Evaluation of the Symmetry of Statistical Methods Applied for the Identification of Agricultural Areas
Abstract
1. Introduction
2. Materials
3. Methods
4. Results
5. Discussion and Conclusions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gurtin, M.E.; MacCamy, R.C. Non-linear age-dependent population dynamics. Arch. Ration. Mech. Anal. 1974, 54, 281–300. [Google Scholar] [CrossRef]
- Guckenheimer, J.; Oster, G.; Ipaktchi, A. The dynamics of density dependent population models. J. Math. Biol. 1977, 4, 101–147. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Ehrlich, A.H. The Population Explosion; Simon and Shuster: New York, NY, USA, 1990. [Google Scholar]
- Ranta, E.; Kaitala, V.; Lindström, J.; Linden, H. Synchrony in population dynamics. Proc. R. Soc. Lond. B Biol. Sci. 1995, 262, 113–118. [Google Scholar]
- Bjørnstad, O.N.; Ims, R.A.; Lambin, X. Spatial population dynamics: Analyzing patterns and processes of population synchrony. Trends Ecol. Evol. 1999, 14, 427–432. [Google Scholar] [CrossRef]
- Gignoux, C.R.; Henn, B.M.; Mountain, J.L. Rapid, global demographic expansions after the origins of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 6044–6049. [Google Scholar] [CrossRef]
- Linnér, H.; Messing, I. Agricultural land needs protection. Acta Agric. Scand. Sect. B Soil Plant Sci. 2012, 62, 706–710. [Google Scholar] [CrossRef]
- Kurowska, K.; Rudnicki, R. Changes in Land Use in Poland–Comparative Study of Period 2002–2010. 2017. Available online: http://conf.rd.asu.lt/index.php/rd/article/view/155 (accessed on 10 May 2021).
- Mondal, P.P.; Zhang, Y. Research Progress on Changes in Land Use and Land Cover in the Western Himalayas (India) and Effects on Ecosystem Services. Sustainability 2018, 10, 4504. [Google Scholar] [CrossRef]
- Parry, J.A.; Ganaie, S.A.; Bhat, M.S. GIS based land suitability analysis using AHP model for urban services planning in Srinagar and Jammu urban centers of J&K, India. J. Urban Manag. 2018, 7, 46–56. [Google Scholar] [CrossRef]
- Zambon, I.; Rontos, K.; Serra, P.; Colantoni, A.; Salvati, L. Population Dynamics in Southern Europe: A Local-Scale Analysis, 1961–2011. Sustainability 2019, 11, 109. [Google Scholar] [CrossRef]
- Bradbury, I.; Kirkby, R.; Guanbao, S. Development and environment: The case of rural industrialization and small-town growth in China. Ambio 1996, 25, 204–209. [Google Scholar]
- Xiu-Bin, Z.H.A.O.; Yu-Luan, L.I. Forest transition, agricultural land marginalization and ecological restoration. China Popul. Resour. Environ. 2011, 21, 91–95. [Google Scholar]
- Munsi, M.; Areendran, G.; Joshi, P.K. Modeling spatio-temporal change patterns of forest cover: A case study from the Himalayan foothills (India). Reg. Environ. Chang. 2012, 12, 619–632. [Google Scholar] [CrossRef]
- Kanianska, R.; Kizeková, M.; Nováček, J.; Zeman, M. Land-use and land-cover changes in rural areas during different political systems: A case study of Slovakia from 1782 to 2006. Land Use Policy 2014, 36, 554–566. [Google Scholar] [CrossRef]
- Turner, M.G.; Ruscher, C.L. Changes in landscape patterns in Georgia, USA. Landsc. Ecol. 1988, 1, 241–251. [Google Scholar] [CrossRef]
- Moreira, F.; Godinho-Ferreira, P.; Rego, F.C.; Bunting, S. Landscape changes and breeding bird assemblages in northwestern Portugal: The role of fire. Landsc. Ecol. 2001, 16, 175–187. [Google Scholar] [CrossRef]
