Responses of Soil Infiltration to Water Retention Characteristics, Initial Conditions, and Boundary Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Data Resources
2.2. The Jensen Method
2.3. Soil Water Infiltration Experiment
2.4. Numerical Method and Scenario Simulation
2.5. Evaluation Criteria and Contribution Rate Analysis
3. Results and Discussion
3.1. Test of the Jensen Method and Rosetta Software for Simulating Soil Water Infiltration
3.2. Coupling Influences of the SWRC Estimation, Initial Water Content, and Upper Boundary Condition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herrada, M.A.; Gutiérrez-Martin, A.; Montanero, J.M. Modeling infiltration rates in a saturated/unsaturated soil under the free draining condition. J. Hydrol. 2014, 515, 10–15. [Google Scholar] [CrossRef]
- Lepeška, T.; Wojkowski, J.; Wałęga, A.; Młyński, D.; Radecki-Pawlik, A.; Olah, B. Urbanization—Its hidden impact on water losses: Prądnik River Basin, Lesser Poland. Water 2020, 12, 1958. [Google Scholar] [CrossRef]
- Su, W.; Gu, C.; Yang, G.; Chen, S.; Zhen, F. Measuring the impact of urban sprawl on natural landscape pattern of the Western Taihu Lake watershed, China. Landsc. Urban Plan. 2010, 95, 61–67. [Google Scholar] [CrossRef]
- Su, W.; Ma, L.; Chen, S.; Yang, G. Conflict analysis and system optimization of urban ecological space. J. Nat. Resour. 2020, 35, 601–613. [Google Scholar]
- Castellini, M.; Stellacci, A.M.; Sisto, D.; Iovino, M. The mechanical impact of water affected the soil physical quality of a loam soil under minimum tillage and no-tillage: An assessment using Beerkan multi-height runs and BEST-procedure. Land 2021, 10, 195. [Google Scholar] [CrossRef]
- Suprayogo, D.; van Noordwijk, M.; Hairiah, K.; Meilasari, N.; Rabbani, A.L.; Ishaq, R.M.; Widiando, W. Infiltration-friendly agroforestry land uses on Volcanic slopes in the Rejoso Watershed, East Java, Indonesia. Land 2020, 9, 240. [Google Scholar] [CrossRef]
- Ross, P.J. Efficient numerical methods for infiltration using Richards’ equation. Water Resour. Res. 1990, 26, 279–290. [Google Scholar] [CrossRef]
- Green, W.H.; Ampt, G.A. Studies on soil physics: 1. Flow of air and water through soils. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar]
- Philip, J.R. The theory of infiltration: 1, The infiltration equation and its solution. Soil Sci. 1957, 83, 345–357. [Google Scholar] [CrossRef]
- Horton, R.E. The role of infiltration in the hydrologic cycle. Trans. Am. Geophys. Union 1933, 14, 446–460. [Google Scholar] [CrossRef]
- Botros, F.E.; Onsoy, Y.S.; Ginn, T.R.; Harter, T. Richards equation-based modeling to estimate flow and nitrate transport in a deep Alluvial vadose zone. Vadose Zone J. 2012, 11. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.M.; Ni, C.F.; Hung, P.F. Assessment of three infiltration formulas based on model fitting and Richards equation. J. Hydrol. Eng. 2002, 7, 373–379. [Google Scholar] [CrossRef]
- Smith, R.E. Infiltration Theory for Hydrologic Application; American Geophysical Union: Washington, DC, USA, 2002; Volume 15. [Google Scholar]
- Su, N. Theory of infiltration: Infiltration into swelling soils in a material coordinate. J. Hydrol. 2010, 395, 103–108. [Google Scholar] [CrossRef]
- Gong, Y.; Tian, R.; Li, H. Coupling effects of surface charges, adsorbed counterions and particle-size distribution on soil water infiltration and transport. Eur. J. Soil Sci. 2018, 69, 1008–1017. [Google Scholar] [CrossRef]
- Liao, K.; Zhou, Z.; Li, Y.; Lai, X.; Zhu, Q.; Shan, N. Comparison of seven water retention functions used for modelling soil hydraulic conductivity due to film flow. Soil Use Manag. 2018, 34, 370–379. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; van Genuchten, M.T. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Liao, K.; Xu, S.; Wu, J.; Ji, S.; Lin, Q. Assessing soil water retention characteristics and their spatial variability using pedotransfer functions. Pedosphere 2011, 21, 413–422. [Google Scholar] [CrossRef]
