Model and Growth Stage Based Variability of the Irrigation Demand of Onion Crops with Predicted Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Models and Data
2.3. Methodology
Determination of Onion Phenological Growth Stages
2.4. Statistical Analysis
3. Results
3.1. Climate Change Projections over the Hessian Reed
3.2. Irrigation Water Demand of Onion
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- New, M.; Todd, M.; Hulme, M.; Jones, P. Precipitation measurements and trends in the twentieth century. Int. J. Climatol. 2001, 21, 1889–1922. [Google Scholar] [CrossRef]
- Franks, P.J.; Adams, M.A.; Amthor, J.S.; Barbour, M.M.; Berry, J.A.; Ellsworth, D.S.; Farquhar, G.D.; Ghannoum, O.; Lloyd, J.; McDowell, N.; et al. Sensitivity of plants to changing atmospheric CO2 concentration: From the geological past to the next century. New Phytol. 2013, 197, 1077–1094. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.S.; Ellsworth, D.S.; Smith, S.D. Functional responses of plants to elevated atmospheric CO2? Do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol. 2004, 162, 253–280. [Google Scholar] [CrossRef]
- Kimball, B.A.; Zhu, J.; Cheng, L.; Kobayashi, K.; Bindi, M. Responses of agricultural crops of free-air CO2 enrichment. J. Appl. Ecol. 2002, 13, 1323–1338. [Google Scholar]
- Bowes, G. Facing the Inevitable: Plants and Increasing Atmospheric CO2. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 309–332. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005, 165, 351–371. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.G.; Idson, S.B.; Kimball, B.A.; Baker, J.T.; Allen, L.H., Jr.; Mauney, J.R.; Radin, J.W.; Anderson, M.G. Effects of Air Temperature on Atmospheric CO2—Plant Growth Relationships; University of California Libraries: Berkeley, CA, USA, 1990. [Google Scholar]
- Cure, J.D.; Acock, B. Crop responses to carbon dioxide doubling: A literature survey. Agric. For. Meteorol. 1986, 38, 127–145. [Google Scholar] [CrossRef]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals and plants. Nature 2003, 421, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, A.F.; Karacostas, T.; Maheras, P.; Makrogiannis, T. Climatological aspects of extreme precipitation in Europe, related to mid-latitude cyclonic systems. Theor. Appl. Climatol. 2012, 107, 165–174. [Google Scholar] [CrossRef]
- Field, C.B. (Ed.) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Parry, M.L. (Ed.) Climate Change 2007—Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Anagnostopoulou, C.; Tolika, K. Extreme precipitation in Europe: Statistical threshold selection based on climatological criteria. Theor. Appl. Climatol. 2012, 107, 479–489. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, H.; Liang, C.; DU, L.; Li, H. Spatial and temporal variability of annual and seasonal precipitation over the desert region of China during 1951–2005. Hydrol. Process. 2010, 24, 2947–2959. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Smith, L.; Qian, T.; Dai, A.; Fasullo, J. Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data. J. Hydrometeorol. 2007, 8, 758–769. [Google Scholar] [CrossRef]
- Liu, B.; Xu, M.; Henderson, M.; Qi, Y. Observed trends of precipitation amount, frequency, and intensity in China, 1960–2000. J. Geophys. Res. 2005, 110, D08103. [Google Scholar] [CrossRef]
- Houghton, J.T. (Ed.) Climate Change 2001: The Scientific Basis; Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Kalvová, J.; Nemešová, I. Projections of climate change for the Czech Republic. Clim. Chang. 1997, 36, 41–64. [Google Scholar] [CrossRef]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, R.; Jones, R.; Kolli, R.K.; Kwon, W.K.; Laprise, R.; et al. Regional Climate Projections. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Wriedt, G.; Van der Velde, M.; Aloe, A.; Bouraoui, F. Estimating irrigation water requirements in Europe. J. Hydrol. 2009, 373, 527–544. [Google Scholar] [CrossRef]
