Evaluation of the Symmetry of Statistical Methods Applied for the Identification of Agricultural Areas
Abstract
:1. Introduction
2. Materials
3. Methods
4. Results
5. Discussion and Conclusions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gurtin, M.E.; MacCamy, R.C. Non-linear age-dependent population dynamics. Arch. Ration. Mech. Anal. 1974, 54, 281–300. [Google Scholar] [CrossRef]
- Guckenheimer, J.; Oster, G.; Ipaktchi, A. The dynamics of density dependent population models. J. Math. Biol. 1977, 4, 101–147. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Ehrlich, A.H. The Population Explosion; Simon and Shuster: New York, NY, USA, 1990. [Google Scholar]
- Ranta, E.; Kaitala, V.; Lindström, J.; Linden, H. Synchrony in population dynamics. Proc. R. Soc. Lond. B Biol. Sci. 1995, 262, 113–118. [Google Scholar]
- Bjørnstad, O.N.; Ims, R.A.; Lambin, X. Spatial population dynamics: Analyzing patterns and processes of population synchrony. Trends Ecol. Evol. 1999, 14, 427–432. [Google Scholar] [CrossRef]
- Gignoux, C.R.; Henn, B.M.; Mountain, J.L. Rapid, global demographic expansions after the origins of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 6044–6049. [Google Scholar] [CrossRef] [Green Version]
- Linnér, H.; Messing, I. Agricultural land needs protection. Acta Agric. Scand. Sect. B Soil Plant Sci. 2012, 62, 706–710. [Google Scholar] [CrossRef]
- Kurowska, K.; Rudnicki, R. Changes in Land Use in Poland–Comparative Study of Period 2002–2010. 2017. Available online: http://conf.rd.asu.lt/index.php/rd/article/view/155 (accessed on 10 May 2021).
- Mondal, P.P.; Zhang, Y. Research Progress on Changes in Land Use and Land Cover in the Western Himalayas (India) and Effects on Ecosystem Services. Sustainability 2018, 10, 4504. [Google Scholar] [CrossRef] [Green Version]
- Parry, J.A.; Ganaie, S.A.; Bhat, M.S. GIS based land suitability analysis using AHP model for urban services planning in Srinagar and Jammu urban centers of J&K, India. J. Urban Manag. 2018, 7, 46–56. [Google Scholar] [CrossRef]
- Zambon, I.; Rontos, K.; Serra, P.; Colantoni, A.; Salvati, L. Population Dynamics in Southern Europe: A Local-Scale Analysis, 1961–2011. Sustainability 2019, 11, 109. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, I.; Kirkby, R.; Guanbao, S. Development and environment: The case of rural industrialization and small-town growth in China. Ambio 1996, 25, 204–209. [Google Scholar]
- Xiu-Bin, Z.H.A.O.; Yu-Luan, L.I. Forest transition, agricultural land marginalization and ecological restoration. China Popul. Resour. Environ. 2011, 21, 91–95. [Google Scholar]
- Munsi, M.; Areendran, G.; Joshi, P.K. Modeling spatio-temporal change patterns of forest cover: A case study from the Himalayan foothills (India). Reg. Environ. Chang. 2012, 12, 619–632. [Google Scholar] [CrossRef]
- Kanianska, R.; Kizeková, M.; Nováček, J.; Zeman, M. Land-use and land-cover changes in rural areas during different political systems: A case study of Slovakia from 1782 to 2006. Land Use Policy 2014, 36, 554–566. [Google Scholar] [CrossRef]
- Turner, M.G.; Ruscher, C.L. Changes in landscape patterns in Georgia, USA. Landsc. Ecol. 1988, 1, 241–251. [Google Scholar] [CrossRef]
- Moreira, F.; Godinho-Ferreira, P.; Rego, F.C.; Bunting, S. Landscape changes and breeding bird assemblages in northwestern Portugal: The role of fire. Landsc. Ecol. 2001, 16, 175–187. [Google Scholar] [CrossRef]
