Influence of Anthropogenic Load in River Basins on River Water Status: A Case Study in Lithuania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Quality Assessment Standards
2.3. Presentation of Pollution Sources
- Domestic and industrial wastewater disposal facilities in the study areas, the extent of their pollution loads, the impact on the status of the water body and the average TN and TP value of wastewater in the period 2015–2020. Data from the Environmental Protection Agency (EPA) on wastewater dischargers, identified pollutant concentrations, and annual wastewater volumes were estimated by dividing their statistical values by water body feeding basins;
- The number of people connected to the sewage collection systems and sewage management (i.e., central, individual, or no management (statistics)). The contamination loads in the environment released by the residents whose wastewater was not collected were assessed according to the HELCOM recommendations, which specify that one resident generates 25.6 kg of waste according to the BOD7, 4.4 kg of TN, and 0.9 kg of TP;
- To determine the nutrient loads from residential and commercial areas, data from the SWAT (small watershed to river basin-scale model used to simulate the quality and quantity of surface and ground water) model were used to calculate and evaluate pollution loads. SWAT model is a basin-scale continuous-time model that operates on a continuous basis and assesses the impact of management practices on water, sediment, and agrochemicals in non-monitored basins [61]. SWAT is widely used in assessing soil erosion prevention and control, diffuse source pollution control and regional management in watersheds;
- To assess the impact of the transformation of biogenic nutrients in soil and water body pollution, a SWAT model was used to calculate the average of total nitrogen (TN) and total phosphorus (TP) leaching.
2.4. Statistical Analyses
- The Levene test was applied as an endogeneity test; the R code was applied to generate the analyses in this area, R2 ≥ 0.20;
- ANOVA was performed with a p-value of <0.05;
- t-tests were performed, showing significance at p < 0.05;
- All SWFs (Dispersion reduction factor) were ≤4 (no diversity problems);
- All Cook measure values were ≤1.
3. Results
3.1. Ecological Status Classes of the Stretches of Rivers According to the Physicochemical Values of Elemental Indicators
3.2. Assessment of Nutrient Loads in River Basins
3.3. Influence of Anthropogenic Loading on Total Nitrogen, Ammonium Nitrogen, Nitrate Nitrogen, Total Phosphorus, and Phosphate Phosphorus
4. Discussion
- ✓
- The application of fertilization plans and targeted/precision farming. Balanced fertilization reduces the need for fertilizers and pesticides and saves water resources. This results in less nitrogen and phosphorus leaching and less eutrophication in surface water bodies;
- ✓
- Additional protection strips for surface water bodies. The protective strips of natural vegetation left along the water bodies help to absorb excess nutrients and control water pollution;
- ✓
- Stubble fields left during the winter help conserve water resources and prevent nutrient leaching;
- ✓
- The installation of controlled drainage. An intelligent drainage system increases yields by reducing the need for fertilizer and stopping the leaching of nutrients into surface water bodies.
5. Conclusions
- The total nitrogen values did not comply with the requirements of to the ‘’good’’ and ‘’very good’’ ecological status classes in 51% of the tested water bodies; 19% had a ‘’bad’’ to ‘’moderate’’ BOD7, 50% had ‘’bad’’ to ‘’moderate’’ NH4-N, 37% had ‘’bad’’ to ‘’moderate’’ NO3-N, 4 % had ‘’bad’’ to ‘’moderate’’ PO4-P, and the total phosphorus values did not correspond to the ‘’good’’ or ‘’very good’’ ecological status classes in 4% of the tested water bodies;
- River basins accumulate the biggest quantities from the following sources: transit pollution, contributing 87,599 t/year of total nitrogen and 5020 t/year of phosphorus; agricultural pollution, contributing 56,031 t/year of total nitrogen and 2474 t/year of total phosphorus;
- The biggest total nitrogen load in river basins per year is from transit pollution, accounting for 53.89%; agricultural pollution accounts for 34.47%. The highest total phosphorus load is also from transit pollution, accounting for 58.78%; agricultural pollution accounts for 28.97%;
- The multiple regression analysis showed that the agricultural activity had the biggest negative influence on the ecological status of rivers according to all studied indicators.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aplinkos apsaugos agentūra. Upių, ežerų ir tvenkinių ekologinė būklė/Environmental Protection Agency. Ecological Status of Rivers, Lakes and Ponds. 2017. Available online: https://www.akoalicija.lt/veikla/2019-06-26-d%C4%97l-upi%C5%B3-ekologin%C4%97s-b%C5%ABkl%C4%97s-gerinimo (accessed on 29 August 2021). (In Lithuanian).