- Shen, Y.; Li, S.; Chen, Y.; Qi, Y.; Zhang, S. Estimation of regional irrigation water requirement and water supply risk in the arid region of Northwestern China 1989–2010. Agric. Water Manag. 2013, 128, 55–64. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: II. Recommended documentation. Agric. Water Manag. 2011, 98, 921–929. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56; United Nations Food and Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- Lee, J.-L.; Huang, W.-C. Impact of Climate Change on the Irrigation Water Requirement in Northern Taiwan. Water 2014, 6, 3339–3361. [Google Scholar] [CrossRef]
- Brumbelow, K.; Georgakakos, A. An assessment of irrigation needs and crop yield for the United States under potential climate changes. J. Geophys. Res. 2001, 106, 27383–27405. [Google Scholar] [CrossRef]
- Rodríguez Díaz, J.A.; Weatherhead, E.K.; Knox, J.W.; Camacho, E. Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Reg. Environ. Chang. 2007, 7, 149–159. [Google Scholar] [CrossRef]
- Elgaali, E.; Garcia, L.A.; Ojima, D.S. High resolution modeling of the regional impacts of climate change on irrigation water demand. Clim. Chang. 2007, 84, 441–461. [Google Scholar] [CrossRef]
- De Silva, C.; Weatherhead, E.; Knox, J.; Rodriguez-Diaz, J. Predicting the impacts of climate change—A case study of paddy irrigation water requirements in Sri Lanka. Agric. Water Manag. 2007, 93, 19–29. [Google Scholar] [CrossRef]
- Yano, T.; Haraguchi, T.; Koriyama, M.; Aydin, M. Prediction of future change of water demand following global warming in the Cukurova region, Turkey. The Final Report of the Research Project on the Impact of Climate Changes on Agricultural Production System in Arid Areas (ICCAP). pp. 185–190. Available online: http://www.chikyu.ac.jp/iccap/ICCAP_Final_Report/5/7-crop_yano2.pdf (accessed on 8 September 2017).
- Parry, M.; Flexas, J.; Medrano, H. Prospects for crop production under drought: Research priorities and future directions. Ann. Appl. Biol. 2005, 147, 211–226. [Google Scholar] [CrossRef]
- Izaurralde, R.; Rosenberg, N.J.; Brown, R.A.; Thomson, A.M. Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States. Agric. For. Meteorol. 2003, 117, 97–122. [Google Scholar] [CrossRef]
- Mitchell, J.F.B.; Johns, T.C.; Eagles, M.; Ingram, W.J.; Davis, R.A. Towards the construction of climate change scenarios. Clim. Chang. 1999, 41, 547–581. [Google Scholar] [CrossRef]
- Weigel, A.P.; Liniger, M.A.; Appenzeller, C. Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Q. J. R. Meteorol. Soc. 2008, 134, 241–260. [Google Scholar] [CrossRef]
- Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, A.T.; Gregory, J.M.; Kitoh, A.; Knutti, R.; Murphy, J.M.; Noda, A.; et al. Global Climate Projections. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Vorderbrügge, T.; Miller, R.; Peter, M.; Sauer, S. Ableitung der nutzbaren Feldkapazität aus den Klassenzeichen der Bodenschätzung. DBG-Mitteilungen 2004, 104, 33–34. [Google Scholar]
- Hessian State Bureau of Statistics. Statistische Berichte: Die Gemüseerhebung in Hessen. CI3 mit CII; 2016. Available online: www.statistik.hessen.de (accessed on 8 September 2017).
- Berthold, G. Sicherstellung der Landwirtschaftlichen Produktion mit Zusatzwasserbedarf bei Veränderten Klimatischen Bedingungen—Maßnahmen für ein Nachhaltiges Grundwassermanagement Sowie Anbauempfehlungen für die Landwirtschaftliche Produktion im Hessischen Ried: Integriertes Klimaschutzprogramm Hessen INKLIM 2012. Projektbaustein II: Klimawandel und seine Folgen; Abschlussbericht, Hessisches Landesamt für Naturschutz, Umwelt und Geologie: Wiesbaden, Germany, 2008. [Google Scholar]