- Kozak, J. Forest Cover Change in the Western Carpathians in the Past 180 Years. Mt. Res. Dev. 2003, 23, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Junhui, L.; Jixi, G. Changes of land use and landscape pattern in the boundary change areas in farming-pastoral ecotone of northern China. Trans. Chin. Soc. Agric. Eng. 2008, 11. [Google Scholar] [CrossRef]
- Regos, A.; Ninyerola, M.; Moré, G.; Pons, X. Linking land cover dynamics with driving forces in mountain landscape of the Northwestern Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 1–14. [Google Scholar] [CrossRef]
- Clavero, M.; Villero, D.; Brotons, L. Climate Change or Land Use Dynamics: Do We Know What Climate Change Indicators Indicate? PLoS ONE 2011, 6, e18581. [Google Scholar] [CrossRef] [Green Version]
- Parcerisas, L.; Marull, J.; Pino, J.; Tello, E.; Coll, F.; Basnou, C. Land use changes, landscape ecology and their socioeconomic driving forces in the Spanish Mediterranean coast (El Maresme County, 1850–2005). Environ. Sci. Policy 2012, 23, 120–132. [Google Scholar] [CrossRef]
- Meneses, B.M.; Reis, E.; Pereira, S.; Vale, M.J.; Reis, R. Understanding Driving Forces and Implications Associated with the Land Use and Land Cover Changes in Portugal. Sustainability 2017, 9, 351. [Google Scholar] [CrossRef] [Green Version]
- Janus, J.; Taszakowski, J. Spatial differentiation of indicators presenting selected barriers in the productivity of agricultural areas: A regional approach to setting land consolidation priorities. Ecol. Indic. 2018, 93, 718–729. [Google Scholar] [CrossRef]
- Gzyl, J. Soil protection in Central and Eastern Europe. J. Geochem. Explor. 1999, 66, 333–337. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R.; Flanagan, D.; Tejero, I.G.; Fernández, J.L.M. Sustainable Land Use and Agricultural Soil; Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation; Springer: Berlin/Heidelberg, Germany, 2010; pp. 107–192. [Google Scholar]
- Louwagie, G.; Gay, S.H.; Sammeth, F.; Ratinger, T. The potential of European Union policies to address soil degradation in agriculture. Land Degrad. Dev. 2010, 22, 5–17. [Google Scholar] [CrossRef]
- Arredondo-Ruiz, F.; García-Montero, L.; Valverde-Asenjo, I.; Menta, C. Soil-Quality Indicators for Forest Management. Quant. Tech. Particip. For. Manag. 2016, 179–240. [Google Scholar] [CrossRef]
- Gibbard, S.; Caldeira, K.; Bala, G.; Phillips, T.J.; Wickett, M. Climate effects of global land cover change. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T.J.; Lobell, D.; Delire, C.; Mirin, A. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 2007, 104, 6550–6555. [Google Scholar] [CrossRef] [Green Version]
- Paeth, H.; Born, K.; Girmes, R.; Podzun, R.; Jacob, D. Regional Climate Change in Tropical and Northern Africa due to Greenhouse Forcing and Land Use Changes. J. Clim. 2009, 22, 114–132. [Google Scholar] [CrossRef] [Green Version]
- Fall, S.; Niyogi, D.; Gluhovsky, A.; Pielke Sr, R.A.; Kalnay, E.; Rochon, G. Impacts of land use land cover on temperature trends over the continental United States: Assessment using the North American Regional Reanalysis. Int. J. Climatol. 2010, 30, 1980–1993. [Google Scholar] [CrossRef] [Green Version]
- Pielke Sr, R.A.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, F. Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 828–850. [Google Scholar] [CrossRef]