- Tejerina-Garro, F.L.; Maldonado, M.; Ibañez, C.; Pont, D.; Roset, N.; Oberdorff, T. Effects of natural and anthropogenic environmental changes on riverine fish assemblages: A framework for ecological assessment of rivers. Biol. Appl. Sci. Braz. Arch. Biol. Technol. 2005, 48, 91–108. [Google Scholar] [CrossRef]
- Hu, W.; Wang, G.; Deng, W.; Li, S. The influence of dams on ecohydrological conditions in the Huaihe River basin, China. Ecol. Eng. 2008, 33, 233–241. [Google Scholar] [CrossRef]
- Żelazny, M.; Siwek, J.P. Determinants of seasonal changes in streamwater chemistry in small catchments with different land uses: Case study from Poland’s Carpathian foothills. Pol. J. Environ. Stud. 2012, 21, 791–804. [Google Scholar]
- Lenart-Boroń, A.; Wolanin, A.; Jelonkiewicz, Ł.; Chmielewska-Błotnicka, D.; Żelazny, M. Spatiotemporal variability in microbiological water quality of the Białka river and its relation to the selected physicochemical parameters of water. Water Air Soil Pollut. 2016, 227, 22. [Google Scholar] [CrossRef]
- Bojarczuk, A.; Jelonkiewicz, L.; Lenart-Boroń, A. The effect of anthropogenic and natural factors on the prevalence of physicochemical parameters of water and bacterial water quality indicators along the river Białka, southern Poland. Environ. Sci. Pollut. Res. 2018, 25, 10102–10114. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, X.; Valero, E.; Torre-Rodríguez, N.; Acuña-Alonso, C. Influence of Small Hydroelectric Power Stations on River Water Quality. Water 2020, 12, 312. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Wu, H.; Chen, W.; Sun, W.; Zhang, H.; Duan, W.; Chen, W.; He, B. Impacts of Landscapes on Water Quality in A Typical Headwater Catchment, Southeastern China. Sustainability 2020, 12, 721. [Google Scholar] [CrossRef] [Green Version]
- Hughes, R.M.; Vadas, R.L., Jr. Agricultural Effects on Streams and Rivers: A Western USA Focus. Water 2021, 13, 1901. [Google Scholar] [CrossRef]
- Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M. Impacts of waste from concentrated animal feeding operations on water quality. Environ. Health Perspect. 2007, 115, 308–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Páll, E.; Niculae, M.; Kiss, T.; Şandru, C.D.; Spĭnu, M. Human impact on the microbiological water quality of the rivers. J. Med. Microbiol. 2013, 62, 1635–1640. [Google Scholar] [CrossRef]
- Kroll, S.A.; Oakland, H.C. A review of studies documenting the effects of agricultural best management practices on physiochemical and biological measures of stream ecosystem integrity. Nat. Areas J. 2019, 39, 58–77. [Google Scholar] [CrossRef]
- Liu, J.; Han, G.; Liu, X.; Liu, M.; Song, C.; Zhang, Q.; Yang, K.; Li, X. Impacts of Anthropogenic Changes on the Mun River Water: Insight from Spatio-Distributions and Relationship of C and N Species in Northeast Thailand. Int. J. Environ. Res. Public Health 2019, 16, 659. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, H.; Cui, G.; Cao, Y. Water quality attribution and simulation of non-point source pollution load flux in the Hulan River basin. Sci. Rep. 2020, 10, 3012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, M.M.; Allan, J.D.; Brunzell, S. Nutrient concentrations and discharges in a Midwestern agricultural catchment. J. Env. Qual. 2000, 29, 1142–1151. [Google Scholar] [CrossRef]
- Valiela, I.; Bowen, J.L. Nitrogen sources to watersheds and estuaries: Role of land cover mosaics and losses within watersheds. Environ. Pollut. 2002, 118, 239–248. [Google Scholar] [CrossRef]
- Buck, O.; Niyogi, D.K.; Townsend, C.R. Scale-dependence of land use effects on water quality of streams in agricultural catchments. Environ. Pollut. 2004, 130, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.N.; Elahi, F.; Alam, D.U. Risk and water quality assessment overview of River Sitalakhya in Bangladesh. Acad. Open Internet J. 2006, 19, 112–202. [Google Scholar]
