Simulating the Effects of Lake Wind Waves on Water and Solute Exchange across the Lakeshore Using Hydrus-2D
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Flume Experiments
2.1.1. Experimental Set Up and Design
2.1.2. Measurements and Analyses
2.2. Hydrus-2D Model Simulations
2.2.1. Model Description
2.2.2. Input Parameters
2.2.3. Initial and Boundary Conditions
2.3. Model Evaluation
3. Results
3.1. Groundwater Table
3.2. Subsurface Flow Patterns
3.3. Water Exchange
3.4. Solute Concentrations
3.5. Solute Exchange
3.6. Sensitivity Analysis
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, H.; Pinder, G.F. Investigation of Groundwater Contaminant Discharge into Tidally influenced Surface-water Bodies: Theoretical Analysis. Transp. Porous Media 2011, 89, 289–306. [Google Scholar] [CrossRef]
- Shaw, R.D.; Prepas, E.E. Groundwater-lake interactions: II. Nearshore seepage patterns and the contribution of ground water to lakes in central alberta. J. Hydrol. 1990, 119, 121–136. [Google Scholar] [CrossRef]
- Cheng, X.; Anderson, M.P. Numerical simulation of groundwater interaction with lakes allowing for fluctuating lake levels. GroundW. 1993, 31, 929–933. [Google Scholar] [CrossRef]
- Gosselin, D.C.; Khisty, M.J. Simulating the influence of two shallow, flow-through lakes on a groundwater system: Implications for groundwater mounds and hinge lines. Hydrogeol. J. 2001, 9, 476–486. [Google Scholar] [CrossRef]
- Shaw, G.D.; White, E.S.; Gammons, C.H. Characterizing groundwater—Lake interactions and its impact on lake water quality. J. Hydrol. 2013, 492, 69–78. [Google Scholar] [CrossRef]
- Kidmose, J.; Nilsson, B.; Engesgaard, P.; Frandsen, M.; Karan, S.; Landkildehus, F.; Søndergaard, M.; Jeppesen, E. Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): Implications for lake ecological state and restoration. Hydrogeol. J. 2013, 21, 1787–1802. [Google Scholar] [CrossRef]
- Shaw, R.D.; Shaw, J.F.H.; Fricker, H.; Prepas, E.E. An integrated approach to quantify groundwater transport of phosphorus to Narrow Lake, Alberta. Limnol. Oceanogr. 1990, 35, 870–886. [Google Scholar] [CrossRef]
- Lewandowski, J.; Meinikmann, K.; Nützmann, G.; Rosenberry, D.O. Groundwater—The disregarded component in lake water and nutrient budgets. Part 2: Effects of groundwater on nutrients. Hydrol. Process. 2015, 29, 2922–2955. [Google Scholar] [CrossRef]
- Gleeson, T.; Novakowski, K.; Cook, P.G.; Kyser, T.K. Constraining groundwater discharge in a large watershed: Integrated isotopic, hydraulic, and thermal data from the Canadian shield. Water Resour. Res. 2009, 45, W08402. [Google Scholar] [CrossRef]
- Kidmose, J.; Engesgaard, P.; Nilsson, B.; Laier, T.; Looms, M.C. Spatial Distribution of Seepage at a Flow-Through Lake: Lake Hampen, Western Denmark. Vadose Zone J. 2011, 10, 110–124. [Google Scholar] [CrossRef]
- Huang, P.; Liu, Z. The effect of wave-reduction engineering on sediment resuspension in a large, shallow, eutrophic lake (Lake Taihu). Ecol. Eng. 2009, 35, 1619–1623. [Google Scholar] [CrossRef]
- Smith, A.J.; Herne, D.E.; Turner, J.V. Wave effects on submarine groundwater seepage measurement. Adv. Water Resour. 2009, 32, 820–833. [Google Scholar] [CrossRef]
- Harvey, J.W.; Conklin, M.H.; Koelsch, R.S. Predicting changes in hydrologic retention in an evolving semi-arid alluvial stream. Adv. Water Resour. 2003, 26, 939–950. [Google Scholar] [CrossRef]
