Spatial Grain Effects of Urban Green Space Cover Maps on Assessing Habitat Fragmentation and Connectivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Preprocess
- The GCS_FCS_layer (30 m spatial resolution) was derived from a novel global 30 m land-cover classification with a fine classification system for the year 2020 (GLC_FCS30-2020) [46]. In order to map the GCS_FCS_layer, we filtered out the corresponding vegetation coverage categories in the source map as UGSs and defined the remaining categories as non-UGSs.
- The Forest_layer (10 m spatial resolution) was derived from the Forest Resource Inventory in Zhejiang province [47]. Forest resource planning and design investigation were organized and carried out by the county-level state-owned forestry bureau and forest farm. The vegetation patch survey within the entire survey area was mainly adopted, covering urban and rural areas. In 2017, the Zhejiang Forestry Department deployed and carried out a forest resource inventory update, including the inventory of forest community structure, naturalness, and other vegetation (e.g., herbaceous plants) and ecological factors, taking two years to complete. This work has laid the foundation for the establishment of the provincial forestry ecological monitoring system and ecological construction. In this study, the forestry survey patches are regard as UGS patches, and the remaining space are regarded as non-UGS patches.
- The OBIA_layer (1 m spatial resolution) was derived from the GF-2 remote sensing imagery in 2019 (China Centre For Resources Satellite Data and Application, http://www.cresda.com/EN/, accessed on 10 December 2020) in order to obtain more detailed UGS cover maps than the previous maps, fitting better to the actual margin of UGSs. Preprocessing (geometric correction and image sharpening) of remote sensing imagery was completed on ENVI 5.3®. The OBIA technique, consisting of segmentation and classification, was derived using eCognition®. For the segmentation phase, the ESP2 tool [48] was applied to obtain the optimal segmentation scale as 76 for the multi-scale segmentation; the support vector machine (SVM) was selected as the classifier for the classification phase based on the selection of a series of spectral features including mean value and standard deviation of blue/green/red, brightness, and NDVI. Finally, the OBIA_layer was obtained with two classes including UGS and non-UGS.
2.2. Fragmentation
2.2.1. Entropy
2.2.2. Contagion
2.2.3. Hypsometry
2.3. Landscape Elements Identification
2.4. Connectivity
3. Results
3.1. Fragmentation
3.2. Landscape Elements Identification
3.3. Connectivity
4. Discussion
4.1. The Spatial Grain Effect on Urban Habitat Landscape Patterns
4.2. Insights of Data Sources and Methods in Urban Practice
4.3. Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, Q.; Huang, G.; Wu, J. Urban Ecosystem Services: A Review. Chin. J. Appl. Ecol. 2015, 26, 1023–1033. [Google Scholar]
- Benedict, M.A.; McMahon, E.T. Green Infrastructure. Urban Environ. Educ. Rev. 2002, 1–18. [Google Scholar] [CrossRef]
- Mao, Q.; Luo, S.; Ma, K.; Wu, J.; Tang, R.; Zhang, Y.; Bao, L.; Zhang, T. Research Advances in Ecological Assessment of Urban Greenspace. Acta Ecol. Sin. 2012, 32, 5589–5600. [Google Scholar]
- Nassauer, J.I. Landscape Planning and Conservation Biology: Systems Thinking Revisited. Conserv. Biol. 2006, 20, 677–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Chen, S.; Jiang, B.; Ren, Y.; Wang, H.; Vause, J.; Yu, H. Temporal Trend of Green Space Coverage in China and Its Relationship with Urbanization over the Last Two Decades. Sci. Total Environ. 2013, 442, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Forman, R.T.T. Land Mosaics. The Ecology of Landscapes and Regions; Camebridge University Press: Cambridge, UK, 1995; ISBN 978-0-521-47462-7. [Google Scholar]