- Minasny, B.; Hopmans, J.W.; Harter, T.; Eching, S.O.; Tuli, A.; Denton, M.A. Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Sci. Soc. Am. J. 2004, 68, 417–429. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Braddock, R.D.; Parlange, J.Y.; Lee, H. Application of a soil water hysteresis model to simple water retention curves. Transp. Porous Med. 2001, 44, 407–420. [Google Scholar] [CrossRef]
- Lourenço, S.D.N.; Jones, N.; Morley, C.; Doerr, S.H.; Bryant, R. Hysteresis in the soil water retention of a sand–clay mixture with contact angles lower than ninety degrees. Vadose Zone J. 2015, 14, 1–8. [Google Scholar] [CrossRef]
- Jensen, D.K.; Tuller, M.; de Jonge, L.W.; Arthur, E.; Moldrup, P. A new two-stage approach to predicting the soil water characteristic from saturation to oven-dryness. J. Hydrol. 2015, 521, 498–507. [Google Scholar] [CrossRef]
- Tracy, F.T. Clean two and three-dimensional analytical solutions of Richards’ equation for testing numerical solvers. Water Resour. Res. 2006, 42, 1–11. [Google Scholar] [CrossRef]
- Chen, X.; Liang, X.; Xia, J.; She, D. Impact of lower boundary condition of Richards’ equation on water, energy, and soil carbon based on coupling land surface and biogeochemical models. Pedosphere 2018, 28, 497–510. [Google Scholar] [CrossRef]
- Hino, M.; Odaka, Y.; Nadaoka, K.; Sato, A. Effect of initial soil moisture content on the vertical infiltration process—A guide to the problem of runoff-ratio and loss. J. Hydrol. 1988, 102, 267–284. [Google Scholar] [CrossRef]
- Leuther, F.; Weller, U.; Wallach, R.; Vogel, H.J. Quantitative analysis of wetting front instabilities in soil caused by treated waste water irrigation. Geoderma 2018, 319, 132–141. [Google Scholar] [CrossRef]
- Feng, G.L.; Letey, J.; Wu, L. Water ponding depths affect temporal infiltration rates in a water-repellent sand. Soil Sci. Soc. Am. J. 2001, 65, 315–320. [Google Scholar] [CrossRef]
- Hsu, S.Y.; Huang, V.; Park, S.W.; Hilpert, M. Water infiltration into prewetted porous media: Dynamic capillary pressure and Green-Ampt modeling. Adv. Water Resour. 2017, 106, 60–67. [Google Scholar] [CrossRef]
- Lassabatere, L.; Loizeau, S.; Angulo-Jaramillo, R.; Winiarski, T.; Rossier, Y.; Delolme, C.; Gaudet, J.P. Influence of the initial soil water content on Beerkan water infiltration experiments. Geophys. Res. Abstr. 2012, 14, 2278. [Google Scholar]
- Bughici, T.; Wallach, R. Formation of soil–water repellency in olive orchards and its influence on infiltration pattern. Geoderma 2016, 262, 1–11. [Google Scholar] [CrossRef]
- Nemes, A.; Schaap, M.G.; Leij, F.J.; Wösten, J.H.M. Description of the unsaturated soil hydraulic database UNSODA version 2.0. J. Hydrol. 2001, 251, 151–162. [Google Scholar] [CrossRef]
- Thornley, J.H.M.; Johnson, I.R. Plant and Crop Modelling: A Mathematical Approach to Plant and Crop Physiology; Clarendon: Oxford, UK, 1990. [Google Scholar]
- Alexander, E.B. Bulk densities of California soils in relation to other soil properties. Soil Sci. Soc. Am. J. 1980, 44, 689–692. [Google Scholar] [CrossRef]
- Arya, L.M.; Paris, J.F. A physicoempirical model to predict the soil-moisture characteristic from particle-size distribution and bulk-density data. Soil Sci. Soc. Am. J. 1981, 45, 1023–1030. [Google Scholar] [CrossRef]
- Liao, K.; Lai, X.; Jiang, S.; Zhu, Q. Estimating the wetting branch of the soil water retention curve from grain-size fractions. Eur. J. Soil Sci. 2020, 1–6. [Google Scholar] [CrossRef]
- Mualem, Y. A new model predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Barbour, S.L.; Elshorbagy, A.; Zettl, J.D.; Si, B.C. Infiltration and drainage processes in multilayered coarse soils. Can. J. Soil Sci. 2011, 91, 169–183. [Google Scholar] [CrossRef]
- Abbasi, F.; Javaux, M.; Vanclooster, M.; Feyen, J. Estimating hysteresis in the soil water retention curve from monolith experiments. Geoderma 2012, 189, 480–490. [Google Scholar] [CrossRef]
- Warrick, A.W.; Zerihun, D.; Sanchez, C.A.; Furman, A. Infiltration under variable ponding depths of water. J. Irrig. Drain. Eng. 2005, 131. [Google Scholar] [CrossRef]