- Wilson, A.M.; Gardner, L.R. Tidally driven groundwater flow and solute exchange in a marsh: Numerical simulations. Water Resour. Res. 2006, 42, W01405. [Google Scholar] [CrossRef]
- Massel, S.R.; Przyborska, A.; Przyborski, M. Attenuation of wave-induced groundwater pressure in shallow water. Part 1. Oceanologia 2004, 46, 383–404. [Google Scholar]
- Boufadel, M.C.; Li, H.; Suidan, M.T.; Venosa, A.D. Tracer Studies in a Laboratory Beach Subjected to Waves. J. Environ. Eng. 2007, 133, 722–732. [Google Scholar] [CrossRef]
- Sous, D.; Lambert, A.; Vincent, R.; Michallet, H. Swash—Groundwater dynamics in a sandy beach laboratory experiment. Coast. Eng. 2013, 80, 122–136. [Google Scholar] [CrossRef]
- Turner, I.L.; Rau, G.C.; Austin, M.J.; Andersen, M.S. Groundwater fluxes and flow paths within coastal barriers: Observations from a large-scale laboratory experiment (BARDEX II). Coast. Eng. 2016, 113, 104–116. [Google Scholar] [CrossRef]
- Xin, P.; Robinson, C.; Li, L.; Barry, D.A.; Bakhtyar, R. Effects of wave forcing on a subterranean estuary. Water Resour. Res. 2010, 46, W12505. [Google Scholar] [CrossRef]
- Moore, W.S. The subterranean estuary: A reaction zone of ground water and sea water. Mar. Chem. 1999, 65, 111–125. [Google Scholar] [CrossRef]
- Taniguchi, M. Tidal effects on submarine groundwater discharge into the ocean. Geophys. Res. Lett. 2002, 29, 21–23. [Google Scholar] [CrossRef]
- Geng, X.; Boufadel, M.C.; Xia, Y.; Li, H.; Zhao, L.; Jackson, N.L.; Miller, R.S. Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach. J. Contam. Hydrol. 2014, 165, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.M.; Morris, J.T. The influence of tidal forcing on groundwater flow and nutrient exchange in a salt marsh-dominated estuary. Biogeochemistry 2012, 108, 27–38. [Google Scholar] [CrossRef]
- Anwar, N.; Robinson, C.; Barry, D.A. Influence of tides and waves on the fate of nutrients in a nearshore aquifer: Numerical simulations. Adv. Water Resour. 2014, 73, 203–213. [Google Scholar] [CrossRef]
- Li, L.; Barry, D.A. Wave-induced beach groundwater flow. Adv. Water Resour. 2000, 23, 325–337. [Google Scholar] [CrossRef]
- Belibassakis, K.A. Water-wave induced groundwater pressure and flow in variable bathymetry regions and sandy beaches by an enhanced coupled-mode model. Ocean Eng. 2012, 47, 104–118. [Google Scholar] [CrossRef]
- Rosenberry, D.O.; Lewandowski, J.; Meinikmann, K.; Nützmann, G. Groundwater—The disregarded component in lake water and nutrient budgets. Part 1: Effects of groundwater on hydrology. Hydrol. Process. 2015, 13, 2895–2921. [Google Scholar] [CrossRef]
- Rimmer, A.; Hurwitz, S.; Gvirtzman, H. Spatial and Temporal Characteristics of Saline Springs: Sea of Galilee, Israel. GroundWater 1999, 37, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y. Water Environment and Pollution control of Taihu Lake; China Science Press: Beijing, China, 2001. [Google Scholar]
- Carniello, L.; Alpaos, A.D.; Defina, A. Modeling wind waves and tidal flows in shallow micro-tidal basins. Estuar. Coast. Shelf Sci. 2011, 92, 263–276. [Google Scholar] [CrossRef]
- Cartwright, N.; Nielsen, P.; Li, L. Experimental observations of watertable waves in an unconfined aquifer with a sloping boundary. Adv. Water Resour. 2004, 27, 991–1004. [Google Scholar] [CrossRef]