- Kozak, J. Forest Cover Change in the Western Carpathians in the Past 180 Years. Mt. Res. Dev. 2003, 23, 369–375. [Google Scholar] [CrossRef]
- Junhui, L.; Jixi, G. Changes of land use and landscape pattern in the boundary change areas in farming-pastoral ecotone of northern China. Trans. Chin. Soc. Agric. Eng. 2008, 11. [Google Scholar] [CrossRef]
- Regos, A.; Ninyerola, M.; Moré, G.; Pons, X. Linking land cover dynamics with driving forces in mountain landscape of the Northwestern Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 1–14. [Google Scholar] [CrossRef]
- Clavero, M.; Villero, D.; Brotons, L. Climate Change or Land Use Dynamics: Do We Know What Climate Change Indicators Indicate? PLoS ONE 2011, 6, e18581. [Google Scholar] [CrossRef]
- Parcerisas, L.; Marull, J.; Pino, J.; Tello, E.; Coll, F.; Basnou, C. Land use changes, landscape ecology and their socioeconomic driving forces in the Spanish Mediterranean coast (El Maresme County, 1850–2005). Environ. Sci. Policy 2012, 23, 120–132. [Google Scholar] [CrossRef]
- Meneses, B.M.; Reis, E.; Pereira, S.; Vale, M.J.; Reis, R. Understanding Driving Forces and Implications Associated with the Land Use and Land Cover Changes in Portugal. Sustainability 2017, 9, 351. [Google Scholar] [CrossRef]
- Janus, J.; Taszakowski, J. Spatial differentiation of indicators presenting selected barriers in the productivity of agricultural areas: A regional approach to setting land consolidation priorities. Ecol. Indic. 2018, 93, 718–729. [Google Scholar] [CrossRef]
- Gzyl, J. Soil protection in Central and Eastern Europe. J. Geochem. Explor. 1999, 66, 333–337. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R.; Flanagan, D.; Tejero, I.G.; Fernández, J.L.M. Sustainable Land Use and Agricultural Soil; Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation; Springer: Berlin/Heidelberg, Germany, 2010; pp. 107–192. [Google Scholar]
- Louwagie, G.; Gay, S.H.; Sammeth, F.; Ratinger, T. The potential of European Union policies to address soil degradation in agriculture. Land Degrad. Dev. 2010, 22, 5–17. [Google Scholar] [CrossRef]
- Arredondo-Ruiz, F.; García-Montero, L.; Valverde-Asenjo, I.; Menta, C. Soil-Quality Indicators for Forest Management. Quant. Tech. Particip. For. Manag. 2016, 179–240. [Google Scholar] [CrossRef]
- Gibbard, S.; Caldeira, K.; Bala, G.; Phillips, T.J.; Wickett, M. Climate effects of global land cover change. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T.J.; Lobell, D.; Delire, C.; Mirin, A. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 2007, 104, 6550–6555. [Google Scholar] [CrossRef]
- Paeth, H.; Born, K.; Girmes, R.; Podzun, R.; Jacob, D. Regional Climate Change in Tropical and Northern Africa due to Greenhouse Forcing and Land Use Changes. J. Clim. 2009, 22, 114–132. [Google Scholar] [CrossRef]
- Fall, S.; Niyogi, D.; Gluhovsky, A.; Pielke Sr, R.A.; Kalnay, E.; Rochon, G. Impacts of land use land cover on temperature trends over the continental United States: Assessment using the North American Regional Reanalysis. Int. J. Climatol. 2010, 30, 1980–1993. [Google Scholar] [CrossRef]
- Pielke Sr, R.A.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, F. Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 828–850. [Google Scholar] [CrossRef]