- Liu, Y.; Feng, Y.; Zhao, Z.; Zhang, Q.; Su, S. Socioeconomic Drivers of Forest Loss and Fragmentation: A Comparison between Different Land Use Planning Schemes and Policy Implications. Land Use Policy 2016, 54, 58–68. [Google Scholar] [CrossRef]
- Leitão, A.B.; Ahern, J. Applying Landscape Ecological Concepts and Metrics in Sustainable Landscape Planning. Landsc. Urban Plan. 2002, 59, 65–93. [Google Scholar] [CrossRef]
- Hernando, A.; Velázquez, J.; Valbuena, R.; Legrand, M.; García-Abril, A. Influence of the Resolution of Forest Cover Maps in Evaluating Fragmentation and Connectivity to Assess Habitat Conservation Status. Ecol. Indic. 2017, 79, 295–302. [Google Scholar] [CrossRef]
- Jiao, M.; Hu, M.; Xia, B. Spatiotemporal Dynamic Simulation of Land-Use and Landscape-Pattern in the Pearl River Delta, China. Sustain. Cities Soc. 2019, 49, 101581. [Google Scholar] [CrossRef]
- Tao, Y.; Li, F.; Wang, R.; Zhao, D. Research Progress in the Quantitative Methods of Urban Green Space Patterns. Acta Ecol. Sin. 2013, 33, 2330–2342. [Google Scholar] [CrossRef]
- Crossman, N.D.; Bryan, B.A.; Ostendorf, B.; Collins, S. Systematic Landscape Restoration in the Rural-Urban Fringe: Meeting Conservation Planning and Policy Goals. Biodivers. Conserv. 2007, 16, 3781–3802. [Google Scholar] [CrossRef]
- Rutledge, D. Landscape Indices as Measures of the Effects of Fragmentation: Can Pattern Reflect Process? New Zealand Department of Conservation: Wellington, New Zealand, 2003; ISBN 0478223803.
- McGarigal, K.; Cushman, S.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. 2012. Available online: https://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 7 October 2021).
- Tian, Y.; Jim, C.Y.; Tao, Y.; Shi, T. Landscape Ecological Assessment of Green Space Fragmentation in Hong Kong. Urban For. Urban Green. 2011, 10, 79–86. [Google Scholar] [CrossRef]
- Vogt, P.; Ferrari, J.R.; Lookingbill, T.R.; Gardner, R.H.; Riitters, K.H.; Ostapowicz, K. Mapping Functional Connectivity. Ecol. Indic. 2009, 9, 64–71. [Google Scholar] [CrossRef]
- Marulli, J.; Mallarach, J. A GIS Methodology for Assessing Ecological Connectivity: Application to the Barcelona Metropolitan Area. Landsc. Urban Plan. 2005, 71, 243–262. [Google Scholar] [CrossRef]
- Mitsova, D.; Shuster, W.; Wang, X. A Cellular Automata Model of Land Cover Change to Integrate Urban Growth with Open Space Conservation. Landsc. Urban Plan. 2011, 99, 141–153. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A New Habitat Availability Index to Integrate Connectivity in Landscape Conservation Planning: Comparison with Existing Indices and Application to a Case Study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Saura, S.; Torné, J. Conefor Sensinode 2.2: A Software Package for Quantifying the Importance of Habitat Patches for Landscape Connectivity. Environ. Model. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- Pascual-Hortal, L.; Saura, S. Comparison and Development of New Graph-Based Landscape Connectivity Indices: Towards the Priorization of Habitat Patches and Corridors for Conservation. Landsc. Ecol. 2006, 21, 959–967. [Google Scholar] [CrossRef]
- Ostapowicz, K.; Vogt, P.; Riitters, K.H.; Kozak, J.; Estreguil, C. Impact of Scale on Morphological Spatial Pattern of Forest. Landsc. Ecol. 2008, 23, 1107–1117. [Google Scholar] [CrossRef]
- Soille, P. Morphological Image Analysis: Principles and Application; Springer: New York, NY, USA, 2003. [Google Scholar]
- Soille, P.; Vogt, P. Morphological Segmentation of Binary Patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Xu, F.; Yin, H.; Kong, F.; Xu, J. Developing Ecological Networks Based on Mspa and the Least-Cost Path Method: A Case Study in Bazhong Western New District. Acta Ecol. Sin. 2015, 35, 6425–6434. [Google Scholar]
- Chen, J.; Zuo, X.; Peng, J.S.; Ou, Z.; Sun, Z. Construction of Urban Ecological Networks Based on MSPA and Landscape Connectivity Analysisw A Case Study in Longyang District. J. West China For. Sci. 2020, 49, 118–123. [Google Scholar]