- Zhang, Q.L.; Shi, X.Z.; Huang, B.; Yu, D.S.; Öbornc, I.; Blombäckc, K.; Wang, H.J.; Pagella, T.F.; Sinclair, F.L. Surface water quality of factory-based and vegetable-based peri-urban areas in the Yangtze River delta region, China. Catena 2007, 69, 57–64. [Google Scholar] [CrossRef]
- Hussain, M.; Ahmed, S.M.; Abderrahman, W. Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia. J. Environ. Manag. 2008, 86, 297–307. [Google Scholar] [CrossRef]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef] [Green Version]
- Bhat, S.; Jacobs, J.M.; Hatfield, K.; Prenger, J. Relationships between stream water chemistry and military land use in forested watersheds in Fort Benning. Georgia. Ecol. Ind. 2006, 6, 458–466. [Google Scholar] [CrossRef]
- Hopkins, R.L. Use of landscape pattern metrics and multiscale data in aquatic species distribution models: A case study of a freshwater mussel. Landsc. Ecol. 2009, 24, 943–955. [Google Scholar] [CrossRef]
- Tran, C.P.; Bode, R.W.; Smith, A.J.; Kleppel, G.S. Land-use proximity as a basis for assessing stream water quality in New York State (USA). Ecol. Indic. 2010, 10, 727–733. [Google Scholar] [CrossRef]
- Weijters, M.J.; Janse, J.H.; Alkemade, R.; Verhoeven, J.T.A. Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 2009, 19, 104–112. [Google Scholar] [CrossRef]
- Hollister, J.W.; August, P.V.; Paul, J.F. Effects of spatial extent on landscape structure and sediment metal concentration relationships in small estuarine systems of the United States’ Mid-Atlantic Coast. Landsc. Ecol. 2008, 23, 91–106. [Google Scholar] [CrossRef]
- Sliva, L.; Williams, D.D. Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Res. 2001, 35, 3462–3472. [Google Scholar] [CrossRef]
- Brabec, E.A. Imperviousness and land-use policy: Toward an effective approach to watershed planning. J. Hydrol. Eng. 2009, 14, 425–433. [Google Scholar] [CrossRef]
- Lee, S.W.; Hwang, S.J.; Lee, S.B.; Hwang, H.S.; Sung, H.C. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landsc. Urban Plan. 2009, 92, 80–89. [Google Scholar] [CrossRef]
- Kelly, M.; Bennion, H.; Burgess, A.; Ellis, J.; Juggins, S.; Guthrie, R.; Jamieson, J.; Adriaenssens, V.; Yallop, M. Uncertainty in ecological status assessments of lakes and rivers using diatoms. Hydrobiologia 2009, 633, 5–15. [Google Scholar] [CrossRef]
- Nõges, P.; Van de Bund, W.; Cardoso, A.K.; Solimini, A.G.; Heiskanen, A.S. Assessment of the ecological status of European surface waters: A work in progress. Hydrobiologia 2009, 633, 197–211. [Google Scholar] [CrossRef]
- Ayobahan, S.U.; Ezenwa, I.M.; Orogun, E.E.; Uriri, J.E.; Wemimo, I.J. Assessment of Anthropogenic Activities on Water Quality of Benin River. J. Appl. Sci. Environ. Manag. 2014, 18, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Matysik, M.; Atsalon, D.; Ruman, M. Surface Water Quality in Relation to Land Cover in Agricultural Catchments (Liswarta River Basin Case Study). Pol. J. Environ. Stud. 2015, 24, 175–184. [Google Scholar] [CrossRef]
- Česonienė, L.; Šileikienė, D.; Dapkienė, M.; Radzevičius, A.; Räsänen, K. Assessment of chemical and microbiological parameters on the Leite River Lithuania. Environ. Sci. Pollut. Res. 2019, 26, 18752–18765. [Google Scholar] [CrossRef] [PubMed]
- Ikauniece, K.; Lagzdinš, A. The assessment of chemical and ecological status in the water bodies of Slocene and Age. Water Manag. Res. Rural Dev. 2020, 35, 241–247. [Google Scholar] [CrossRef]
- Grizzetti, B.; Pistocchi, A.; Liquete, C.; Udias, A.; Bouraoui, F.; van de Bund, W. Human pressures and ecological status of European rivers. Sci. Rep. 2017, 7, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruminaitė, R. Research and Evaluation of the Anthropogenic Activity Impact on the River Runoff and Water Quality. Ph.D. Thesis, Vilnius Gediminas Technical University, Vilnius, Lithuania, 2010. Available online: http://vddb.laba.lt/fedora/get/LT-eLABa-0001:E.02~2010~D_20101222_130641-59851/DS.005.0.01.ETD (accessed on 5 May 2021). (In Lithuanian).