- Gaitanis, A.; Kalogeropoulos, K.; Detsis, V.; Chalkias, C. Monitoring 60 Years of Land Cover Change in the Marathon Area, Greece. Land 2015, 4, 337–354. [Google Scholar] [CrossRef]
- Ożóg, K. The use of unmanned aerial vehicles for the assessment of land boundaries accuracy. J. Water Land Dev. 2020, 45, 94–99. [Google Scholar]
- Kurowska, K.; Kryszk, H.; Marks-Bielska, R.; Mika, M.; Leń, P. Conversion of agricultural and forest land to other purposes in the context of land protection: Evidence from Polish experience. Land Use Policy 2020, 95, 104614. [Google Scholar] [CrossRef]
- Janus, J.; Markuszewska, I. Land consolidation—A great need to improve effectiveness. A case study from Poland. Land Use Policy 2017, 65, 143–153. [Google Scholar] [CrossRef]
- Leń, P. An algorithm for selecting groups of factors for prioritization of land consolidation in rural areas. Comput. Electron. Agric. 2018, 144, 216–221. [Google Scholar] [CrossRef]
- Stańczuk-Gałwiaczek, M.; Sobolewska-Mikulska, K.; Ritzema, H.; Van Loon-Steensma, J.M. Integration of water management and land consolidation in rural areas to adapt to climate change: Experiences from Poland and the Netherlands. Land Use Policy 2018, 77, 498–511. [Google Scholar] [CrossRef]
- Janus, J.; Markuszewska, I. Forty years later: Assessment of the long-lasting effectiveness of land consolidation projects. Land Use Policy 2019, 83, 22–31. [Google Scholar] [CrossRef]
- Wójcik-Leń, J.; Leń, P.; Mika, M.; Kryszk, H.; Kotlarz, P. Studies regarding correct selection of statistical methods for the needs of increasing the efficiency of identification of land for consolidation—A case study in Poland. Land Use Policy 2019, 87, 104064. [Google Scholar] [CrossRef]
- Muchová, Z. Assessment of land ownership fragmentation by multiple criteria. Surv. Rev. 2017, 51, 265–272. [Google Scholar] [CrossRef]
- Janus, J. A new approach to calculating distances to parcels: A way to increase the accuracy of farm efficiency analyses and the assessment of land consolidation projects. Comput. Electron. Agric. 2020, 175, 105512. [Google Scholar] [CrossRef]
- Wójcik-Leń, J.; Sobolewska-Mikulska, K. Specific features of development of selected agricultural problematic areas in the land consolidation process. J. Water Land Dev. 2017, 34, 249–258. [Google Scholar] [CrossRef][Green Version]
- Wójcik-Leń, J.; Sobolewska-Mikulska, K. Issues related to marginal lands with reference to selected agricultural problematic areas. J. Water Land Dev. 2017, 35, 265–273. [Google Scholar] [CrossRef]
- Wójcik-Leń, J.; Leń, P.; Sobolewska-Mikulska, K. The proposed algorithm for identifying agricultural problem areas for the needs of their reasonable management under land consolidation works. Comput. Electron. Agric. 2018, 152, 333–339. [Google Scholar] [CrossRef]
- Wójcik-Leń, J.; Sobolewska-Mikulska, K.; Sajnóg, N.; Leń, P. The idea of rational management of problematic agricultural areas in the course of land consolidation. Land Use Policy 2018, 78, 36–45. [Google Scholar] [CrossRef]
- Jadczyszyn, J. Regional Differentiation of Problem Areas of Agriculture in Poland; Instrukcja Upowszechnieniowa; IUNG-PIB: Puławy, Poland, 2009; 80p, Available online: http://opr.iung.pulawy.pl/publikacje/IU-163.pdf (accessed on 15 April 2021).
