Model Verification. Soil Sci. Soc. Am. J. 1993, 57, 1602–1610. [Google Scholar] [CrossRef]
- Meier, E.; Prestwidge, D.; Liedloff, A.; Verrall, S.; Traill, S.; Stower, M. Crop Livestock Enterprise Model (CLEM)–a tool to support decision-making at the whole-farm scale. In Proceedings of the Agronomy Australia Conference, Wagga, Australia, 25–29 August 2019. [Google Scholar]
- Vezy, R.; le Maire, G.; Christina, M.; Georgiou, S.; Imbach, P.; Hidalgo, H.G.; Alfaro, E.J.; Blitz-Frayret, C.; Charbonnier, F.; Lehner, P.; et al. DynACof: A process-based model to study growth, yield and ecosystem services of coffee agroforestry systems. Environ. Model. Softw. 2020, 124, 104609. [Google Scholar] [CrossRef]
- Easterling, W.; Hays, C.J.; Easterling, M.M.; Brandle, J.R. Modelling the effect of shelterbelts on maize productivity under climate change: An application of the EPIC model. Agric. Ecosyst. Environ. 1997, 61, 163–176. [Google Scholar] [CrossRef]
- Tsonkova, P.; Quinkenstein, A.; Böhm, C.; Freese, D.; Schaller, E. Ecosystem services assessment tool for agroforestry (ESAT-A): An approach to assess selected ecosystem services provided by alley cropping systems. Ecol. Indic. 2014, 45, 285–299. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Schelhaas, M.J.; Pussinen, A. Validation of the European Forest Information Scenario Model (EFISCEN) and a Projection of Finnish Forests. Silva Fennica. 2000, 34, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Graves, A.R.; Burgess, P.J.; Liagre, F.; Terreaux, J.-P.; Borrel, T.; Dupraz, C.; Palma, J.; Herzog, F. Farm-SAFE: The process of developing a plot- and farm-scale model of arable, forestry, and silvoarable economics. Agrofor. Syst. 2011, 81, 93–108. [Google Scholar] [CrossRef]
- Yao, R.T.; Harrison, D.R.; Velarde, S.J.; Barry, L.E. Validation and enhancement of a spatial economic tool for assessing ecosystem services provided by planted forests. For. Policy Econ. 2016, 72, 122–131. [Google Scholar] [CrossRef]
- Salazar, O.; Casanova, M.; Kätterer, T. The impact of agroforestry combined with water harvesting on soil carbon and nitrogen stocks in central Chile evaluated using the ICBM/N model. Agric. Ecosyst. Environ. 2011, 140, 123–136. [Google Scholar] [CrossRef]
- Bryan, B.A.; Nolan, M.; McKellar, L.; Connor, J.D.; Newth, D.; Harwood, T.; King, D.; Navarro, J.; Cai, Y.; Gao, L.; et al. Land-use and sustainability under intersecting global change and domestic policy scenarios: Trajectories for Australia to 2050. Glob. Environ. Change 2016, 38, 130–152. [Google Scholar] [CrossRef]
- Qi, X.; Mize, C.W.; Batchelor, W.D.; Takle, E.S.; Litvina, I.V. SBELTS: A model of soybean production under tree shelter. Agrofor. Syst. 2001, 52, 53–61. [Google Scholar] [CrossRef]
- Hawkins, C.; Siggins, A.; Opie, K.; Oliver, Y.; Moore, A.; Carter, J.; Paul, K. Scenario Planning and Investment Framework Tool SPIF—User Guide; CSIRO: Canberra, Australia, 2010. [Google Scholar]
- Mayus, M.; Van Keulen, H.; Stroosnijder, L. A model of tree-crop competition for windbreak systems in the Sahel: Description and evaluation. Agrofor. Syst. 1998, 43, 183–201. [Google Scholar] [CrossRef]
- van der Werf, W.; Keesman, K.; Burgess, P.; Graves, A.; Pilbeam, D.; Incoll, L.; Metselaar, K.; Mayus, M.; Stappers, R.; van Keulen, H.; et al. Yield-SAFE: A parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecol. Eng. 2007, 29, 419–433. [Google Scholar] [CrossRef] [Green Version]
Tool | Software Type | Spatial Analysis Type | Timber Production and Carbon Sequestration | Crop, Pasture, and Livestock Productivity | Wind, Shelter, and Microclimate | Air Quality and Pollution | Erosion, Runoff, and Flood Mitigation | Biodiversity | Crop Pollination | Amenity and Recreation | Economic Measures | Citation/Link |
---|---|---|---|---|---|---|---|---|---|---|---|---|
APSIM A | Desktop app, command line | Point or area | x | x | x | x | x | x | [25,26], https://www.apsim.info/ | |||
ARIES (for SEEA explorer) B | Web app, k-LAB software | AI-selected grid | x | x | x | x | x | x | [33], https://aries.integratedmodelling.org/ | |||
Farm Forestry Toolbox | Desktop app | Point or area | x | x | [44], https://www.farmforestrytoolbox.com/ | |||||||