- Wiens, J.A. Spatial Scaling in Ecology. Funct. Ecol. 1989, 3, 385. [Google Scholar] [CrossRef]
- Wu, J. Hierarchy and Scaling: Extrapolating Information along a Scaling Ladder. Can. J. Remote Sens. 1999, 25, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Shen, W.; Sun, W.; Tueller, P.T. Empirical Patterns of the Effects of Changing Scale on Landscape Metrics. Landsc. Ecol. 2002, 17, 761–782. [Google Scholar] [CrossRef]
- Cushman, S.A.; Littell, J.; McGarigal, K. The Problem of Ecological Scaling in Spatially Complex, Nonequilibrium Ecological Systems; Cushman, S.A., Huettmann, F., Eds.; Spatial Complexity, Informatics, and Wildlife Conservation; Springer: Tokyo, Janpan, 2010; ISBN 978-4-431-87771-4. [Google Scholar]
- Yu, Y.; Yin, H.; Kong, F.; Wang, J.; Xu, W. Scale Effect of Nanjing Urban Green Infrastructure Network Pattern and Connectivity Analysis. Chin. J. Appl. Ecol. 2016, 27, 2119–2127. [Google Scholar]
- Chang, Q.; Liu, X.; Wu, J.; He, P. MSPA-Based Urban Green Infrastructure Planning and Management Approach for Urban Sustainability: Case Study of Longgang in China. J. Urban Plan. Dev. 2015, 141, 1–15. [Google Scholar] [CrossRef]
- Kong, F.; Nakagoshi, N. Spatial-Temporal Gradient Analysis of Urban Green Spaces in Jinan, China. Landsc. Urban Plan. 2006, 78, 147–164. [Google Scholar] [CrossRef]
- Uy, P.D.; Nakagoshi, N. Analyzing Urban Green Space Pattern and Eco-Network in Hanoi, Vietnam. Landsc. Ecol. Eng. 2007, 3, 143–157. [Google Scholar] [CrossRef]
- Sun, J.; Xia, H.; Lan, C.; Xin, K. A Gradient Analysis Based on the Buffer Zones of Urban Landscape Pattern of the Constructed Area in Guigang City, Guangxi, China. Acta Ecol. Sin. 2006, 26, 655–662. [Google Scholar] [CrossRef]
- Warren, P.S.; Ryan, R.L.; Lerman, S.B.; Tooke, K.A. Social and Institutional Factors Associated with Land Use and Forest Conservation along Two Urban Gradients in Massachusetts. Landsc. Urban Plan. 2011, 102, 82–92. [Google Scholar] [CrossRef]
- Karl, J.W.; Maurer, B.A. Multivariate Correlations between Imagery and Field Measurements across Scales: Comparing Pixel Aggregation and Image Segmentation. Landsc. Ecol. 2010, 25, 591–605. [Google Scholar] [CrossRef]
- Shao, G.; Wu, J. On the Accuracy of Landscape Pattern Analysis Using Remote Sensing Data. Landsc. Ecol. 2008, 23, 505–511. [Google Scholar] [CrossRef]
- Bruzzone, L.; Carlin, L. A Multilevel Context-Based System for Classification of Very High Spatial Resolution Images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2587–2600. [Google Scholar] [CrossRef] [Green Version]
- Tuia, D.; Ratle, F.; Pacifici, F.; Kanevski, M.F.; Emery, W.J. Active Learning Methods for Remote Sensing Image Classification; IEEE: New York, NY, USA, 2009; Volume 47, ISBN 1000121135. [Google Scholar]
- Blaschke, T. Object Based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Du, S.; Emery, W.J. Object-Based Convolutional Neural Network for High-Resolution Imagery Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3386–3396. [Google Scholar] [CrossRef]
- CPC. Report to the 18th National Congress of the CPC; CPC: Seattle, WA, USA, 2012. [Google Scholar]
- Bureau of Hangzhou Statistics. Hangzhou Statistical Yearbook; Bureau of Hangzhou Statistics: Hangzhou, China, 2020.
- Xue, X.; Yu, Z.; Zhu, S.; Zheng, Q.; Weston, M.; Wang, K.; Gan, M.; Xu, H. Delineating Urban Boundaries Using Landsat 8 Multispectral Data and VIIRS Nighttime Light Data. Remote Sens. 2018, 10, 799. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, X.; Chen, X.; Gao, Y.; Mi, J. GLC_FCS30-2020: Global Land Cover with Fine Classification System at 30m in 2020. Earth Syst. Sci. Data. 2020, 13, 2753–2776. [Google Scholar]
- Zhejiang Forestry Bureau Report on the Progress of the Forest Resource Inventory in Zhejiang Province. Available online: http://www.zjly.gov.cn/art/2017/2/22/art_1276365_5788187.html. (accessed on 9 October 2020).
- Drǎguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated Parameterisation for Multi-Scale Image Segmentation on Multiple Layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Vogt, P.; Riitters, K. GuidosToolbox: Universal Digital Image Object Analysis. Eur. J. Remote Sens. 2017, 50, 352–361. [Google Scholar] [CrossRef]
- Vogt, P. User Guide of GuidosToolbox; European Commission Joint Research Centre: Ispra, Italy, 2020. [Google Scholar]
- Wang, D.; Fang, S.; Yang, Z.; Wang, L.; Tang, W.; Li, Y.; Tong, C. A Regional Mapping Method for Oilseed Rape Based on HSV Transformation and Spectral Features. ISPRS Int. J. Geo-Inf. 2018, 7, 224. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- He, H.S.; DeZonia, B.E.; Mladenoff, D.J. An Aggregation Index (AI) to Quantify Spatial Patterns of Landscapes. Landsc. Ecol. 2000, 15, 591–601. [Google Scholar] [CrossRef]
- Kozak, J.; Ziółkowska, E.; Vogt, P.; Dobosz, M.; Kaim, D.; Kolecka, N.; Ostafin, K. Forest-Cover Increase Does Not Trigger Forest-Fragmentation Decrease: Case Study from the Polish Carpathians. Sustain. Switz. 2018, 10, 1472. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Yu, K.J.; Li, D.H. The Width of Ecological Corridor in Landscape Planning. Acta Ecol. Sin. 2005, 25, 2406–2412. [Google Scholar] [CrossRef]
- Budd, W.W.; Cohen, P.L.; Saunders, P.R.; Steiner, F.R. Stream Corridor Management in the Pacific Northwest: I. Determination of Stream-Corridor Widths. Environ. Manage. 1987, 11, 587–597. [Google Scholar] [CrossRef]
- Large, A.R.G.; Petts, G.E. Rehabilitation of River Margins; Blackwell Science: Hoboken, NJ, USA, 1994. [Google Scholar]
- Peterjohn, W.T.; Correll, D.L. Nutrient Dynamics in an Agricultural Watershed: Observations on the Role of A Riparian Forest. Ecology 1984, 65, 1466–1475. [Google Scholar] [CrossRef]
- Saura, S.; Vogt, P.; Velázquez, J.; Hernando, A.; Tejera, R. Key Structural Forest Connectors Can Be Identified by Combining Landscape Spatial Pattern and Network Analyses. For. Ecol. Manag. 2011, 262, 150–160. [Google Scholar] [CrossRef]
- Shi, H.; Xu, Y. Research on Planning Method of Urban Green Space Core Region Based on Landscape Connectivity. J. Nanjing For. Univ. 2011, 35, 51–56. [Google Scholar]
- Wickham, J.D.; Riitters, K.H.; Wade, T.G.; Vogt, P. A National Assessment of Green Infrastructure and Change for the Conterminous United States Using Morphological Image Processing. Landsc. Urban Plan. 2010, 94, 186–195. [Google Scholar] [CrossRef]
- Liu, H.; Remme, R.P.; Hamel, P.; Nong, H.; Ren, H. Supply and Demand Assessment of Urban Recreation Service and Its Implication for Greenspace Planning-A Case Study on Guangzhou. Landsc. Urban Plan. 2020, 203, 103898. [Google Scholar] [CrossRef]
- Zhang, H.; Han, M. Pocket Parks in English and Chinese Literature: A Review. Urban For. Urban Green. 2021, 61, 127080. [Google Scholar] [CrossRef]
- Zepp, H.; Groß, L.; Inostroza, L. And the Winner Is? Comparing Urban Green Space Provision and Accessibility in Eight European Metropolitan Areas Using a Spatially Explicit Approach. Urban For. Urban Green. 2020, 49, 126603. [Google Scholar] [CrossRef]