- Bis, K. Agricultural problem areas with particular consideration of marginal soils. In Problem Areas in Agriculture in Poland with Particular Consideration of the Lublin Region; Jedut, R., Ed.; UMCS-PTG: Lublin, Poland, 1990; pp. 11–17. [Google Scholar]
- Noga, K. Topology of Mountain Villages for the Needs of Rural Management Works; Land Surveying, Scientific Papers; University of Agriculture: Kraków, Poland, 1979; Volume 6, pp. 17–29. [Google Scholar]
- Liczkowski, J. Delimitation of agricultural intensity regions using the average differences method. Agric. Econ. 1972, 2, 28–37. [Google Scholar]
- Fajferek, A. Economic Region and Methods of Regional Analysis; Dissertations Series; ZN WSE: Kraków, Poland, 1964; Volume 6, pp. 44–59. [Google Scholar]
- Steczkowski, J. Principles and Methods of Identifying Agricultural Production Regions; PWRiL: Warsaw, Poland, 1966. [Google Scholar]
- Domański, S. Typological procedure in economic and agricultural surveys. Geogr. Rev. 1969, XVI Pt 1, 55–68. [Google Scholar]
- Król, B. Taxonomic Method of Smallest Differences Applied in Classification of Farms; Scientific Papers of the School of Agriculture in Kraków, Series Economics; University of Agriculture: Punjab, Pakistan, 1969; Part 5. [Google Scholar]
- Noga, K. Method of Grouping the Spatial Structure of Mountain Villages. Land Surv. 1988, 10, 221. [Google Scholar]
- Stręk, Ż.; Noga, K. Method of Delimiting the Spatial Structure of Villages for the Purposes of Land Consolidation and Exchange. Remote Sens. 2019, 11, 1268. [Google Scholar] [CrossRef]
- Shelia, V.; Hoogenboom, G. A new approach to clustering soil profile data using the modified distance matrix. Comput. Electron. Agric. 2020, 176, 105631. [Google Scholar] [CrossRef]
- Abu Bakar, M.A.; Ariff, N.M.; Jemain, A.A.; Nadzir, M.S.M. Cluster Analysis of Hourly Rainfalls Using Storm Indices in Peninsular Malaysia. J. Hydrol. Eng. 2020, 25, 05020011. [Google Scholar] [CrossRef]
- David, J.; De Pessemier, T.; Dekoninck, L.; De Coensel, B.; Joseph, W.; Botteldooren, D.; Martens, L. Detection of road pavement quality using statistical clustering methods. J. Intell. Inf. Syst. 2019, 54, 483–499. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Marek, T. Analiza Skupień w Badaniach Empirycznych: Metody SAH [Cluster Analysis in Empirical Research SAHN Methods]; PWN: Warszawa, Poland, 1989; p. 121. [Google Scholar]
- Kurowska, K.; Kryszk, H.; Marks-Bielska, R.; Kietlinska, E. Spatial Analysis of Afforestation in Poland under Rural Development Programme 2007–2013. 2014. Available online: https://llufb.llu.lv/conference/Research-for-Rural-Development/2014/LatviaResearchRuralDevel20th_volume2-14-21.pdf (accessed on 7 April 2021).
- Kurowska, K.; Kryszk, H. Profitability of the farmland afforestation within the Rural Development Programme. Sylwan 2017, 161, 1035–1045. [Google Scholar]
- Leń, P. Kierunki Zmian W Strukturze Użytków Gruntowych W Latach 1872–2008 w Powiecie Brzozów [Areas of Change in the Pattern of Ground Water Use in the Period 1872–2008 in Rural District of Brzozów]. 2009. Infrastructure and Ecology of Rural Areas, Nr 4/2009. pp. 167–175. Available online: http://infraeco.pl/pl/art/a_15494.htm?plik=577 (accessed on 7 April 2021).
- Leń, P. Podział Przestrzeni Rolniczej Powiatu Brzozowskiego Pod Względem Wartości Produkcyjnej Gruntów Ornych Oraz Użytków Zielonych [Break Down of County Agricultural Space Brzozowski in Terms of Production Value of Cropland and Grassland]. 2010. Infrastructure and Ecology of Rural Areas, Nr 12/2010. pp. 37–44. Available online: http://infraeco.pl/pl/art/a_16166.htm?plik=928 (accessed on 7 April 2021).