FullCAM 2020 | Desktop app, command line | Point or area | x | x | x | [41], https://www.industry.gov.au/data-and-publications/full-carbon-accounting-model-fullcam | ||||||
Imagine | Desktop app | Point or area | x | x | x | x | x | [31,45] | ||||
InVEST | Desktop app, python API | User-selected grid and/or area | x | x | x | x | x | x | [34], https://naturalcapitalproject.stanford.edu/software/invest | |||
i-Tree Eco | Desktop app | Point or area | x | x | x | x | x | x | [46], https://www.itreetools.org/tools/i-tree-eco | |||
LUCI | ArcGIS plugin | User-selected grid and/or area | x | x | x | [47,48], https://lucitools.org/ | ||||||
SolVES | ArcGIS/QGIS plugin | User-selected grid | x | [49], https://pubs.er.usgs.gov/publication/tm7C25 |
Tool | Model Name | Description | Relevant Output Variables |
---|---|---|---|
APSIM | Eucalyptus, Pinus, Gliricidia | Biophysical tree models calibrated for specific genotypes within each genus. | Biomass and carbon (soil, aboveground and belowground plant pools); stem diameter, height, and volume. |
ARIES | Carbon storage | Carbon stocks are estimated by linking land cover/use, ecofloristic regions, continents, forest cover, and fire history to lookup tables following Ruesch and Gibbs [51]. Soil carbon stocks are taken from the global ISRIC database. | Carbon (total stored in aboveground vegetation, belowground vegetation, first 200 cm of soil). |
Farm Forestry Toolbox | Site productivity | Annual indices of site productivity, integrated with species-specific empirical growth models. | Stand volume, mean annual increment, basal area, mean dominant height, diameter at breast height. |
FullCAM 2020 | FullCAM | The Full Carbon Accounting Model [41] is used for modelling Australia’s national greenhouse gas emissions in the land sector. It is used to estimate carbon stocks, sequestration and emissions associated with vegetation and soil. | Biomass and carbon storage (aboveground and belowground by pool), emissions (decomposition, fire). |
Imagine | CArbon BALAnce (CABALA) | A dynamic forest growth model that incorporates water, carbon and nutrient balances designed for decision support in silvicultural systems [52]. | Biomass (aboveground and belowground by pool), stand volume, height, basal area, diameter at breast height. |
InVEST | Carbon storage and sequestration | Carbon storage and sequestration are estimated using a land cover/use lookup table. Sequestration is calculated using linear interpolation where a future scenario is available. | Carbon (total stored and sequestered in aboveground vegetation, belowground vegetation, soil, and dead biomass) |
i-Tree Eco | Carbon storage and sequestration | Models carbon stocks and sequestration rates by applying allometric equations to tree structural characteristics. | Carbon (total stored, sequestered annually, and emitted due to decomposition) |
LUCI | Carbon stocks and fluxes | Carbon storage in biomass and soil is estimated as steady state for different combinations of and land cover/use classes and soil type. Net emissions or sequestration based on alternative scenarios. | Carbon (total stored in biomass and first 30–100 cm of soil, net emissions, or sequestration) |
Tool | Model Name | Description | Relevant Output Variables |
---|---|---|---|
APSIM | Active tree in strip crop system, using Eucalyptus, Pinus or Gliricidia | Simulates competition between one tree zone and one crop zone; several tree, crop, pasture and livestock options. | Crop, pasture, or livestock production |
APSIM | Tree proxy in multi-zone system | Simulates competition with user-defined tree characteristics; multiple tree and crop zones; several crop, pasture, and livestock options. | Crop, pasture, or livestock production |
FullCAM | Various options for crops, pastures, and grazing | The Full Carbon Accounting Model [41] is used for modelling Australia’s national greenhouse gas emissions in the land sector. It is used to estimate carbon stocks, sequestration and emissions associated with vegetation and soil. | Biomass and carbon storage (aboveground and belowground by pool), emissions (decomposition, fire). |