- Šimůnek, J.; Van Genuchten, M.T.; Šejna, M. Development and applications of the HYDRUS and STANMOD software packages, and related codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef]
- Šimůnek, J.; Van Genuchten, M.T.; Šejna, M. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J. 2016, 15, 10–2136. [Google Scholar] [CrossRef]
- Šimůnek, J.; Van Genuchten, M.T.; Šejna, M. The HYDRUS software package for simulating the two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated porous media. PC-Progress: Prague, Czech Republic, 2012; p. 258. [Google Scholar]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Li, Y.; Šimůnek, J.; Zhang, Z.; Huang, M.; Ni, L.; Zhu, L.; Hua, J.; Chen, Y. Water flow and nitrate transport through a lakeshore with different revetment materials. J. Hydrol. 2015, 520, 123–133. [Google Scholar] [CrossRef]
- Šimůnek, J.; Van Genuchten, M.T.; Šejna, M. HYDRUS: Model use, calibration, and validation. Am. Soc. Agric. Biol. Eng. 2012, 55, 1261–1274. [Google Scholar]
- Boufadel, M.C.; Xia, Y.; Li, H. Modeling solute transport and transient seepage in a laboratory beach under tidal influence. Environ. Modell. Softw. 2011, 26, 899–912. [Google Scholar] [CrossRef]
- Winter, T.C. Numerical simulation of steady-state three dimensional groundwater flow near lakes. Water Resour. Res. 1978, 14, 245–254. [Google Scholar] [CrossRef]
- McBride, M.; Pfannkuch, H.O. Distribution of seepage within lake beds. J. Res. USA Geol. Surv. 1975, 3, 505–512. [Google Scholar]
- Lee, T.M. Hydrogeologic Controls on the Groundwater Interactions with an Acidic Lake in Karst Terrain, Lake Barco, Florida. Water Resour. Res. 1996, 32, 831–844. [Google Scholar] [CrossRef]
- Burnett, W.C.; Aggarwal, P.K.; Aureli, A.; Bokuniewicz, H.; Cable, J.E.; Charette, M.A.; Kontar, E.; Krupa, S.; Kulkarni, K.M.; Loveless, A.; et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 2006, 367, 498–543. [Google Scholar] [CrossRef] [PubMed]
- Gardner, L.R. A modeling study of the dynamics of pore water seepage from intertidal marsh sediments. Estuar. Coast. Shelf Sci. 2005, 62, 691–698. [Google Scholar] [CrossRef]
- Gardner, L.R.; Wilson, A.M. Comparison of four numerical models for simulating seepage from salt marsh sediments. Estuar. Coast. Shelf Sci. 2006, 69, 427–437. [Google Scholar] [CrossRef]
- Turner, I.L.; Coates, B.P.; Acwort, R.I. Tides, Waves and the Super-elevation of Groundwater at the Coast. J. Coast. Res. 1997, 13, 46–60. [Google Scholar]
- Rosenberry, D.O.; Sheibley, R.W.; Cox, S.E.; Simonds, F.W.; Naftz, D.L. Temporal variability of exchange between groundwater and surface water based on high-frequency direct measurements of seepage at the sediment-water interface. Water Resour. Res. 2013, 49, 2975–2986. [Google Scholar] [CrossRef]
- Longuet-Higgins, F. Wave set-up, percolation and underflow in the surf zone. Proc. R. Soc. London A 1983, 390, 283–291. [Google Scholar] [CrossRef]
- Lenkopane, M.; Werner, A.D.; Lockington, D.A.; Li, L. Influence of variable salinity conditions in a tidal creek on riparian groundwater flow and salinity dynamics. J. hydrol. 2009, 375, 536–545. [Google Scholar] [CrossRef]
- Gibbes, B.; Robinson, C.; Li, L.; Lockington, D.; Li, H. Tidally driven pore water exchange within offshore intertidal sandbanks: Part II numerical simulations. Estuar. Coast. Shelf Sci. 2008, 80, 472–482. [Google Scholar] [CrossRef]