- Lam, N.S.N.; Quattrochi, D. On the Issues of Scale, Resolution, and Fractal Analysis in the Mapping Sciences. Prof. Geogr. 1992, 44, 88–98. [Google Scholar] [CrossRef]
- Moilanen, A.; Hanski, I. Metapopulation Dynamics: Effects of Habitat Quality and Landscape Structure. Ecology 1998, 79, 2503–2515. [Google Scholar] [CrossRef]
- Boyle, S.A.; Kennedy, C.M.; Torres, J.; Colman, K.; Pérez-Estigarribia, P.E.; De La Sancha, N.U. High-Resolution Satellite Imagery Is an Important yet Underutilized Resource in Conservation Biology. PLoS ONE 2014, 9, e86908. [Google Scholar] [CrossRef]
- Schneider, A.; Woodcock, C.E. Compact, Dispersed, Fragmented, Extensive? A Comparison of Urban Growth in Twenty-Five Global Cities Using Remotely Sensed Data, Pattern Metrics and Census Information. Urban Stud. 2008, 45, 659–692. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Yu, W.; Pickett, S.T.A. Quantifying Spatiotemporal Pattern of Urban Greenspace: New Insights from High Resolution Data. Landsc. Ecol. 2015, 30, 1165–1173. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J.; Gries, C. Multiscale Analysis of the Urbanization Pattern of the Phoenix Metropolitan Landscape of USA: Time, Space and Thematic Resolution. Landsc. Urban Plan. 2010, 94, 206–217. [Google Scholar] [CrossRef]
- Shen, W.; Jenerette, G.D.; Wu, J.; Gardner, R.H. Evaluating Empirical Scaling Relations of Pattern Metrics with Simulated Landscapes. Ecography 2004, 27, 459–469. [Google Scholar] [CrossRef]
- Gillespie, T.W.; Foody, G.M.; Rocchini, D.; Giorgi, A.P.; Saatchi, S. Measuring and Modelling Biodiversity from Space. Prog. Phys. Geogr. 2008, 32, 203–221. [Google Scholar] [CrossRef]
- Chen, G.; Hay, G.J.; St-Onge, B. A GEOBIA Framework to Estimate Forest Parameters from Lidar Transects, Quickbird Imagery and Machine Learning: A Case Study in Quebec, Canada. Int. J. Appl. Earth Obs. Geoinf. 2012, 15, 28–37. [Google Scholar] [CrossRef]
- Riitters, K.H.; Vogt, P.; Soille, P.; Kozak, J.; Estreguil, C. Neutral Model Analysis of Landscape Patterns from Mathematical Morphology. Landsc. Ecol. 2007, 22, 1033–1043. [Google Scholar] [CrossRef]
- Cheng, L.; Xia, N.; Jiang, P.; Zhong, L.; Pian, Y.; Duan, Y.; Huang, Q.; Li, M. Analysis of Farmland Fragmentation in China Modernization Demonstration Zone since “ Reform and Openness”: A Case Study of South Jiangsu Province. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
Landscape Element Type | Spatial Morphological Definition * | Landscape Ecological Meaning |
---|---|---|
Core | Interior area excluding perimeter | Larger habitat patches in foreground pixels, providing relatively larger habitats space for species; represents ecological sources of importance for protecting biodiversity |
Islet | Disjoint and too small to contain Core | Isolated, broken small patches that are not connected to each other, with low connectivity |
Bridge | Connected to different Core area | Narrow area connected the cores, representing a corridor that connects patches in an ecological network; essential for biological migration and landscape connectivity |