- Kreienkamp, F.; Spekat, A.; Enke, W. Ergebnisse Regionaler Szenarienläufe für Deutschland mit der Statistischen Methode WETTREG auf der Basis der SRES-Szenarios A2 und B1 Modelliert mit ECHAM5, MPI-OM: Bericht; CSC Climate Service Center Germany: Hamburg, Germany, 2011. [Google Scholar]
- Spekat, A.; Enke, W.; Kreienkamp, F. Neuentwicklung von Regional hoch Aufgelösten Wetterlagen für Deutschland und Bereitstellung Regionaler Klimaszenarios auf der Basis von Globalen Klimasimulationen mit dem Regionalisierungsmodell WETTREG auf der Basis von Globalen Klimasimulationen mit ECHAM5/MPI-OM T63L31 2010 bis 2100 für die SRES-Szenarios B1, A1B und A2: [Endbericht]; Forschungsprojekt im Auftrag des Umweltbundesamtes; Umweltbundesamt: Potsdam, Germany, 2007. [Google Scholar]
- Rockel, B.; Will, A.; Hense, A. The Regional Climate Model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Jacob, D.; Göttel, H.; Kotlarski, S.; Lorenz, P.; Sieck, K. (Eds.) Klimaauswirkungen und Anpassung in Deutschland: Phase 1: Erstellung regionaler Klimaszenarien für Deutschland; Umweltbundesamt: Dessau-Roßlau, Germany, 2008. [Google Scholar]
- Jacob, D.; Bärring, L.; Christensen, O.B.; Christensen, J.H.; Castro, M.; Déqué, M.; Giorgi, F.; Hagemann, S.; Hirschi, M.; Jones, R.; et al. An inter-comparison of regional climate models for Europe: Model performance in present-day climate. Clim. Chang. 2007, 81, 31–52. [Google Scholar] [CrossRef]
- Roeckner, E.; Bäuml, G.; Bonaventura, L.; Brokopf, R.; Esch, M.; Giorgetta, M.; Hagemann, S.; Kirchner, I.; Kornblueh, L.; Manzini, E.; et al. The Atmospheric General Circulation Model ECHAM5 PART I: Model Description; Max-Planck-Institut für Meteorologie: Hamburg, Germany, 2003. [Google Scholar]
- Roeckner, E.; Brokopf, R.; Esch, M.; Giorgette, M.; Hagemann, S.; Kornblueh, L.; Manzini, E.; Schlese, U.; Schulzweida, U. The Atmospheric General Circulation Model ECHAM5 Part II: Sensitivity of Simulated Climate to Horizontal and Vertical Resolution; Max-Planck-Institut für Meteorologie: Hamburg, Germany, 2004. [Google Scholar]
- Gordon, C.; Cooper, C.; Senior, C.A.; Banks, H.; Gregory, J.M.; Johns, T.C.; Mitchell, J.F.B.; Wood, R.A. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dyn. 2000, 16, 147–168. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (Eds.) Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Hartmann, J.D.; Pfülb, E.; Zengerle, K.H. Wasserverbrauch und Bewässerung von Gemüse: Ein Forschungsbericht; Gesellschaft zur Förderung der Forschungsanstalt: Geisenheim, Germany, 2000. [Google Scholar]
- Meier, U. BBCH Monograph. Growth Stages of Mono- and Dicotyledonous Plants; Blackwell Wissenschafts-Verlag: Berlin, Germany; Boston, MA, USA, 2001. [Google Scholar]
- Schröder, W.; Pesch, R.; Schönrock, S.; Harmens, H.; Mills, G.; Fagerli, H. Mapping correlations between nitrogen concentrations in atmospheric deposition and mosses for natural landscapes in Europe. Ecol. Indic. 2014, 36, 563–571. [Google Scholar] [CrossRef][Green Version]
- Jopp, F.; Reuter, H.; Breckling, B. Modelling Complex Ecological Dynamics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Daymond, A.J.; Wheeler, T.R.; Hadley, P.; Ellis, R.H.; Morison, J.I.L. The growth, development and yield of onion (Allium cepa L.) in response to temperature and CO2. J. Hortic. Sci. 2015, 72, 135–145. [Google Scholar] [CrossRef]
- Schmidt, G.; Schönrock, S.; Schröder, W. Plant Phenology as a Biomonitor for Climate Change in Germany; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Schmidt, G.; Holy, M.; Pesch, R.; Schröder, W. Changing plant phenology in Germany due to effects of global warming. Int. J. Clim. Chang. Impacts Responses 2010, 2, 73–84. [Google Scholar]
- Lancaster, J.E.; Triggs, C.M.; De Ruiter, J.M.; Gandar, P.W. Bulbing in Onions: Photoperiod and Temperature Requirements and Prediction of Bulb Size and Maturity. Ann. Bot. 1996, 78, 423–430. [Google Scholar] [CrossRef]