- Yim, C.; Mohsen, M. Simulation of tidal effects on contaminant transport in porous media. GroundWater 1992, 30, 78–86. [Google Scholar] [CrossRef]
- Taniguchi, M.; Burnett, W.C.; Smith, C.F.; Paulsen, R.J.; O’rourke, D.; Krupa, S.L.; Christoff, J.L. Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the Northeastern Gulf of Mexico. Biogeochemistry 2003, 66, 35–53. [Google Scholar] [CrossRef]
- Hosono, T.; Ono, M.; Burnett, W.C.; Tokunaga, T.; Taniguchi, M.; Akimichi, T. Spatial Distribution of Submarine Groundwater Discharge and Associated Nutrients within a Local Coastal Area. Environ. Sci. Technol. 2012, 46, 5319–5326. [Google Scholar] [CrossRef] [PubMed]
Case | Condition | IP Boundary | Pollution Source | OF Boundary | Running Time |
---|---|---|---|---|---|
GDL | Steady-state | 60 cm, 0 mg L−1 | 10 cm day−1, 160 mg L−1 | Constant head of 38.5 cm, zero gradient ** | 30 days |
No-wave * | Constant head of 38.5 cm, zero gradient ** | 1 day | |||
Wave * | Variable head (waves), 80 mg L−1 | 1 day | |||
LRG | Steady-state | 20 cm, zero gradient ** | 10 cm day−1, 160 mg L−1 | Constant head of 38.5 cm, 80 mg L−1 | 30 days |
No-wave * | Constant head of 38.5 cm, 80 mg L−1 | 1 day | |||
Wave * | Variable head (waves) , 80 mg L−1 | 1 day |
Case | BC at Line OF * | Ks (cm day−1) | P (s) | A (cm) | CEWF *** (cm2 day−1) | CECF *** (mg cm−1 day−1) | ||||
---|---|---|---|---|---|---|---|---|---|---|
AML ** | BML ** | Total | AML ** | BML ** | Total | |||||
GDL | No-wave | 338.9 | 3 | 8.5 | −79 | −747 | −826 | −26 | −101 | −128 |
Wave | 338.9 | 3 | 8.5 | 1063 | −1590 | −527 | 427 | −463 | −36 | |
No-wave | 677.8 | 3 | 8.5 | −165 | −1557 | −1722 | −29 | −108 | −137 | |
Wave | 677.8 | 3 | 8.5 | 2043 | −3261 | −1218 | 826 | −935 | −110 | |
No-wave | 169.5 | 3 | 8.5 | −26 | −244 | −270 | −16 | −63 | −79 | |
Wave | 169.5 | 3 | 8.5 | 369 | −475 | −105 | 176 | −121 | 55 | |
Wave | 338.9 | 6 | 8.5 | 1073 | −1589 | −516 | 496 | −456 | 39 | |
Wave | 338.9 | 3 | 17.0 | 1656 | −2032 | −376 | 667 | −625 | 42 | |
LRG | No-wave | 338.9 | 3 | 8.5 | 36 | 376 | 412 | 26 | 206 | 232 |
Wave | 338.9 | 3 | 8.5 | 1742 | −960 | 832 | 736 | −493 | 243 | |
No-wave | 677.8 | 3 | 8.5 | 73 | 759 | 412 | 53 | 416 | 469 | |
Wave | 677.8 | 3 | 8.5 | 3270 | −1836 | 1434 | 1512 | −951 | 561 | |
No-wave | 169.5 | 3 | 8.5 | 11 | 116 | 128 | 8 | 64 | 72 | |
Wave | 169.5 | 3 | 8.5 | 597 | −280 | 317 | 279 | −145 | 133 | |
Wave | 338.9 | 6 | 8.5 | 1783 | −959 | 824 | 769 | −496 | 272 | |
Wave | 338.9 | 3 | 17.0 | 2489 | −1496 | 993 | 992 | −763 | 229 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Šimůnek, J.; Wang, S.; Zhang, W.; Yuan, J. Simulating the Effects of Lake Wind Waves on Water and Solute Exchange across the Lakeshore Using Hydrus-2D. Water 2017, 9, 566. https://doi.org/10.3390/w9080566
Li Y, Šimůnek J, Wang S, Zhang W, Yuan J. Simulating the Effects of Lake Wind Waves on Water and Solute Exchange across the Lakeshore Using Hydrus-2D. Water. 2017; 9(8):566. https://doi.org/10.3390/w9080566
Chicago/Turabian StyleLi, Yong, Jirka Šimůnek, Shuang Wang, Weiwei Zhang, and Jiahui Yuan. 2017. "Simulating the Effects of Lake Wind Waves on Water and Solute Exchange across the Lakeshore Using Hydrus-2D" Water 9, no. 8: 566. https://doi.org/10.3390/w9080566