- Gaitanis, A.; Kalogeropoulos, K.; Detsis, V.; Chalkias, C. Monitoring 60 Years of Land Cover Change in the Marathon Area, Greece. Land 2015, 4, 337–354. [Google Scholar] [CrossRef] [Green Version]
- Ożóg, K. The use of unmanned aerial vehicles for the assessment of land boundaries accuracy. J. Water Land Dev. 2020, 45, 94–99. [Google Scholar]
- Kurowska, K.; Kryszk, H.; Marks-Bielska, R.; Mika, M.; Leń, P. Conversion of agricultural and forest land to other purposes in the context of land protection: Evidence from Polish experience. Land Use Policy 2020, 95, 104614. [Google Scholar] [CrossRef]
- Janus, J.; Markuszewska, I. Land consolidation—A great need to improve effectiveness. A case study from Poland. Land Use Policy 2017, 65, 143–153. [Google Scholar] [CrossRef]
- Leń, P. An algorithm for selecting groups of factors for prioritization of land consolidation in rural areas. Comput. Electron. Agric. 2018, 144, 216–221. [Google Scholar] [CrossRef]
- Stańczuk-Gałwiaczek, M.; Sobolewska-Mikulska, K.; Ritzema, H.; Van Loon-Steensma, J.M. Integration of water management and land consolidation in rural areas to adapt to climate change: Experiences from Poland and the Netherlands. Land Use Policy 2018, 77, 498–511. [Google Scholar] [CrossRef]
- Janus, J.; Markuszewska, I. Forty years later: Assessment of the long-lasting effectiveness of land consolidation projects. Land Use Policy 2019, 83, 22–31. [Google Scholar] [CrossRef]
- Wójcik-Leń, J.; Leń, P.; Mika, M.; Kryszk, H.; Kotlarz, P. Studies regarding correct selection of statistical methods for the needs of increasing the efficiency of identification of land for consolidation—A case study in Poland. Land Use Policy 2019, 87, 104064. [Google Scholar] [CrossRef]
- Muchová, Z. Assessment of land ownership fragmentation by multiple criteria. Surv. Rev. 2017, 51, 265–272. [Google Scholar] [CrossRef]
- Janus, J. A new approach to calculating distances to parcels: A way to increase the accuracy of farm efficiency analyses and the assessment of land consolidation projects. Comput. Electron. Agric. 2020, 175, 105512. [Google Scholar] [CrossRef]
- Wójcik-Leń, J.; Sobolewska-Mikulska, K. Specific features of development of selected agricultural problematic areas in the land consolidation process. J. Water Land Dev. 2017, 34, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Wójcik-Leń, J.; Sobolewska-Mikulska, K. Issues related to marginal lands with reference to selected agricultural problematic areas. J. Water Land Dev. 2017, 35, 265–273. [Google Scholar] [CrossRef]
- Wójcik-Leń, J.; Leń, P.; Sobolewska-Mikulska, K. The proposed algorithm for identifying agricultural problem areas for the needs of their reasonable management under land consolidation works. Comput. Electron. Agric. 2018, 152, 333–339. [Google Scholar] [CrossRef]
- Wójcik-Leń, J.; Sobolewska-Mikulska, K.; Sajnóg, N.; Leń, P. The idea of rational management of problematic agricultural areas in the course of land consolidation. Land Use Policy 2018, 78, 36–45. [Google Scholar] [CrossRef]
- Jadczyszyn, J. Regional Differentiation of Problem Areas of Agriculture in Poland; Instrukcja Upowszechnieniowa; IUNG-PIB: Puławy, Poland, 2009; 80p, Available online: http://opr.iung.pulawy.pl/publikacje/IU-163.pdf (accessed on 15 April 2021).