Imagine | N/A | Simple, integrated crop, pasture, and livestock production models that simulate spatial-temporal competition via yield factor adjustments. | Crop, pasture, or livestock production |
Tool | Model Name | Description | Output Variables |
---|---|---|---|
APSIM | AgroforestrySystem, LocalMicroClimate and MicroClimate | Calculates weather inputs to each zone, and the energy and water balance parameters across competing canopies within each zone [29]. | Proportional reduction in wind speed. Rainfall and radiation interception, canopy conductance, potential transpiration. |
Imagine | N/A | Empirical adjustment of livestock mortality [14] and pasture production, based on distance from tree belt in units of tree heights; [45]. | External feed requirement of a fixed herd based on change in pasture production, reduction in livestock mortality. |
i-Tree Eco | Ultraviolet radiation | Estimates the reduction in ultraviolet radiation provided by tree shade across an area based on [67] using vegetation characteristics and weather data. | Protection factor, reduction in UV index, percent reduction, overall UV index, shaded UV index |
Tool | Model Name | Description | Output Variables |
---|---|---|---|
APSIM | Nutrient | Daily emissions-based soil N, water, and temperature. | Mass of N2O-N released. |
i-Tree Eco | Air pollution removal | Estimated air pollution (CO, NO2, O3, SO2, PM10 and PM2.5) removed by grasses, shrubs, and trees. Model requires species, vegetation cover, and both weather and pollutant observations. | Change in pollutant concentration. |
i-Tree Eco | Oxygen production | Estimated net oxygen production as a proportion of net carbon sequestration. | Net oxygen produced. |
i-Tree Eco | Volatile Organic Compound (VOCs) emissions | Estimated biogenic volatile organic compounds (BVOCs; isoprene and monoterpene) emitted by trees. Model requires species, height (total and crown to base) crown width and percentage canopy missing. | Isoprene and monoterpene emissions. |
Tool | Model Name | Description | Output Variables |
---|---|---|---|
APSIM | Erosion | Estimated soil erosion using the modified USLE [100]. | Soil loss. |
APSIM | SoilWater | A daily water balance model based on CERES [101] and PERFECT [102] with additional improvements including allowing for unsaturated flows. | Evapotranspiration, runoff, infiltration, drainage, surface ponding, lateral outflow, etc. |
ARIES | Soil erosion control | Soil loss and volume avoided by the presence of vegetation, estimated using the RUSLE [97] in conjunction with land cover data. | Soil loss, soil loss avoided by vegetation. |
InVEST | Annual water yield | Sub-watershed scale water yield, calculated using annual precipitation and the Budyko curve (following [103,104]) | Actual and potential evapotranspiration, water yield, total extraction. |
InVEST | Seasonal water yield | Estimates the relative contribution of pixels to baseflow (during dry weather) and quickflow (during or post-rain). | Relative baseflow, recharge and quickflow. |
InVEST | Nutrient delivery ratio | Estimates the transport of nitrogen and phosphorus to streams. | Nutrient loads and export by watershed, per-pixel nutrient load reaching streams. |
InVEST | Sediment delivery ratio | Estimates soil loss using RUSLE [97] and the proportion of sediment reaching streams (following [105]) | Soil loss, sediment exported, sediment deposition and retention. |
i-Tree Eco | Stream flow and water quality | Estimates components of the water balance using a tree-based ecohydrological model. | Interception, evaporation, transpiration, potential evapotranspiration, avoided runoff. |
LUCI | Erosion and sediment | Identifies areas with high risk of gully and rill erosion or depositing sediments into nearby water features using the Topographic Wetness Index (TWI; [106]). | Erosion vulnerability risk. |
LUCI | Flood mitigation | Identifies parts of the landscape where water is likely to accumulate following large rainfall events and characterises features that mitigate flows. | Flood mitigation and interception capacity classes. |
