# Positive Surge Propagation in Sloping Channels

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Model

#### An Approximate Analytical Solution

## 3. Numerical and Laboratory Experiments

#### 3.1. Laboratory Setup and Experimental Procedures

#### 3.2. The Numerical Model

## 4. Discussion

#### 4.1. Comparison between the 0D Model Prediction and the Laboratory Experiments

#### 4.2. Comparison between Model Prediction and the Numerical Experiments

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Appendix A. Numerical Solution of Model Equations

## References

- Castro-Orgaz, O.; Chanson, H. Ritter’s dry-bed dam-break flows: Positive and negative wave dynamics. Environ. Fluid Mech.
**2017**, 17, 665–694. [Google Scholar] [CrossRef] - Triki, A. Resonance of free-surface waves provoked by floodgate maneuvers. J. Hydrol. Eng.
**2014**, 19, 1124–1130. [Google Scholar] [CrossRef] - Triki, A. Further investigation on the resonance of free-surface waves provoked by floodgate maneuvers: Negative surge waves. Ocean Eng.
**2017**, 133, 133–141. [Google Scholar] [CrossRef] - Valiani, A.; Caleffi, V.; Zanni, A. Case Study: Malpasset Dam-Break Simulation using a Two-Dimensional Finite Volume Method. J. Hydraul. Eng. ASCE
**2002**, 128, 460–472. [Google Scholar] [CrossRef] - Viero, D.P.; D’Alpaos, A.; Carniello, L.; Defina, A. Mathematical modeling of flooding due to river bank failure. Adv. Water Resour.
**2013**, 59, 82–94. [Google Scholar] [CrossRef] - Favre, H. Etude Théoretique et Expérimentale des Ondes de Translation Dans les Canaux Découverts; Dunod: Paris, France, 1935. [Google Scholar]
- Benjamin, T.B.; Lighthill, M.J. On cnoidal waves and bores. Proc. R. Soc. Lond. Ser. A
**1954**, 224, 448–460. [Google Scholar] [CrossRef] - Peregrin, D.H. Calculations of the development of an undular bore. J. Fluid Mech.
**1966**, 25, 321–330. [Google Scholar] [CrossRef] - Chanson, H. Undular Tidal Bores: Basic Theory and Free-surface Characteristics. J. Hydraul. Eng. ASCE
**2010**, 136, 940–944. [Google Scholar] [CrossRef] - Chanson, H. Turbulent shear stresses in hydraulic jumps, bores and decelerating surges. Earth Surf. Process. Landf.
**2011**, 36, 180–189. [Google Scholar] [CrossRef] - Khezri, N.; Chanson, H. Undular and Breaking Tidal Bores on Fixed and Movable Gravel Beds. J. Hydraul. Res.
**2012**, 50, 353–363. [Google Scholar] [CrossRef] - Docherty, J.; Chanson, H. Physical modeling of unsteady turbulence in breaking tidal bores. J. Hydraul. Eng. ASCE
**2012**, 138, 412–419. [Google Scholar] [CrossRef] - Leng, X.; Chanson, H. Coupling between free-surface fluctuations, velocity fluctuations and turbulent Reynolds stresses during the upstream propagation of positive surges, bores and compression waves. Environ. Fluid Mech.
**2016**, 16, 695–719. [Google Scholar] [CrossRef] - Ben Meftah, M.; Mossa, M.; Pollio, A. Considerations on shock wave/boundary layer interaction in undular hydraulic jumps in horizontal channels with a very high aspect ratio. Eur. J. Mech. B Fluids
**2010**, 29, 415–429. [Google Scholar] [CrossRef] - Castro-Orgaz, O.; Chanson, H. Minimum Specific Energy and Transcritical Flow in Unsteady Open-Channel Flow. J. Irrig. Drain. Eng. ASCE
**2016**, 142, 351–363. [Google Scholar] [CrossRef] - Leng, X.; Chanson, H. Upstream Propagation of Surges and Bores: Free-Surface Observations. Coast. Eng. J.
**2017**, 59, 1750003. [Google Scholar] [CrossRef] - Stoesser, T.; McSherry, R.; Fraga, B. Secondary Currents and Turbulence over a Non-Uniformly Roughened Open-Channel Bed. Water
**2015**, 7, 4896–4913. [Google Scholar] [CrossRef] - Viero, D.P.; Defina, A. Extended theory of hydraulic hysteresis in open channel flow. J. Hydraul. Eng. ASCE
**2017**, 143, 06017014. [Google Scholar] - Viero, D.P.; Defina, A. Multiple states in the flow through a sluice gate. J. Hydraul. Res.
**2017**. under review. [Google Scholar] - Viero, D.P.; Pradella, I.; Defina, A. Free surface waves induced by vortex shedding in cylinder arrays. J. Hydraul. Res.
**2017**, 55, 16–26. [Google Scholar] [CrossRef] - Henderson, F.M. Open-Channel Flow; McMillan Publishing Co.: New York, NY, USA, 1966. [Google Scholar]
- Defina, A.; Susin, F.M.; Viero, D.P. Bed friction effects on the stability of a stationary hydraulic jump in a rectangular upward sloping channel. Phys. Fluids
**2008**, 20, 036601. [Google Scholar] [CrossRef] - Visconti, F.; Stefanon, L.; Camporeale, C.; Susin, F.; Ridolfi, L.; Lanzoni, S. Bed evolution measurement with flowing water in morphodynamics experiments. Earth Surf. Process. Landf.
**2012**, 37, 818–827. [Google Scholar] [CrossRef] - Defina, A.; Susin, F.M.; Viero, D.P. Numerical study of the Guderley and Vasilev reflections in steady two-dimensional shallow water flow. Phys. Fluids
**2008**, 20, 097102. [Google Scholar] [CrossRef] - Defina, A.; Viero, D.P.; Susin, F.M. Numerical simulation of the Vasilev reflection. Shock Waves
**2008**, 18, 235–242. [Google Scholar] [CrossRef] - Viero, D.P.; Susin, F.; Defina, A. A note on weak shock wave reflection. Shock Waves
**2013**, 23, 505–511. [Google Scholar] [CrossRef] - Begnudelli, L.; Sanders, B.F. Unstructured Grid Finite-Volume Algorithm for Shallow-Water Flow and Scalar Transport with Wetting and Drying. J. Hydraul. Eng. ASCE
**2006**, 132, 371–384. [Google Scholar] [CrossRef] - Defina, A.; Viero, D.P. Open channel flow through a linear contraction. Phys. Fluids
**2010**, 22, 036602. [Google Scholar] [CrossRef] - Begnudelli, L.; Sanders, B.F.; Bradford, S.F. Adaptive Godunov-Based Model for Flood Simulation. J. Hydraul. Eng. ASCE
**2008**, 134, 714–725. [Google Scholar] [CrossRef] - Sanders, B.F. Integration of a shallow water model with a local time step. J. Hydraul. Res.
**2008**, 46, 466–475. [Google Scholar] [CrossRef] - Koch, C.; Chanson, H. Turbulence measurements in positive surges and bores. J. Hydraul. Res.
**2009**, 47, 29–40. [Google Scholar] [CrossRef] - Prüser, H.H.; Zielke, W. Undular bores (Favre Waves) in Open Channels Theory and Numerical Simulation. J. Hydraul. Res.
**1994**, 32, 337–354. [Google Scholar] [CrossRef] - Castro-Orgaz, O.; Hager, W.H.; Dey, S. Depth-averaged model for undular hydraulic jump. J. Hydraul. Res.
**2015**, 53, 351–363. [Google Scholar] [CrossRef] - Sandover, J.A.; Ziekiewicz, P. Experiments on Surge Waves. Water Power
**1957**, 9, 418–424. [Google Scholar] - Treske, A. Undular bores (Favre-waves) in open channels—Experimental studies. J. Hydraul. Res.
**1994**, 32, 355–370. [Google Scholar] [CrossRef]