- Bis, K. Agricultural problem areas with particular consideration of marginal soils. In Problem Areas in Agriculture in Poland with Particular Consideration of the Lublin Region; Jedut, R., Ed.; UMCS-PTG: Lublin, Poland, 1990; pp. 11–17. [Google Scholar]
- Noga, K. Topology of Mountain Villages for the Needs of Rural Management Works; Land Surveying, Scientific Papers; University of Agriculture: Kraków, Poland, 1979; Volume 6, pp. 17–29. [Google Scholar]
- Liczkowski, J. Delimitation of agricultural intensity regions using the average differences method. Agric. Econ. 1972, 2, 28–37. [Google Scholar]
- Fajferek, A. Economic Region and Methods of Regional Analysis; Dissertations Series; ZN WSE: Kraków, Poland, 1964; Volume 6, pp. 44–59. [Google Scholar]
- Steczkowski, J. Principles and Methods of Identifying Agricultural Production Regions; PWRiL: Warsaw, Poland, 1966. [Google Scholar]
- Domański, S. Typological procedure in economic and agricultural surveys. Geogr. Rev. 1969, XVI Pt 1, 55–68. [Google Scholar]
- Król, B. Taxonomic Method of Smallest Differences Applied in Classification of Farms; Scientific Papers of the School of Agriculture in Kraków, Series Economics; University of Agriculture: Punjab, Pakistan, 1969; Part 5. [Google Scholar]
- Noga, K. Method of Grouping the Spatial Structure of Mountain Villages. Land Surv. 1988, 10, 221. [Google Scholar]
- Stręk, Ż.; Noga, K. Method of Delimiting the Spatial Structure of Villages for the Purposes of Land Consolidation and Exchange. Remote Sens. 2019, 11, 1268. [Google Scholar] [CrossRef] [Green Version]
- Shelia, V.; Hoogenboom, G. A new approach to clustering soil profile data using the modified distance matrix. Comput. Electron. Agric. 2020, 176, 105631. [Google Scholar] [CrossRef]
- Abu Bakar, M.A.; Ariff, N.M.; Jemain, A.A.; Nadzir, M.S.M. Cluster Analysis of Hourly Rainfalls Using Storm Indices in Peninsular Malaysia. J. Hydrol. Eng. 2020, 25, 05020011. [Google Scholar] [CrossRef]
- David, J.; De Pessemier, T.; Dekoninck, L.; De Coensel, B.; Joseph, W.; Botteldooren, D.; Martens, L. Detection of road pavement quality using statistical clustering methods. J. Intell. Inf. Syst. 2019, 54, 483–499. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Marek, T. Analiza Skupień w Badaniach Empirycznych: Metody SAH [Cluster Analysis in Empirical Research SAHN Methods]; PWN: Warszawa, Poland, 1989; p. 121. [Google Scholar]
- Kurowska, K.; Kryszk, H.; Marks-Bielska, R.; Kietlinska, E. Spatial Analysis of Afforestation in Poland under Rural Development Programme 2007–2013. 2014. Available online: https://llufb.llu.lv/conference/Research-for-Rural-Development/2014/LatviaResearchRuralDevel20th_volume2-14-21.pdf (accessed on 7 April 2021).
- Kurowska, K.; Kryszk, H. Profitability of the farmland afforestation within the Rural Development Programme. Sylwan 2017, 161, 1035–1045. [Google Scholar]
- Leń, P. Kierunki Zmian W Strukturze Użytków Gruntowych W Latach 1872–2008 w Powiecie Brzozów [Areas of Change in the Pattern of Ground Water Use in the Period 1872–2008 in Rural District of Brzozów]. 2009. Infrastructure and Ecology of Rural Areas, Nr 4/2009. pp. 167–175. Available online: http://infraeco.pl/pl/art/a_15494.htm?plik=577 (accessed on 7 April 2021).
- Leń, P. Podział Przestrzeni Rolniczej Powiatu Brzozowskiego Pod Względem Wartości Produkcyjnej Gruntów Ornych Oraz Użytków Zielonych [Break Down of County Agricultural Space Brzozowski in Terms of Production Value of Cropland and Grassland]. 2010. Infrastructure and Ecology of Rural Areas, Nr 12/2010. pp. 37–44. Available online: http://infraeco.pl/pl/art/a_16166.htm?plik=928 (accessed on 7 April 2021).