No. | Indicators | Me | S | min | max | A | |
---|---|---|---|---|---|---|---|
1 | arable land | 38.12 | 37.64 | 14.8 | 2.66 | 71.15 | 0.15 |
2 | orchards | 0.14 | 0.03 | 0.23 | 0 | 1.08 | 2.42 |
3 | fields | 5.39 | 2.8 | 7.17 | 0.02 | 33.94 | 2.54 |
4 | pastures | 10.9 | 11.09 | 5.22 | 0.1 | 29.43 | 0.79 |
5 | built-up agricultural land | 2.58 | 2.34 | 1.24 | 0 | 6.29 | 0.5 |
6 | pond bottoms | 0.29 | 0 | 0.77 | 0 | 2.75 | 2.56 |
7 | ditch bottoms | 0.15 | 0.04 | 0.27 | 0 | 1.1 | 2.16 |
8 | agricultural land with tree stands and shrubs | 3.78 | 2.4 | 4.43 | 0.07 | 18.32 | 1.75 |
9 | wasteland | 0.16 | 0.11 | 0.16 | 0 | 0.78 | 1.79 |
10 | forests | 32.89 | 30.45 | 18.21 | 6.49 | 96.85 | 1.52 |
11 | other land with tree stands and shrubs | 0.06 | 0 | 0.15 | 0 | 0.78 | 3.62 |
12 | housing grounds | 0.76 | 0.38 | 1 | 0 | 5.06 | 2.45 |
13 | industrial grounds | 0.07 | 0.01 | 0.19 | 0 | 1.21 | 5.39 |
14 | other built-up grounds | 0.25 | 0.2 | 0.18 | 0.01 | 0.64 | 0.69 |
15 | land under building development | 0.03 | 0.02 | 0.04 | 0 | 0.17 | 1.59 |
16 | leisure grounds | 0.11 | 0.05 | 0.23 | 0 | 1.39 | 4.55 |
17 | surface mining grounds | 0.04 | 0 | 0.18 | 0 | 1.11 | 5.56 |
18 | roads | 2.82 | 2.87 | 1.01 | 0.22 | 5.42 | 0.22 |
19 | other transport grounds | 0 | 0 | 0 | 0 | 0.02 | 5.79 |
20 | grounds for the construction of roads | 0 | 0 | 0.01 | 0 | 0.04 | 3.99 |
21 | water courses | 1.34 | 0.64 | 1.75 | 0.01 | 9.1 | 2.78 |
22 | still waters | 0.07 | 0 | 0.3 | 0 | 1.92 | 5.86 |
23 | ecological areas | 0.01 | 0 | 0.09 | 0 | 0.59 | 6.55 |
24 | various grounds | 0.03 | 0 | 0.15 | 0 | 0.95 | 5.62 |
Type of Land | Mean Values in Groups | p | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | ||
arable land | 37.15 | 22.72 | 42.37 | 66.49 | 9.48 | 0.0000 *** |
orchards | 0.17 | 0.01 | 0.04 | 0.25 | 0.11 | 0.1595 |
permanent meadows | 3.80 | 1.53 | 17.59 | 2.02 | 0.97 | 0.0011 ** |
permanent pastures | 11.61 | 15.01 | 11.82 | 7.37 | 3.29 | 0.0054 ** |
built-up agricultural land | 2.65 | 2.38 | 3.21 | 2.95 | 0.17 | 0.0213 * |
pond bottoms | 0.29 | 0.69 | 0.03 | 0.00 | 0.83 | 0.4231 |
ditch bottoms | 0.11 | 0.04 | 0.54 | 0.01 | 0.02 | 0.0024 ** |
agricultural land with tree stands and shrubs | 5.39 | 2.54 | 2.84 | 0.22 | 0.18 | 0.0017 ** |
wasteland | 0.16 | 0.14 | 0.17 | 0.22 | 0.00 | 0.0726 |
forests | 32.70 | 50.78 | 14.22 | 15.41 | 83.31 | 0.0000 *** |
other land with tree stands and shrubs | 0.07 | 0.02 | 0.07 | 0.00 | 0.00 | 0.4593 |
housing grounds | 0.82 | 0.20 | 1.58 | 0.25 | 0.00 | 0.0004 *** |
industrial grounds | 0.08 | 0.04 | 0.08 | 0.02 | 0.01 | 0.2120 |
other built-up grounds | 0.27 | 0.12 | 0.36 | 0.21 | 0.06 | 0.0284 * |
land under building development | 0.04 | 0.00 | 0.07 | 0.02 | 0.00 | 0.0074 ** |
leisure grounds | 0.08 | 0.07 | 0.37 | 0.03 | 0.00 | 0.0630 |
surface mining grounds | 0.05 | 0.10 | 0.01 | 0.00 | 0.00 | 0.3456 |
roads | 3.02 | 1.96 | 3.19 | 3.33 | 0.58 | 0.0036 ** |