- Lenart-Boroń, A.; Wolanin, A.; Jelonkiewicz, E.; Żelazny, M. The effect of anthropogenic pressure shown by microbiological and chemical water quality indicators on the main rivers of Podhale, southern Poland. Env. Sci. Pollut. Res. Int. 2017, 24, 12938–12948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesoniene, L.; Dapkiene, M.; Sileikiene, D.; Rekasiene, V. Impact of Wastewater Treatment Plant on Water Quality of the River Mazoji Sruoja, Plunge District. J. Environ. Res. Eng. Manag. 2017, 73, 33–44. [Google Scholar]
- Joshua, N.; Edokpayi, J.N.; Odiyo, J.O.; Durowoju, O.S. Impact of Wastewater on Surface Water Quality in Developing Countries: A Case Study of South Africa. In Water Quality; IntechOpen: London, UK, 2017; pp. 401–416. Available online: https://www.intechopen.com/chapters/53194 (accessed on 5 May 2021). [CrossRef] [Green Version]
- Alcon, F.; de-Miguel, M.D.; Martínez-Paz, J.M. Assessment of real and perceived cost-effectiveness to inform agricultural diffuse pollution mitigation policies. Land Use Policy 2021, 107, 104561. [Google Scholar] [CrossRef]
- Matono, P.; Batista, T.; Sampaio, E.; Ilhéu, M. Effects of Agricultural Land Use on the Ecohydrology of Small-Medium Mediterranean River Basins: Insights from a Case Study in the South of Portugal. In Land Use—Assessing the Past, Envisioning the Future; IntechOpen: London, UK, 2019; pp. 29–51. [Google Scholar]
- Liu, J.; Shen, Z.; Chen, L. Assessing how spatial variations of land use pattern affect water quality across a typical urbanized watershed in Beijing, China. Landsc. Urban Plan. 2018, 176, 51–63. [Google Scholar] [CrossRef]
- Sveikauskaite, I. Lithuanian River Pollution and Water Quality Trends in 1992–2009. Master’s Thesis, Vytautas Magnus University, Kaunas, Lithuania, 2011. [Google Scholar]
- Fogelberg, S. Modelling nitrogen retention at the catchment scale.Report UPTEC W 03 019. Uppsala: Uppsala University. P. 1-51.French urban catchment. Water Res. 2003, 85, 432–442. [Google Scholar]
- Organisation for Economic Co-operation and Development. Environmental Performance of Agriculture in OECD Countries Since1990; OECD: Paris, France, 2008; ISBN 9789264040922. [Google Scholar]
- Kyllmar, K.; Bechmann, M.; Deelstra, J.; Iital, A.; Blicher-Mathiesen, G.; Jansons, V.; Koskiaho, J.; Povilaitis, A. Long-term monitoringof nutrient losses from agricultural catchments in the Nordic-Baltic region-A discussion of methods, uncertainties. Agric. Ecosyst. Environ. 2014, 198, 4–12. [Google Scholar] [CrossRef]
- Povilaitis, A.; Šileika, A.; Deelstra, J.; Gaigalis, K.; Baigys, G. Nitrogen losses from small agricultural catchments in Lithuania. Agric. Ecosyst. Environ. 2014, 198, 54–64. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, J.; Ge, J. Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries. Agric. Water Manag. 2021, 243, 106417. [Google Scholar] [CrossRef]
- Waller, D.M.; Meyer, A.G.; Raff, Z.; Apfelbaum, S.I. Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed. J. Environ. Manag. 2021, 284, 112019. [Google Scholar] [CrossRef] [PubMed]
- USEPA (U.S. Environmental Protection Agency). National Water Quality Inventory Report. EPA-841-F-02-003. 2002. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/2007_10_15_305b_2002report_report2002305b.pdf. (accessed on 30 August 2021).