No. | Indicators | Me | S | min | max | A | |
---|---|---|---|---|---|---|---|
1 | arable land | 38.12 | 37.64 | 14.8 | 2.66 | 71.15 | 0.15 |
2 | orchards | 0.14 | 0.03 | 0.23 | 0 | 1.08 | 2.42 |
3 | fields | 5.39 | 2.8 | 7.17 | 0.02 | 33.94 | 2.54 |
4 | pastures | 10.9 | 11.09 | 5.22 | 0.1 | 29.43 | 0.79 |
5 | built-up agricultural land | 2.58 | 2.34 | 1.24 | 0 | 6.29 | 0.5 |
6 | pond bottoms | 0.29 | 0 | 0.77 | 0 | 2.75 | 2.56 |
7 | ditch bottoms | 0.15 | 0.04 | 0.27 | 0 | 1.1 | 2.16 |
8 | agricultural land with tree stands and shrubs | 3.78 | 2.4 | 4.43 | 0.07 | 18.32 | 1.75 |
9 | wasteland | 0.16 | 0.11 | 0.16 | 0 | 0.78 | 1.79 |
10 | forests | 32.89 | 30.45 | 18.21 | 6.49 | 96.85 | 1.52 |
11 | other land with tree stands and shrubs | 0.06 | 0 | 0.15 | 0 | 0.78 | 3.62 |
12 | housing grounds | 0.76 | 0.38 | 1 | 0 | 5.06 | 2.45 |
13 | industrial grounds | 0.07 | 0.01 | 0.19 | 0 | 1.21 | 5.39 |
14 | other built-up grounds | 0.25 | 0.2 | 0.18 | 0.01 | 0.64 | 0.69 |
15 | land under building development | 0.03 | 0.02 | 0.04 | 0 | 0.17 | 1.59 |
16 | leisure grounds | 0.11 | 0.05 | 0.23 | 0 | 1.39 | 4.55 |
17 | surface mining grounds | 0.04 | 0 | 0.18 | 0 | 1.11 | 5.56 |
18 | roads | 2.82 | 2.87 | 1.01 | 0.22 | 5.42 | 0.22 |
19 | other transport grounds | 0 | 0 | 0 | 0 | 0.02 | 5.79 |
20 | grounds for the construction of roads | 0 | 0 | 0.01 | 0 | 0.04 | 3.99 |
21 | water courses | 1.34 | 0.64 | 1.75 | 0.01 | 9.1 | 2.78 |
22 | still waters | 0.07 | 0 | 0.3 | 0 | 1.92 | 5.86 |
23 | ecological areas | 0.01 | 0 | 0.09 | 0 | 0.59 | 6.55 |
24 | various grounds | 0.03 | 0 | 0.15 | 0 | 0.95 | 5.62 |
Type of Land | Mean Values in Groups | p | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | ||
arable land | 37.15 | 22.72 | 42.37 | 66.49 | 9.48 | 0.0000 *** |
orchards | 0.17 | 0.01 | 0.04 | 0.25 | 0.11 | 0.1595 |
permanent meadows | 3.80 | 1.53 | 17.59 | 2.02 | 0.97 | 0.0011 ** |
permanent pastures | 11.61 | 15.01 | 11.82 | 7.37 | 3.29 | 0.0054 ** |
built-up agricultural land | 2.65 | 2.38 | 3.21 | 2.95 | 0.17 | 0.0213 * |
pond bottoms | 0.29 | 0.69 | 0.03 | 0.00 | 0.83 | 0.4231 |
ditch bottoms | 0.11 | 0.04 | 0.54 | 0.01 | 0.02 | 0.0024 ** |
agricultural land with tree stands and shrubs | 5.39 | 2.54 | 2.84 | 0.22 | 0.18 | 0.0017 ** |
wasteland | 0.16 | 0.14 | 0.17 | 0.22 | 0.00 | 0.0726 |
forests | 32.70 | 50.78 | 14.22 | 15.41 | 83.31 | 0.0000 *** |
other land with tree stands and shrubs | 0.07 | 0.02 | 0.07 | 0.00 | 0.00 | 0.4593 |
housing grounds | 0.82 | 0.20 | 1.58 | 0.25 | 0.00 | 0.0004 *** |
industrial grounds | 0.08 | 0.04 | 0.08 | 0.02 | 0.01 | 0.2120 |
other built-up grounds | 0.27 | 0.12 | 0.36 | 0.21 | 0.06 | 0.0284 * |
land under building development | 0.04 | 0.00 | 0.07 | 0.02 | 0.00 | 0.0074 ** |
leisure grounds | 0.08 | 0.07 | 0.37 | 0.03 | 0.00 | 0.0630 |
surface mining grounds | 0.05 | 0.10 | 0.01 | 0.00 | 0.00 | 0.3456 |
roads | 3.02 | 1.96 | 3.19 | 3.33 | 0.58 | 0.0036 ** |