LUCI | Nitrogen and phosphorus | Estimates nutrient loads and transport using topographic flow routing. | Nutrient loads, accumulated loads, stream and lake concentrations. |
LUCI | RUSLE | Estimates soil loss and erosion risk using the RUSLE [97]. | Soil loss, erosion risk, sediment delivery risk. |
Tool | Model Name | Description | Output Variables |
---|---|---|---|
ARIES | Forest fragmentation | Sourced directly from the global relative magnitude of forest fragmentation dataset based on the entropy-based local indicator of spatial association (ELSA; [121]). | N/A |
InVEST | Habitat quality | Estimates habitat quality and rarity from information on threats, land use, and land cover mapping. | Relative habitat degradation, quality, and rarity. |
InVEST | Habitat risk assessment | Assesses risk for species or habitats based on an analysis of exposure to threats and magnitude of consequence. | Habitat and ecosystem specific risk. |
InVEST | GLOBIO | Estimates the proportional change to the abundance of individual species, relative to the same location in pristine condition, in response to stressors (e.g., land use change, development activity, habitat fragmentation). | Mean species abundance. |
i-Tree Eco | Wildlife habitat | Predicts habitat suitability for 9 bird species using land use, building cover and vegetation characteristics [123]. | Habitat suitability (0–1). |
LUCI | Habitat connectivity (BEETLE) | Characterises habitat connectivity using known species habitat, patch size requirements, and dispersal ability using a cost-path technique. | Habitat connectivity classification (e.g., existing habitat, conservation priority, expansion possible, or outside of dispersal range). |
Tool | Model Name | Description | Output Variables |
---|---|---|---|
ARIES | Crop pollination | Calculates indexes of pollinator supply using nesting sites, floral resources, distance to fresh water and pollinator activity, and demand using weighted sum of crop dependencies. | Pollinator supply and demand |
InVEST | Pollinator abundance | Calculates indexes of pollinator supply and crop yields using habitat suitability (nesting sites and floral resources), and guild attributes (incl. foraging distance) and farm characteristics. | Pollinator supply and relative abundance indices, crop yield index for managed and wild pollinators. |
Tool | Model Name | Description | Output Variables |
---|---|---|---|
Imagine | N/A | Amenity value of farms engaged in agroforestry. Assumes 10% increase in land value over 5 years. | Adjusted land value ($) |
InVEST | Scenic quality | Viewsheds are used to quantify and categorise the impact of offshore developments on scenic quality. | Categorical (unaffected/very low/low/medium/high) estimates of scenic quality. |
InVEST | Visitation: Recreation and Tourism | Linear regression models are used to estimate the key determinants (e.g., natural features, infrastructure, land uses) of visitation rates (user-provided, or collated from public domain geotagged images). | Photo-user-days/visitation rate per year/month. Regression coefficients. |
SolVES | N/A | Statistical modelling (MaxEnt) of social values acquired from survey data as a function of environmental layers. | Value index (0–10). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stewart, S.B.; O’Grady, A.P.; Mendham, D.S.; Smith, G.S.; Smethurst, P.J. Digital Tools for Quantifying the Natural Capital Benefits of Agroforestry: A Review. Land 2022, 11, 1668. https://doi.org/10.3390/land11101668
Stewart SB, O’Grady AP, Mendham DS, Smith GS, Smethurst PJ. Digital Tools for Quantifying the Natural Capital Benefits of Agroforestry: A Review. Land. 2022; 11(10):1668. https://doi.org/10.3390/land11101668
Chicago/Turabian StyleStewart, Stephen B., Anthony P. O’Grady, Daniel S. Mendham, Greg S. Smith, and Philip J. Smethurst. 2022. "Digital Tools for Quantifying the Natural Capital Benefits of Agroforestry: A Review" Land 11, no. 10: 1668. https://doi.org/10.3390/land11101668
APA StyleStewart, S. B., O’Grady, A. P., Mendham, D. S., Smith, G. S., & Smethurst, P. J. (2022). Digital Tools for Quantifying the Natural Capital Benefits of Agroforestry: A Review. Land, 11(10), 1668. https://doi.org/10.3390/land11101668