Loop | Connected to the same Core area | Similar to the Bridge, but only represents the corridors that communicate within the same core for the migration of internal species |
Edge | External object parameter | Transitional zone between the core zone and the external non-green space; its width varies according to the migration characteristics of different species |
Perforation | Internal object parameter | Transitional zone between the core zone and the internal non-green space; its width varies according to the migration characteristics of different species |
Branch | Connected at one end to Edge, perforation, Bridge, or Loop | Extending area of green space; only one end is connected to the green space |
MSPA Elements | Urban Gradient Scenario | 1. GCL_FCS_layer (30 m) | 2. Forest_layer (10 m) | 3. OBIA_layer (1 m) | Proportion Variation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Proportion in Foreground (%) | Proportion in Total (%) | Area (ha) | Element Number | Proportion in Foreground (%) | Proportion in Total (%) | Area (ha) | Element Number | Proportion in Foreground (%) | Proportion in Total (%) | Area (ha) | Element Number | 1→2 | 2→3 | 1→3 | Stdev. | ||
Foreground | A | - | 7.30 | 29.08 | - | - | 19.17 | 76.68 | - | - | 34.55 | 138.2 | - | ↗ | ↗ | ↗ | 13.66 |
B | - | 75.77 | 303.08 | - | - | 70.27 | 281.08 | - | - | 80.36 | 321.44 | - | ↘ | ↗ | ↗ | 5.05 | |
C | - | 89.27 | 357.08 | - | - | 87.93 | 351.72 | - | - | 92.16 | 368.64 | - | ↘ | ↗ | ↗ | 2.16 | |
Core | A | 4.83 | 0.35 | 1.4 | 4 | 0.28 | 0.05 | 0.21 | 5 | 1.35 | 0.47 | 1.88 | 15 | ↘ | ↗ | ↗ | 0.22 |
B | 90.24 | 68.37 | 273.48 | 3 | 78.91 | 55.45 | 221.80 | 6 | 68.59 | 55.12 | 220.48 | 12 | ↘ | ↘ | ↘ | 7.56 | |
C | 91.71 | 81.87 | 327.48 | 2 | 90.75 | 79.80 | 319.20 | 3 | 87.49 | 80.63 | 322.52 | 3 | ↘ | ↗ | ↘ | 1.04 | |
Islet | A | 71.30 | 5.18 | 20.72 | 48 | 49.32 | 9.45 | 37.8 | 61 | 55.15 | 19.06 | 76.24 | 607 | ↗ | ↗ | ↗ | 7.11 |
B | 0.55 | 0.42 | 1.68 | 2 | 1.33 | 0.94 | 3.76 | 30 | 2.55 | 2.05 | 8.20 | 156 | ↗ | ↗ | ↗ | 0.83 | |
C | 0.07 | 0.07 | 0.28 | 1 | 0.27 | 0.24 | 0.96 | 2 | 0.85 | 0.79 | 3.16 | 156 | ↘ | ↗ | ↗ | 0.38 | |
Bridge | A | 0.00 | 0.00 | 0.00 | 0 | 0.74 | 0.14 | 0.56 | 1 | 26.19 | 9.05 | 36.20 | 66 | ↗ | ↗ | ↗ | 5.19 |
B | 0.00 | 0.00 | 0.00 | 0 | 0.97 | 0.68 | 2.72 | 14 | 5.74 | 4.61 | 18.44 | 149 | ↗ | ↗ | ↗ | 2.49 | |
C | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0 | 0.44 | 0.41 | 1.64 | 36 | → | ↗ | ↗ | 0.24 | |
Loop | A | 0.00 | 0.00 | 0.00 | 0 | 24.62 | 4.72 | 18.88 | 5 | 5.11 | 1.77 | 7.08 | 13 | ↗ | ↘ | ↗ | 2.38 |
B | 0.00 | 0.00 | 0.00 | 0 | 0.35 | 0.25 | 1.00 | 3 | 4.79 | 3.85 | 15.40 | 280 | ↗ | ↗ | ↗ | 2.15 | |
C | 0.54 | 0.48 | 1.92 | 6 | 0.09 | 0.08 | 0.32 | 4 | 0.96 | 0.88 | 3.52 | 163 | ↘ | ↗ | ↗ | 0.40 | |
Edge | A | 13.60 | 0.99 | 3.96 | 4 | 4.40 | 0.84 | 3.36 | 8 | 6.51 | 2.25 | 9.00 | 20 | ↘ | ↗ | ↗ | 0.77 |
B | 8.08 | 6.12 | 24.48 | 5 | 15.68 | 11.02 | 44.08 | 8 | 12.39 | 9.96 | 39.84 | 15 | ↗ | ↘ | ↗ | 2.58 | |