other transport grounds | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.7989 |
grounds for the construction of roads | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.5901 |
water courses | 1.40 | 1.64 | 1.23 | 1.17 | 0.97 | 0.5501 |
still waters | 0.11 | 0.01 | 0.03 | 0.01 | 0.00 | 0.2356 |
ecological areas | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.8168 |
various grounds | 0.00 | 0.00 | 0.19 | 0.00 | 0.02 | 0.0293 * |
Type of Land | Indicators of Mean Values for Clusters | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
arable land | 0.97 | 0.60 | 1.11 | 1.74 | 0.25 |
orchards | 1.22 | 0.06 | 0.27 | 1.80 | 0.77 |
permanent meadows | 0.70 | 0.28 | 3.26 | 0.37 | 0.18 |
permanent pastures | 1.06 | 1.38 | 1.08 | 0.68 | 0.30 |
built-up agricultural land | 1.03 | 0.92 | 1.24 | 1.14 | 0.07 |
pond bottoms | 1.01 | 2.38 | 0.10 | 0.00 | 2.85 |
ditch bottoms | 0.71 | 0.29 | 3.48 | 0.09 | 0.13 |
agricultural land with tree stands and shrubs | 1.42 | 0.67 | 0.75 | 0.06 | 0.05 |
wasteland | 1.04 | 0.85 | 1.08 | 1.42 | 0.03 |
forests | 0.99 | 1.54 | 0.43 | 0.47 | 2.53 |
other land with tree stands and shrubs | 1.33 | 0.30 | 1.30 | 0.09 | 0.00 |
housing grounds | 1.07 | 0.26 | 2.08 | 0.32 | 0.00 |
industrial grounds | 1.25 | 0.60 | 1.23 | 0.29 | 0.12 |
other built-up grounds | 1.09 | 0.48 | 1.42 | 0.83 | 0.26 |
land under building development | 1.08 | 0.05 | 1.99 | 0.55 | 0.08 |
leisure grounds | 0.69 | 0.59 | 3.29 | 0.27 | 0.00 |
surface mining grounds | 1.28 | 2.49 | 0.28 | 0.00 | 0.00 |
roads | 1.07 | 0.70 | 1.13 | 1.18 | 0.21 |
other transport grounds | 1.37 | 0.00 | 1.39 | 0.00 | 0.00 |
grounds for the construction of roads | 0.49 | 0.00 | 2.79 | 2.46 | 0.00 |
water courses | 1.05 | 1.23 | 0.92 | 0.88 | 0.72 |
still waters | 1.61 | 0.09 | 0.42 | 0.10 | 0.00 |
ecological areas | 1.76 | 0.00 | 0.00 | 0.00 | 0.00 |
various grounds | 0.11 | 0.00 | 5.66 | 0.00 | 0.53 |
Type of Land | Mean Values in Clusters | p | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | ||
arable land | 29.89 | 33.74 | 51.16 | 41.14 | 9.48 | 0.0000 *** |
orchards | 0.08 | 0.08 | 0.26 | 0.04 | 0.11 | 0.2726 |
permanent meadows | 2.79 | 3.99 | 3.72 | 19.50 | 0.97 | 0.0015 ** |
permanent pastures | 14.84 | 5.55 | 9.69 | 11.65 | 3.29 | 0.0002 *** |
built-up agricultural land | 2.58 | 2.02 | 2.99 | 3.08 | 0.17 | 0.0039 ** |
pond bottoms | 0.34 | 0.67 | 0.14 | 0.03 | 0.83 | 0.8867 |
ditch bottoms | 0.08 | 0.12 | 0.09 | 0.61 | 0.02 | 0.0091 ** |
agricultural land with tree stands and shrubs | 4.59 | 14.69 | 1.25 | 3.05 | 0.18 | 0.0000 *** |
wasteland | 0.10 | 0.27 | 0.22 | 0.15 | 0.00 | 0.0236 * |
forests | 39.55 | 31.57 | 24.71 | 13.71 | 83.31 | 0.0000 *** |
other land with tree stands and shrubs | 0.06 | 0.00 | 0.07 | 0.08 | 0.00 | 0.3226 |
housing grounds | 0.55 | 0.70 | 0.78 | 1.67 | 0.00 | 0.0031 ** |
industrial grounds | 0.03 | 0.02 | 0.12 | 0.05 | 0.01 | 0.4700 |
other built-up grounds | 0.18 | 0.48 | 0.27 | 0.31 | 0.06 | 0.0135 * |
land under building development | 0.02 | 0.03 | 0.04 | 0.07 | 0.00 | 0.0155 * |