- Staniszewska, M.; Schnug, E. Status of organic agriculture in thecountries of the Baltic Sea region. Landbauforsch. Volkenrode 2002, 52, 75–80. [Google Scholar]
- Vincevičienė, V.; Asadauskaitė, A. Assessment of Point Pollution and Impact to Water Quality of the Transboundary River Basins–the Venta and the Musa–Lielupe. Environ. Res. Eng. Manag. 2002, 1, 41–51. [Google Scholar]
- Ruminaitė, R. Water runoff and pollution peculiarities in Lielupe watershed per 1992–2006-year period. Water Manag. Eng. 2010, 36, 100–108. [Google Scholar]
- Povilaitis, A. Source apportionment and retention of nutrients and organic matter in the merkys river basin in southern Lithuania. J. Environ. Eng. Landsc. Manag. 2008, 16, 195–204. [Google Scholar] [CrossRef]
- Plungė, S.; Gudas, M. Žemės ūkis ir Lietuvos vandenys. Žemės ūkio veiklos poveikis Lietuvos upių būklei ir taršos apkrovoms į Baltijos jūrą/Impact of Agricultural Activities on the Condition of Lithuanian Rivers and Pollution Loads in the Baltic Sea. 2018. Available online: https://www.akoalicija.lt/veikla/2019-06-26-d%C4%97l-upi%C5%B3-ekologin%C4%97s-b%C5%ABkl%C4%97s-gerinimo (accessed on 29 August 2021). (In Lithuanian).
- Povilaitis, A. Nutrient Retention in Surface Waters of Lithuania. Pol. J. Environ. Stud. 2011, 20, 1575–1584. [Google Scholar]
- Plungė, S.; Gudas, M. Klimato kaitos poveikis vandens telkiniams. Priemonių taršai iš žemės ūkio šaltinių sumažinti galimybių įvertinimas klimato kaitos perspektyvoje/Impact of Climate Change on Water Bodies. Assessment of Measures to Reduce Pollution from Agricultural Sources in the Perspective of Climate Change. 2021. Available online: https://vanduo.old.gamta.lt/files/report1627991771354.html (accessed on 29 August 2021).
- Approval of the Description of the Procedure for Assessing the Ecological Status of Surface Water Bodies. Order of the Minister of the Environment of the Republic of Lithuania: 12 April 2007 No. D1-210/Lietuvos Respublikos Aplinkos Ministro Įsakymas dėl Paviršinių Vandens Telkinių Būklės Nustatymo Metodikos Patvirtinimo 2007m. Vilnius. Balandzio 12 d. Nr. D1; 2017. Available online: https://portalcris.vdu.lt/cris/bitstream/20.500.12259/115090/1/tomas_kantaravicius_md.pdf (accessed on 5 May 2021).
- Arnold, J.G.; Srinisvan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment. Part I: Model development. J. Am. Water Resour. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Hermoso, V.; Clavero, M.; Kennard, M.J. Determinants of fine-scale homogenization and differentiation of native freshwater fish faunas in a Mediterranean Basin: Implications for conservation. Divers. Distrib. 2012, 18, 236–247. [Google Scholar] [CrossRef] [Green Version]
- Thodsen, H.; Farkas, C.; Chormanski, J.; Trolle, D.; Blicher-Mathiesen, G.; Grant, R.; Engebretsen, A.; Kardel, I.; Andersen, H.E. Modelling Nutrient Load Changes from Fertilizer Application Scenarios in Six Catchments around the Baltic Sea. Agriculture 2017, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- HELCOM. Eutrophication in the Baltic Sea—An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Balt. Sea Environ. Proc. 2009, 115, 148. [Google Scholar]
- Voss, M.; Dippner, J.W.; Humborg, C.; Hürdler, J.; Korth, F.; Neumann, T.; Schernewski, G.; Venohr, M. History and scenarios of future development of Baltic Sea eutrophication. Estuar. Coast. Shelf Sci. J. 2011, 92, 307–322. [Google Scholar] [CrossRef]
- Andersen, H.E.; Blicher-Mathiesen, G.; Bechmann, M.; Povilaitis, A.; Iital, A.; Lagzdins, A.; Kyllmarf, K. Reprint of “Mitigating diffuse nitrogen losses in the Nordic-Baltic countries”. Agric. Ecosyst. Environ. 2014, 198, 127–134. [Google Scholar] [CrossRef]
- Ferrier, R.C.; Edwards, A.C.; Hirst, D.; Littlewood, I.G.; Watts, C.D.; Morris, R. Water quality of Scottish rivers: Spatial and temporal trends. Sci. Total Environ. 2001, 265, 327–342. [Google Scholar] [CrossRef]
- Vaitiekūnienė, J.; Hansen, F.T. National scale water modelling to assess and predict pollution trends in Lithuanian rivers. Environ. Res. Eng. Manag. 2005, 4, 30–42. [Google Scholar]
- Stankevičienė, R. Research and Evaluation of the Anthropogenic Activity Impact on the River Runoff and Water Quality. Summary of Doctoral Dissertation; Vilnius Gediminas Technical University (VILNIUS TECH); Vilnius Technica. 2010. Available online: https://talpykla.elaba.lt/elaba-fedora/objects/elaba:1862147/datastreams/MAIN/content (accessed on 12 April 2021).