C | 6.15 | 5.49 | 21.96 | 5 | 8.24 | 7.24 | 28.96 | 7 | 8.17 | 7.53 | 30.12 | 10 | ↗ | ↗ | ↗ | 1.10 | |
Perforation | A | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0 | → | → | → | 0.00 |
B | 0.00 | 0.00 | 0.00 | 0 | 0.99 | 0.70 | 2.80 | 2 | 4.01 | 3.22 | 12.88 | 13 | ↗ | ↗ | ↗ | 1.69 | |
C | 0.89 | 0.79 | 3.16 | 2 | 0.00 | 0.00 | 0.00 | 0 | 1.07 | 0.99 | 3.96 | 10 | ↘ | ↗ | ↗ | 0.52 | |
Branch | A | 10.27 | 0.75 | 3.00 | 6 | 20.64 | 3.96 | 15.84 | 77 | 5.68 | 1.96 | 7.84 | 221 | ↗ | ↘ | ↗ | 1.62 |
B | 1.13 | 0.86 | 3.44 | 18 | 1.76 | 1.24 | 4.96 | 89 | 1.93 | 1.55 | 6.20 | 538 | ↗ | ↗ | ↗ | 0.35 | |
C | 0.64 | 0.57 | 2.28 | 18 | 0.65 | 0.57 | 0.28 | 51 | 1.01 | 0.94 | 3.76 | 435 | ↘ | ↗ | ↗ | 0.21 | |
Background | A | - | 92.73 | 370.92 | - | - | 80.83 | 323.32 | - | - | 65.45 | 261.8 | - | ↘ | ↘ | ↘ | 13.68 |
B | - | 24.23 | 96.92 | - | - | 29.73 | 118.92 | - | - | 19.64 | 78.56 | - | ↗ | ↘ | ↘ | 5.05 | |
C | - | 10.73 | 42.92 | - | - | 12.07 | 48.28 | - | - | 7.84 | 31.36 | - | ↗ | ↘ | ↘ | 2.16 |
GCL_FCS_layer (30 m) | Forest_layer (10 m) | OBIA_layer (1 m) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | A | B | C | ||
PC | 0.0000093 | 0.49 | 0.71 | 0.0000086 | 0.37 | 0.70 | 0.011 | 0.39 | 0.67 | |
dPC (%) | ||||||||||
Core | First | 59.57 | 99.98 | 99.99 | 13.19 | 97.66 | 92.62 | 6.07 | 94.66 | 99.98 |
Second | 51.84 | 2.07 | 0.37 | 9.98 | 17.27 | 44.98 | 0.71 | 15.35 | 0.10 | |
Third | 27.39 | 0.11 | - | 4.71 | 3.32 | 0.47 | 0.40 | 3.07 | 0.05 | |
∑area (ha) | 1.44 | 280.35 | 335.70 | 0.23 | 235.52 | 339.03 | 1.87 | 220.68 | 322.84 | |
Bridge | First | - | - | 0.16 | 76.62 | 1.42 | 0.20 | 41.62 | 6.77 | 0.64 |
Second | - | - | 0.16 | 30.00 | 0.88 | - | 32.81 | 2.27 | 0.44 | |
Third | - | - | 0.05 | 28.52 | 0.50 | - | 24.48 | 2.15 | 0.32 | |
∑area (ha) | - | - | 0.72 | 0.97 | 9.06 | 0.32 | 42.90 | 31.94 | 4.23 | |
∑area (ha) | 1.44 | 280.35 | 335.70 | 1.20 | 235.58 | 339.35 | 44.77 | 252.62 | 327.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; An, W.; Gan, M.; Shahtahmassebi, A.; Ye, Z.; Huang, L.; Zhu, C.; Huang, L.; Zhang, J.; Wang, K. Spatial Grain Effects of Urban Green Space Cover Maps on Assessing Habitat Fragmentation and Connectivity. Land 2021, 10, 1065. https://doi.org/10.3390/land10101065
Lin Y, An W, Gan M, Shahtahmassebi A, Ye Z, Huang L, Zhu C, Huang L, Zhang J, Wang K. Spatial Grain Effects of Urban Green Space Cover Maps on Assessing Habitat Fragmentation and Connectivity. Land. 2021; 10(10):1065. https://doi.org/10.3390/land10101065
Chicago/Turabian StyleLin, Yue, Wenzhan An, Muye Gan, AmirReza Shahtahmassebi, Ziran Ye, Lingyan Huang, Congmou Zhu, Lu Huang, Jing Zhang, and Ke Wang. 2021. "Spatial Grain Effects of Urban Green Space Cover Maps on Assessing Habitat Fragmentation and Connectivity" Land 10, no. 10: 1065. https://doi.org/10.3390/land10101065
APA StyleLin, Y., An, W., Gan, M., Shahtahmassebi, A., Ye, Z., Huang, L., Zhu, C., Huang, L., Zhang, J., & Wang, K. (2021). Spatial Grain Effects of Urban Green Space Cover Maps on Assessing Habitat Fragmentation and Connectivity. Land, 10(10), 1065. https://doi.org/10.3390/land10101065