leisure grounds | 0.09 | 0.10 | 0.07 | 0.34 | 0.00 | 0.0959 |
surface mining grounds | 0.03 | 0.01 | 0.08 | 0.00 | 0.00 | 0.5921 |
roads | 2.89 | 2.96 | 3.08 | 2.96 | 0.58 | 0.0629 |
other transport grounds | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0462 * |
grounds for the construction of roads | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.8273 |
water courses | 1.29 | 2.86 | 1.08 | 1.31 | 0.97 | 0.4555 |
still waters | 0.01 | 0.15 | 0.13 | 0.01 | 0.00 | 0.3341 |
ecological areas | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.9304 |
various grounds | 0.01 | 0.00 | 0.00 | 0.22 | 0.02 | 0.1246 |
Type of Land | Indicators of Mean Values for Clusters | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
arable land | 0.78 | 0.89 | 1.34 | 1.08 | 0.25 |
orchards | 0.58 | 0.53 | 1.82 | 0.28 | 0.77 |
permanent meadows | 0.52 | 0.74 | 0.69 | 3.62 | 0.18 |
permanent pastures | 1.36 | 0.51 | 0.89 | 1.07 | 0.30 |
built-up agricultural land | 1.00 | 0.78 | 1.16 | 1.19 | 0.07 |
pond bottoms | 1.19 | 2.32 | 0.49 | 0.10 | 2.85 |
ditch bottoms | 0.49 | 0.75 | 0.60 | 3.95 | 0.13 |
agricultural land with tree stands and shrubs | 1.21 | 3.89 | 0.33 | 0.81 | 0.05 |
wasteland | 0.64 | 1.69 | 1.36 | 0.97 | 0.03 |
forests | 1.20 | 0.96 | 0.75 | 0.42 | 2.53 |
other land with tree stands and shrubs | 1.02 | 0.00 | 1.26 | 1.43 | 0.00 |
housing grounds | 0.72 | 0.91 | 1.02 | 2.19 | 0.00 |
industrial grounds | 0.52 | 0.36 | 1.85 | 0.81 | 0.12 |
other built-up grounds | 0.71 | 1.93 | 1.09 | 1.24 | 0.26 |
land under building development | 0.56 | 0.79 | 1.21 | 2.13 | 0.08 |
leisure grounds | 0.80 | 0.89 | 0.63 | 3.06 | 0.00 |
surface mining grounds | 0.69 | 0.26 | 2.04 | 0.00 | 0.00 |
roads | 1.03 | 1.05 | 1.09 | 1.05 | 0.21 |
other transport grounds | 0.00 | 0.99 | 2.50 | 0.00 | 0.00 |
grounds for the construction of roads | 0.80 | 0.00 | 1.92 | 0.22 | 0.00 |
water courses | 0.97 | 2.13 | 0.81 | 0.98 | 0.72 |
still waters | 0.12 | 2.27 | 2.00 | 0.19 | 0.00 |
ecological areas | 0.24 | 0.00 | 2.52 | 0.00 | 0.00 |
various grounds | 0.17 | 0.02 | 0.02 | 6.59 | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik-Leń, J.; Leń, P. Evaluation of the Symmetry of Statistical Methods Applied for the Identification of Agricultural Areas. Land 2021, 10, 664. https://doi.org/10.3390/land10070664
Wójcik-Leń J, Leń P. Evaluation of the Symmetry of Statistical Methods Applied for the Identification of Agricultural Areas. Land. 2021; 10(7):664. https://doi.org/10.3390/land10070664
Chicago/Turabian StyleWójcik-Leń, Justyna, and Przemysław Leń. 2021. "Evaluation of the Symmetry of Statistical Methods Applied for the Identification of Agricultural Areas" Land 10, no. 7: 664. https://doi.org/10.3390/land10070664
APA StyleWójcik-Leń, J., & Leń, P. (2021). Evaluation of the Symmetry of Statistical Methods Applied for the Identification of Agricultural Areas. Land, 10(7), 664. https://doi.org/10.3390/land10070664