- Scholz, M. Wetlands for Water Pollution Control, 2nd ed.; Elsevier Science: Saldorf, UK, 2016. [Google Scholar]
- Rural Development. Official Document on Improving the Ecological Condition of Lithuanian Rivers and Other Water Bodies. 2019. Available online: https://www.akoalicija.lt/veikla/2019-06-26-d%C4%97l-upi%C5%B3-ekologin%C4%97s-b%C5%ABkl%C4%97s-gerinimo (accessed on 29 August 2021).
River | Length, km | Length in Lithuania, km | Basin Area, km2 | Basin Area in Lithuania, km2 | Average Flow Rate, m3/s | Number of Sampling Points | Number on the Map (Figure 1) |
---|---|---|---|---|---|---|---|
Dysna | 176 | 77 | 8193 | 726 | 3.59 | 1 | 1 |
Nemunėlis | 191 | 151 | 4048 | 3770 | 95 | 5 | 2–6 |
Nemunas | 937.4 | 359 | 98,200 | 46,600 | 540 | 11 | 7–17 |
Leitė | 26.2 | 26.2 | 143 | 143 | 1.5 | 2 | 18–19 |
Šyša | 61 | 61 | 410 | 410 | 1.88 | 3 | 20–22 |
Skirvytė | 9 | 2 | 23–24 | ||||
Šventoji | 246 | 246 | 6888.8 | 6800.7 | 55.1 | 11 | 25; 82–91 |
Neris | 510 | 237.8 | 24,942.3 | 1392 | 181 | 10 | 26–35 |
Bražuolė | 22.7 | 22.7 | 109.4 | 109.4 | 0.71 | 1 | 36 |
Žiežmara | 24 | 24 | 65 | 65 | 0.49 | 1 | 37 |
Mušia | 29 | 29 | 227.3 | 227.3 | 1.69 | 1 | 38 |
Nevėžis | 209 | 209 | 6140 | 6140 | 33.2 | 8 | 39–46 |
Linkava | 36.8 | 36.8 | 163.4 | 163.4 | 0.82 | 3 | 47–49 |
Kruostas | 28.9 | 28.9 | 99.7 | 99.7 | 0.5 | 4 | 50–53 |
Obelis | 53.3 | 53.3 | 673.8 | 673.8 | 2.7 | 4 | 54–57 |
Šešupė | 297.6 | 297.6 | 6104.8 | 4899 | 34.2 | 9 | 58–66 |
Dovinė | 65 | 65 | 588.7 | 588.7 | 3.4 | 4 | 67–70 |
Nova | 69 | 69 | 403 | 403 | 1.24 | 3 | 71–73 |
Lokysta | 46.3 | 46.3 | 173 | 173 | 2.12 | 1 | 74 |
Ančia | 66.4 | 66.4 | 278.6 | 278.6 | 2.82 | 1 | 75 |
Agluona | 22 | 22 | 76 | 76 | 0.98 | 1 | 76 |
Alantas | 43 | 43 | 146 | 146 | 181 | 1 | 77 |
Akmena—Danė | 62.5 | 62.5 | 595 | 595 | 6.9 | 4 | 78–81 |
Dabikinė | 37.2 | 387.6 | 2.39 | 3 | 92–94 |
Environmental Factor | Unstandardized Coefficients | Standardized Coefficients | t | Significance Level p < 0.05 | |
---|---|---|---|---|---|
B | Std. Error | Beta | |||
Constant | 3.853 | 0.587 | 6.566 | 0.000 | |
N from municipal wastewater, t/year | −0.128 | 0.132 | −1.912 | −0.969 | 0.349 |
N from surface wastewater, t/year | −0.015 | 0.137 | −0.174 | −0.108 | 0.915 |
N from households not connected to sewage networks, t/year | −0.208 | 0.239 | −1.827 | −0.870 | 0.399 |
* N from agricultural land, t/year | 0.005 | 0.003 | 4.745 | 1.544 | 0.045 |
N from background, t/year | −0.011 | 0.015 | −1.736 | −0.720 | 0.484 |
N from transit pollution, t/year | −0.001 | 0.001 | −0.161 | −0.374 | 0.714 |
* Agricultural land, ha | 0.027 | 0.017 | 13.642 | 1.557 | 0.042 |
Forests, ha | 0.009 | 0.017 | 1.938 | 0.519 | 0.612 |
Wetlands, ha | 0.025 | 0.029 | 0.268 | 0.854 | 0.407 |
Meadows, ha | 0.043 | 0.047 | 2.390 | 0.923 | 0.372 |