other transport grounds | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.7989 |
grounds for the construction of roads | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.5901 |
water courses | 1.40 | 1.64 | 1.23 | 1.17 | 0.97 | 0.5501 |
still waters | 0.11 | 0.01 | 0.03 | 0.01 | 0.00 | 0.2356 |
ecological areas | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.8168 |
various grounds | 0.00 | 0.00 | 0.19 | 0.00 | 0.02 | 0.0293 * |
Type of Land | Indicators of Mean Values for Clusters | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
arable land | 0.97 | 0.60 | 1.11 | 1.74 | 0.25 |
orchards | 1.22 | 0.06 | 0.27 | 1.80 | 0.77 |
permanent meadows | 0.70 | 0.28 | 3.26 | 0.37 | 0.18 |
permanent pastures | 1.06 | 1.38 | 1.08 | 0.68 | 0.30 |
built-up agricultural land | 1.03 | 0.92 | 1.24 | 1.14 | 0.07 |
pond bottoms | 1.01 | 2.38 | 0.10 | 0.00 | 2.85 |
ditch bottoms | 0.71 | 0.29 | 3.48 | 0.09 | 0.13 |
agricultural land with tree stands and shrubs | 1.42 | 0.67 | 0.75 | 0.06 | 0.05 |
wasteland | 1.04 | 0.85 | 1.08 | 1.42 | 0.03 |
forests | 0.99 | 1.54 | 0.43 | 0.47 | 2.53 |
other land with tree stands and shrubs | 1.33 | 0.30 | 1.30 | 0.09 | 0.00 |
housing grounds | 1.07 | 0.26 | 2.08 | 0.32 | 0.00 |
industrial grounds | 1.25 | 0.60 | 1.23 | 0.29 | 0.12 |
other built-up grounds | 1.09 | 0.48 | 1.42 | 0.83 | 0.26 |
land under building development | 1.08 | 0.05 | 1.99 | 0.55 | 0.08 |
leisure grounds | 0.69 | 0.59 | 3.29 | 0.27 | 0.00 |
surface mining grounds | 1.28 | 2.49 | 0.28 | 0.00 | 0.00 |
roads | 1.07 | 0.70 | 1.13 | 1.18 | 0.21 |
other transport grounds | 1.37 | 0.00 | 1.39 | 0.00 | 0.00 |
grounds for the construction of roads | 0.49 | 0.00 | 2.79 | 2.46 | 0.00 |
water courses | 1.05 | 1.23 | 0.92 | 0.88 | 0.72 |
still waters | 1.61 | 0.09 | 0.42 | 0.10 | 0.00 |
ecological areas | 1.76 | 0.00 | 0.00 | 0.00 | 0.00 |
various grounds | 0.11 | 0.00 | 5.66 | 0.00 | 0.53 |
Type of Land | Mean Values in Clusters | p | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | ||
arable land | 29.89 | 33.74 | 51.16 | 41.14 | 9.48 | 0.0000 *** |
orchards | 0.08 | 0.08 | 0.26 | 0.04 | 0.11 | 0.2726 |
permanent meadows | 2.79 | 3.99 | 3.72 | 19.50 | 0.97 | 0.0015 ** |
permanent pastures | 14.84 | 5.55 | 9.69 | 11.65 | 3.29 | 0.0002 *** |
built-up agricultural land | 2.58 | 2.02 | 2.99 | 3.08 | 0.17 | 0.0039 ** |
pond bottoms | 0.34 | 0.67 | 0.14 | 0.03 | 0.83 | 0.8867 |
ditch bottoms | 0.08 | 0.12 | 0.09 | 0.61 | 0.02 | 0.0091 ** |
agricultural land with tree stands and shrubs | 4.59 | 14.69 | 1.25 | 3.05 | 0.18 | 0.0000 *** |
wasteland | 0.10 | 0.27 | 0.22 | 0.15 | 0.00 | 0.0236 * |
forests | 39.55 | 31.57 | 24.71 | 13.71 | 83.31 | 0.0000 *** |
other land with tree stands and shrubs | 0.06 | 0.00 | 0.07 | 0.08 | 0.00 | 0.3226 |
housing grounds | 0.55 | 0.70 | 0.78 | 1.67 | 0.00 | 0.0031 ** |
industrial grounds | 0.03 | 0.02 | 0.12 | 0.05 | 0.01 | 0.4700 |
other built-up grounds | 0.18 | 0.48 | 0.27 | 0.31 | 0.06 | 0.0135 * |
land under building development | 0.02 | 0.03 | 0.04 | 0.07 | 0.00 | 0.0155 * |