- Zhang, G.; Feng, G.; Li, X.; Xie, C.; Pi, X. Flood effect on groundwater recharge on a typical silt loam soil. Water 2017, 9, 523. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.T.; Gray, D.M.; Toth, B. Influence of soil texture on snowmelt infiltration into frozen soils. Can. J. Soil Sci. 2002, 82, 75–83. [Google Scholar] [CrossRef]
- Lai, X.; Liao, K.; Feng, H.; Zhu, Q. Responses of soil water percolation to dynamic interactions among rainfall, antecedent moisture and season in a forest site. J. Hydrol. 2016, 540, 565–573. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Camps-Roach, G.; O’Carroll, D.M.; Newson, T.A.; Sakaki, T.; Illangasekare, T.H. Experimental investigation of dynamic effects in capillary pressure: Grain size dependency and upscaling. Water Resour. Res. 2010, 46, W08544. [Google Scholar] [CrossRef] [Green Version]
- Topp, G.C. Soil water hysteresis in silt loam and clay loam soils. Water Resour. Res. 1971, 7, 914–920. [Google Scholar] [CrossRef]
- Elmaloglou, S.; Diamantopoulos, E. Effects of hysteresis on redistribution of soil moisture and deep percolation at continuous and pulse drip irrigation. Agric. Water Manag. 2009, 96, 533–538. [Google Scholar] [CrossRef]
- Zhu, J.; Mohanty, B.P. Spatial averaging of van Genuchten hydraulic parameters for steady state flow in heterogeneous soils. Vadose Zone J. 2002, 1, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Pruski, F.F.; Nearing, M.A. Climate-induced changes in erosion during the 21st century for eight U.S. locations. Water Resour. Res. 2002, 38, 1298. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. Bioenergy 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Zhang, Q. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
Soil Code | Bulk Density (g/cm3) | Organic Matter (%) | Coarse Sand (%) | Fine Sand (%) | Silt (%) | Clay (%) |
---|---|---|---|---|---|---|
SC1010 | 1.64 | 0.01 | 7.90 | 75.10 | 14.00 | 3.00 |
SC1011 | 1.52 | - | 7.30 | 75.20 | 14.50 | 3.00 |
SC1012 | 1.40 | - | 9.50 | 73.00 | 15.00 | 2.50 |
SC1013 | 1.49 | - | 8.00 | 77.00 | 13.00 | 2.00 |
SC1014 | 1.53 | - | 8.40 | 78.60 | 11.00 | 2.00 |
SC1015 | 1.72 | - | 8.30 | 73.70 | 12.00 | 6.00 |
SC1020 | 1.61 | - | 80.00 | 10.00 | 5.50 | 4.50 |
SC1021 | 1.58 | - | 72.00 | 17.00 | 5.00 | 6.00 |
SC1022 | 1.60 | - | 76.30 | 13.00 | 6.40 | 4.30 |
SC1023 | 1.67 | - | 78.40 | 15.60 | 4.00 | 2.00 |
SC1024 | 1.68 | - | 72.30 | 22.70 | 3.00 | 2.00 |
SC1030 | 1.48 | 1.70 | 8.60 | 70.40 | 13.70 | 7.30 |
SC1031 | 1.48 | 0.20 | 9.30 | 69.70 | 13.20 | 7.80 |
SC1032 | 1.53 | 0.10 | 11.00 | 69.00 | 12.20 | 7.80 |
SC1041 | 1.51 | 0.78 | 7.50 | 85.50 | 5.00 | 2.00 |
SC1300 | 1.26 | - | 0.03 | 38.81 | 29.77 | 31.40 |
SC1301 | 1.27 | - | 0.03 | 38.81 | 29.77 | 31.40 |
SC1310 | 1.60 | - | 0.00 | 95.60 | 2.40 | 2.00 |
SC1410 | 1.41 | - | 0.00 | 100.00 | 0.00 | 0.00 |
SC2020 | 0.72 | 5.60 | 0.00 | 4.40 | 33.60 | 62.00 |
SC2021 | 0.89 | 5.60 | 0.00 | 4.40 | 33.60 | 62.00 |
SC2022 | 0.75 | 5.60 | 0.00 | 4.40 | 33.60 | 62.00 |
SC2310 | 1.71 | - | 9.99 | 89.29 | 0.72 | 0.01 |
SC3340 | 1.41 | 0.89 | 16.01 | 81.81 | 2.17 | 0.02 |
SC4690 | 1.32 | - | 0.06 | 23.31 | 54.83 | 21.80 |
SC4700 | 1.28 | - | 0.08 | 11.21 | 55.91 | 32.79 |
SC4710 | 1.28 | - | 0.01 | 50.69 | 37.79 | 11.51 |
SC4720 | 1.48 | - | 8.90 | 82.61 | 8.49 | 0.00 |
SC4940 | 1.76 | - | 38.02 | 35.11 | 0.57 | 26.30 |
SC4941 | 1.81 | - | 40.90 | 31.13 | 0.27 | 27.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, L.; Liao, K.; Liu, C. Responses of Soil Infiltration to Water Retention Characteristics, Initial Conditions, and Boundary Conditions. Land 2021, 10, 361. https://doi.org/10.3390/land10040361
An L, Liao K, Liu C. Responses of Soil Infiltration to Water Retention Characteristics, Initial Conditions, and Boundary Conditions. Land. 2021; 10(4):361. https://doi.org/10.3390/land10040361
Chicago/Turabian StyleAn, Lesheng, Kaihua Liao, and Chun Liu. 2021. "Responses of Soil Infiltration to Water Retention Characteristics, Initial Conditions, and Boundary Conditions" Land 10, no. 4: 361. https://doi.org/10.3390/land10040361
APA StyleAn, L., Liao, K., & Liu, C. (2021). Responses of Soil Infiltration to Water Retention Characteristics, Initial Conditions, and Boundary Conditions. Land, 10(4), 361. https://doi.org/10.3390/land10040361