* Arable land, ha | 0.036 | 0.013 | 9.809 | 2.732 | 0.016 |
Infertile land, ha | −0.083 | 0.078 | −1.726 | −1.063 | 0.306 |
Green land, ha | 3.010 | 2.489 | 2.725 | 1.210 | 0.246 |
Environmental Factor | Unstandardized Coefficients | Standardized Coefficients | t | Significance Level p < 0.05 | |
---|---|---|---|---|---|
B | Std. Error | Beta | |||
Constant | 0.033 | 0.022 | 1.508 | 0.154 | |
N from municipal wastewater, t/year | 0.006 | 0.005 | 1.800 | 1.203 | 0.249 |
N from surface wastewater, t/year | 0.005 | 0.005 | 1.122 | 0.921 | 0.373 |
* N from households not connected to sewage networks, t/year | 0.012 | 0.009 | 2.187 | 1.374 | 0.049 |
* N from agricultural land, t/year | 0.000 | 0.000 | 3.309 | 1.421 | 0.047 |
N from background, t/year | 2.408 × 10−5 | 0.001 | 0.080 | 0.044 | 0.966 |
* N from transit pollution, t/year | 0.000 | 0.000 | 0.852 | 2.606 | 0.021 |
Agricultural land, ha | −0.001 | 0.001 | −5.301 | −0.798 | 0.438 |
* Forests, ha | −0.002 | 0.001 | −9.231 | −3.263 | 0.006 |
* Wetlands, ha | 0.002 | 0.001 | 0.533 | 2.241 | 0.042 |
* Meadows, ha | 0.003 | 0.002 | 3.674 | 1.871 | 0.048 |
* Arable land, ha | 0.001 | 0.001 | 5.630 | 2.069 | 0.049 |
* Infertile land, ha | −0.010 | 0.003 | −4.026 | −3.271 | 0.006 |
* Green land, ha | −0.411 | 0.093 | −7.511 | −4.398 | 0.001 |
Environmental Factor | Unstandardized Coefficients | Standardized Coefficients | t | Significance Level p < 0.05 | |
---|---|---|---|---|---|
B | Std. Error | Beta | |||
Constant | 2.358 | 0.514 | 4.584 | 0.000 | |
N from municipal wastewater, t/year | −0.060 | 0.116 | −1.289 | −0.515 | 0.614 |
N from surface wastewater t/year | 0.006 | 0.120 | 0.106 | 0.052 | 0.959 |
N from households not connected to sewage networks, t/year | 0.185 | 0.209 | 2.348 | 0.882 | 0.393 |
N from agricultural land, t/year | 0.001 | 0.003 | 1.921 | 0.493 | 0.629 |
N from background; t/year | −0.002 | 0.013 | −0.395 | −0.129 | 0.899 |
N from transit pollution, t/year | 0.000 | 0.001 | 0.051 | 0.094 | 0.926 |
Agricultural land, ha | 0.013 | 0.015 | 9.911 | 0.893 | 0.387 |
Forests, ha | 0.005 | 0.015 | 1.523 | 0.322 | 0.752 |
Wetlands, ha | 0.018 | 0.026 | 0.277 | 0.698 | 0.497 |
Meadows, ha | 0.023 | 0.041 | 1.800 | 0.549 | 0.592 |
* Arable land, ha | 0.021 | 0.012 | 8.031 | 1.766 | 0.049 |
Infertile land, ha | −0.013 | 0.068 | −0.388 | −0.188 | 0.853 |
Green land, ha | 0.505 | 2.182 | 0.661 | 0.231 | 0.820 |
Environmental Factor | Unstandardized Coefficients | Standardized Coefficients | t | Significance Level p < 0.05 | |
---|---|---|---|---|---|
B | Std. Error | Beta | |||
Constant | 0.038 | 0.007 | 5.166 | 0.000 | |
P from municipal wastewater, t/year | 0.000 | 0.001 | 0.176 | 0.116 | 0.910 |
* P from surface wastewater, t/year | 0.013 | 0.008 | 1.014 | 1.688 | 0.043 |