- Lercari, B.; Deitzer, G. Time-dependent effectiveness of far-red light on the photoperiod induction of bulb-formation in Allium cepa L. Photochem. Photobiol. 1987, 45, 831–835. [Google Scholar] [CrossRef]
- Wurr, D.; Hand, D.; Edmonson, R.; Fellows, J.; Hannah, M.; Cribb, D. Climate change: A response surface study of the effects of CO2 and temperature on the growth of beetroot, carrots and onions. J. Agric. Sci. 1998, 131, 125–133. [Google Scholar] [CrossRef]
- Brewster, J.L. The response of growth rate to temperature in seedlings of several Allium crop species. Ann. Appl. Biol. 1979, 93, 351–357. [Google Scholar] [CrossRef]
- Jasoni, R.; Kane, C.; Green, C.; Peffley, E.; Tissue, D.; Thompson, L.; Payton, P.; Paré, P.W. Altered leaf and root emissions from onion (Allium cepa L.) grown under elevated CO2 conditions. Environ. Exp. Bot. 2004, 51, 273–280. [Google Scholar] [CrossRef]
- Döll, P. Impact of Climate Change and Variability on Irrigation Requirements: A Global Perspective. Clim. Chang. 2002, 54, 269–293. [Google Scholar] [CrossRef]
- Fischer, G.; Tubiello, F.N.; van Velthuizen, H.; Wiberg, D.A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1083–1107. [Google Scholar] [CrossRef]
- Kadayifci, A.; Tuylu, G.İ.; Ucar, Y.; Cakmak, B. Crop water use of onion (Allium cepa L.) in Turkey. Agric. Water Manag. 2005, 72, 59–68. [Google Scholar] [CrossRef]
- Al-Jamal, M.; Sammis, T.; Ball, S.; Smeal, D. Computing the crop water production function for onion. Agric. Water Manag. 2000, 46, 29–41. [Google Scholar] [CrossRef]
- Al-Jamal, M.S.; Sammis, T.W.; Ball, S.; Smeal, D. Yield-based, irrigated onion crop coefficients. Appl. Eng. Agric. 1999, 15, 659–668. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water; FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1979. [Google Scholar]
- Rattin, J.E.; Assuero, S.G.; Sasso, G.O.; Tognetti, J.A. Accelerated storage losses in onion subjected to water deficit during bulb filling. Sci. Hortic. 2011, 130, 25–31. [Google Scholar] [CrossRef]
- Pelter, G.Q.; Mittelstadt, R.; Leib, B.G.; Redulla, C.A. Effects of water stress at specific growth stages on onion bulb yield and quality. Agric. Water Manag. 2004, 68, 107–115. [Google Scholar] [CrossRef]
- Enciso, J.; Wiedenfeld, B.; Jifon, J.; Nelson, S. Onion yield and quality response to two irrigation scheduling strategies. Sci. Hortic. 2009, 120, 301–305. [Google Scholar] [CrossRef]
- Martin de Santa Olalla, F.; Dominguez-Padilla, A.; Lopez, R. Production and quality of the onion crop (Allium cepa L.) cultivated under controlled deficit irrigation conditions in a semi-arid climate. Agric. Water Manag. 2004, 68, 77–89. [Google Scholar] [CrossRef]
- Pejić, B.; Gvozdanović Varga, J.; Milić, S.; Ignjatović Ćupina, A.; Krstić, D.; Ćupina, B. Effect of irrigation schedules on yield and water use of onion (Allium cepa L.). Afr. J. Biotechnol. 2011, 10, 2644–2652. [Google Scholar]
- Drost, D.; Grossl, P.; Koenig, R. Nutrient management of onions: A Utah perspective. In Proceedings of the Western Nutrient Management Conference, Salt Lake City, UT, USA, 1997; pp. 54–59. [Google Scholar]
- Ells, J.E.; McSay, A.E.; Soltanpour, P.N.; Schweissing, F.C.; Bartolo, M.E.; Kruse, E.G. Onion Irrigation and Nitrogen Leaching in the Arkansas Valley of Colorado, 1990–1991. HortTechnology 1993, 3, 184–187. [Google Scholar]
- Mohammadi, J.; Lamei, J.; Khasmakhi-Sabet, A.; Olfati, J.A.; Peyvast, G. Effect of irrigation methods and transplant size on onion cultivars yield and quality. J. Food Agric. Environ. 2010, 8, 158–160. [Google Scholar]
- Halvorson, A.D.; Bartolo, M.E.; Reule, C.A.; Berrada, A. Nitrogen Effects on Onion Yield Under Drip and Furrow Irrigation. Agron. J. 2008, 100, 1062–1069. [Google Scholar] [CrossRef]