leisure grounds | 0.09 | 0.10 | 0.07 | 0.34 | 0.00 | 0.0959 |
surface mining grounds | 0.03 | 0.01 | 0.08 | 0.00 | 0.00 | 0.5921 |
roads | 2.89 | 2.96 | 3.08 | 2.96 | 0.58 | 0.0629 |
other transport grounds | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0462 * |
grounds for the construction of roads | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.8273 |
water courses | 1.29 | 2.86 | 1.08 | 1.31 | 0.97 | 0.4555 |
still waters | 0.01 | 0.15 | 0.13 | 0.01 | 0.00 | 0.3341 |
ecological areas | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.9304 |
various grounds | 0.01 | 0.00 | 0.00 | 0.22 | 0.02 | 0.1246 |
Type of Land | Indicators of Mean Values for Clusters | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
arable land | 0.78 | 0.89 | 1.34 | 1.08 | 0.25 |
orchards | 0.58 | 0.53 | 1.82 | 0.28 | 0.77 |
permanent meadows | 0.52 | 0.74 | 0.69 | 3.62 | 0.18 |
permanent pastures | 1.36 | 0.51 | 0.89 | 1.07 | 0.30 |
built-up agricultural land | 1.00 | 0.78 | 1.16 | 1.19 | 0.07 |
pond bottoms | 1.19 | 2.32 | 0.49 | 0.10 | 2.85 |
ditch bottoms | 0.49 | 0.75 | 0.60 | 3.95 | 0.13 |
agricultural land with tree stands and shrubs | 1.21 | 3.89 | 0.33 | 0.81 | 0.05 |
wasteland | 0.64 | 1.69 | 1.36 | 0.97 | 0.03 |
forests | 1.20 | 0.96 | 0.75 | 0.42 | 2.53 |
other land with tree stands and shrubs | 1.02 | 0.00 | 1.26 | 1.43 | 0.00 |
housing grounds | 0.72 | 0.91 | 1.02 | 2.19 | 0.00 |
industrial grounds | 0.52 | 0.36 | 1.85 | 0.81 | 0.12 |
other built-up grounds | 0.71 | 1.93 | 1.09 | 1.24 | 0.26 |
land under building development | 0.56 | 0.79 | 1.21 | 2.13 | 0.08 |
leisure grounds | 0.80 | 0.89 | 0.63 | 3.06 | 0.00 |
surface mining grounds | 0.69 | 0.26 | 2.04 | 0.00 | 0.00 |
roads | 1.03 | 1.05 | 1.09 | 1.05 | 0.21 |
other transport grounds | 0.00 | 0.99 | 2.50 | 0.00 | 0.00 |
grounds for the construction of roads | 0.80 | 0.00 | 1.92 | 0.22 | 0.00 |
water courses | 0.97 | 2.13 | 0.81 | 0.98 | 0.72 |
still waters | 0.12 | 2.27 | 2.00 | 0.19 | 0.00 |
ecological areas | 0.24 | 0.00 | 2.52 | 0.00 | 0.00 |
various grounds | 0.17 | 0.02 | 0.02 | 6.59 | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik-Leń, J.; Leń, P. Evaluation of the Symmetry of Statistical Methods Applied for the Identification of Agricultural Areas. Land 2021, 10, 664. https://doi.org/10.3390/land10070664
Wójcik-Leń J, Leń P. Evaluation of the Symmetry of Statistical Methods Applied for the Identification of Agricultural Areas. Land. 2021; 10(7):664. https://doi.org/10.3390/land10070664
Chicago/Turabian StyleWójcik-Leń, Justyna, and Przemysław Leń. 2021. "Evaluation of the Symmetry of Statistical Methods Applied for the Identification of Agricultural Areas" Land 10, no. 7: 664. https://doi.org/10.3390/land10070664
APA StyleWójcik-Leń, J., & Leń, P. (2021). Evaluation of the Symmetry of Statistical Methods Applied for the Identification of Agricultural Areas. Land, 10(7), 664. https://doi.org/10.3390/land10070664