* P from households not connected to sewage networks, t/year | 0.026 | 0.011 | 3.846 | 2.345 | 0.034 |
* P from agricultural land, t/year | 0.001 | 0.001 | 3.038 | 1.597 | 0.043 |
P from background, t/year | 0.000 | 0.002 | 0.082 | 0.072 | 0.944 |
P from transit pollution, t/year | −0.002 | 0.002 | −1.034 | −1.392 | 0.186 |
Agricultural land, ha | 9.643 × 10−5 | 0.000 | 4.004 | 0.453 | 0.657 |
Forests, ha | 0.000 | 0.000 | 3.511 | 1369 | 0.192 |
Wetlands, ha | 0.000 | 0.000 | −0.098 | −0.298 | 0.770 |
Meadows, ha | 0.000 | 0.001 | 2.101 | 0.849 | 0.410 |
* Arable land, ha | 0.000 | 0.000 | 9.569 | 1.963 | 0.049 |
* Infertile land, ha | −0.003 | 0.001 | −4.328 | −2.552 | 0.023 |
* Green land, ha | −0.085 | 0.038 | −6.274 | −2.217 | 0.044 |
Environmental Factor | Unstandardized Coefficients | Standardized Coefficients | t | Significance Level p < 0.05 | |
---|---|---|---|---|---|
B | Std. Error | Beta | |||
Constant | 0.009 | 0.009 | 0.981 | 0.343 | |
* P from municipal wastewater, t/year | 0.004 | 0.001 | 0.321 | 3.192 | 0.007 |
P from surface wastewater, t/year | 0.005 | 0.010 | 0.021 | 0.531 | 0.604 |
P from households not connected to sewage networks, t/year | 0.006 | 0.014 | 0.047 | 0.429 | 0.675 |
P from agricultural land, t/year | 0.000 | 0.001 | −0.021 | −0.165 | 0.871 |
* P from background, t/year | 0.004 | 0.002 | 0.138 | 1.827 | 0.049 |
* P from transit pollution, t/year | −0.008 | 0.002 | −0.200 | −4.061 | 0.001 |
* Agricultural land, ha | 0.001 | 0.000 | 1.732 | 2.957 | 0.010 |
* Forests, ha | −0.000 | 0.000 | −0.350 | −2.060 | 0.049 |
Wetlands, ha | 0.000 | 0.000 | 0.006 | 0.271 | 0.790 |
* Meadows, ha | 0.002 | 0.001 | 0.394 | 2.402 | 0.031 |
* Arable land, ha | 0.001 | 0.000 | 0.802 | 2.482 | 0.026 |
* Infertile land, ha | −0.006 | 0.001 | −0.550 | −4.896 | 0.000 |
* Green land, ha | −0.133 | 0.049 | 0.514 | −2.741 | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Česonienė, L.; Šileikienė, D.; Dapkienė, M. Influence of Anthropogenic Load in River Basins on River Water Status: A Case Study in Lithuania. Land 2021, 10, 1312. https://doi.org/10.3390/land10121312
Česonienė L, Šileikienė D, Dapkienė M. Influence of Anthropogenic Load in River Basins on River Water Status: A Case Study in Lithuania. Land. 2021; 10(12):1312. https://doi.org/10.3390/land10121312
Chicago/Turabian StyleČesonienė, Laima, Daiva Šileikienė, and Midona Dapkienė. 2021. "Influence of Anthropogenic Load in River Basins on River Water Status: A Case Study in Lithuania" Land 10, no. 12: 1312. https://doi.org/10.3390/land10121312
APA StyleČesonienė, L., Šileikienė, D., & Dapkienė, M. (2021). Influence of Anthropogenic Load in River Basins on River Water Status: A Case Study in Lithuania. Land, 10(12), 1312. https://doi.org/10.3390/land10121312