- Al-Jamal, M.; Ball, S.; Sammis, T. Comparison of sprinkler, trickle and furrow irrigation efficiencies for onion production. Agric. Water Manag. 2001, 46, 253–266. [Google Scholar] [CrossRef]
- Moriondo, M.; Bindi, M.; Kundzewicz, Z.W.; Szwed, M.; Chorynski, A.; Matczak, P.; Radziejewski, M.; McEvoy, D.; Wreford, A. Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 657–679. [Google Scholar] [CrossRef]
- Kirby, J.M.; Mainuddin, M.; Mpelasoka, F.; Ahmad, M.D.; Palash, W.; Quadir, M.E.; Shah-Newaz, S.M.; Hossain, M.M. The impact of climate change on regional water balances in Bangladesh. Clim. Chang. 2016, 135, 481–491. [Google Scholar] [CrossRef]
- Erban, L.E.; Gorelick, S.M. Closing the irrigation deficit in Cambodia: Implications for transboundary impacts on groundwater and Mekong River flow. J. Hydrol. 2016, 535, 85–92. [Google Scholar] [CrossRef]
- Kirby, J.M.; Ahmad, M.D.; Mainuddin, M.; Palash, W.; Quadir, M.E.; Shah-Newaz, S.M.; Hossain, M.M. The impact of irrigation development on regional groundwater resources in Bangladesh. Agric. Water Manag. 2015, 159, 264–276. [Google Scholar] [CrossRef]
- Hunink, J.E.; Contreras, S.; Soto-García, M.; Martin-Gorriz, B.; Martinez-Álvarez, V.; Baille, A. Estimating groundwater use patterns of perennial and seasonal crops in a Mediterranean irrigation scheme, using remote sensing. Agric. Water Manag. 2015, 162, 47–56. [Google Scholar] [CrossRef]
- Berthold, G.; Hergesell, M. Klimafolgen in der Wasserwirtschaft (Grundwasser): Integriertes Klimaschutzprogramm Hessen INKLIM 2012. Projektbaustein II: Klimawandel und seine Folgen; Hessisches Landesamt für Naturschutz, Umwelt und Geologie: Wiesbaden, Germany, 2005. [Google Scholar]
Variable | C-CLM (ECHAM5) | C-CLM (HadCM3) | REMO (ECHAM5) | WETTREG 2010 (ECHAM5) | Unit |
---|---|---|---|---|---|
Period | 1961–2100 | 1951–2100 | 1951–2100 | 1961–2100 | |
Maximum air temperature | x | x | x | x | °C |
Daily mean air temperature | x | x | x | x | °C |
Minimum air temperature | x | x | x | x | °C |
Daily sum precipitation | x | x | x | x | mm |
Daily mean relative humidity | x | x | x | x | % |
Daily mean atmospheric pressure | x | x | x | x | hPa |
Daily mean vapor pressure | x | x | x | x | hPa |
Daily sum sunshine duration | x | --- | --- | x | h |
Daily mean cloud coverage | x | x | x | x | octas |
Daily mean wind speed | x | x | x | x | m/s |
Daily reference evapotranspiration (ET0) | x | --- | x | x | mm |
Daily global radiation | x | x | x | x | W/m2 |
Growth Stage | BBCH | Crop Coefficient | Cumulative Temperature from Sowing Date to… | Root Zone | |||
---|---|---|---|---|---|---|---|
1 | Sowing (bare ground) | --- | 0.15 | --- | 0–30 cm | ||
2 | After emergence | 09 | 0.7 | kc 1 | 269 | °Cd | |
3 | ≥5 leaves | 15 | 1.4 | kc 2 | 1036 | °Cd | 0–60 cm |
4 | ≥8 leaves | 18 | 1.7 | kc 3 | 1475 | °Cd | |
Harvest (bending leaves) | 47 | 0 | 1909 | °Cd | 0–90 cm |
Soil Type | AWC | AWC in Root Zone Depth of… | ||
---|---|---|---|---|
mm/dm | 30 cm | 60 cm | 90 cm | |
Sand (S) | 9 | 27 | 54 | 81 |
Light loamy sand (Sl) | 13 | 39 | 78 | 117 |
Loamy sand (lS) | 15 | 45 | 90 | 135 |
Loam rich sand (SL) | 19 | 57 | 114 | 171 |
Sandy loam (sL) | 20 | 60 | 120 | 180 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, N.; Zinkernagel, J. Model and Growth Stage Based Variability of the Irrigation Demand of Onion Crops with Predicted Climate Change. Water 2017, 9, 693. https://doi.org/10.3390/w9090693
Schmidt N, Zinkernagel J. Model and Growth Stage Based Variability of the Irrigation Demand of Onion Crops with Predicted Climate Change. Water. 2017; 9(9):693. https://doi.org/10.3390/w9090693
Chicago/Turabian StyleSchmidt, Nadine, and Jana Zinkernagel. 2017. "Model and Growth Stage Based Variability of the Irrigation Demand of Onion Crops with Predicted Climate Change" Water 9, no. 9: 693. https://doi.org/10.3390/w9090693