**Figure 1.**Schematic of the surge propagating upstream against a uniform flow of depth ${Y}_{0}$ and velocity ${U}_{0}$, with notation.

**Figure 2.**Plot of $\Phi \left({F}_{0}\right)$ as a function of ${F}_{0}$. White circles denote the results of the 0D model, the black line is the approximation (10). The inset shows the same plot, with $\Phi \left({F}_{0}\right)$ on the log-scale.

**Figure 3.**(

**a**) coefficients ${k}_{1}$ and ${k}_{2}$ as they vary with ${F}_{0}$ (symbols denote the numerical solution of the 0D model, full lines are the approximation given by Equation (12)); (

**b**) wave front velocity, a, and height, $\Delta Y$, and the position of the front, L, as a function of time for ${F}_{0}=0.65$ (full lines denote the numerical solution of the 0D model, dashed lines denote the analytical solution); (

**c**) same as (

**b**) for ${F}_{0}=0.60$.

**Figure 4.**Free surface elevation, h, measured by the five ultrasonic probes. (

**a**) run 20 (s = 0.001, ${Y}_{0}$ = 0.073 m, ${U}_{0}$ = 0.50 m/s, ${F}_{0}$ = 0.59); (

**b**) run 33 (s = 0.0052, ${Y}_{0}$ = 0.011 m, ${U}_{0}$ = 0.43 m/s, ${F}_{0}$ = 1.31).

**Figure 5.**Dimensionless time variation of the flow depth during the surge propagation: red and black lines denote the 0D model and experimental results, respectively; each curve is offset vertically by 0.2. (

**a**) run 3 (s = 0.0002, ${Y}_{0}$ = 0.084 m, ${U}_{0}$ = 0.34 m/s, ${F}_{0}$ = 0.37); (

**b**) run 12 (s = 0.0005, ${Y}_{0}$ = 0.102 m, ${U}_{0}$ = 0.47 m/s, ${F}_{0}$ = 0.47); (

**c**) run 22 (s = 0.010, ${Y}_{0}$ = 0.058 m, ${U}_{0}$ = 0.46 m/s, ${F}_{0}$ = 0.61); (

**d**) run 32 (s = 0.0022, ${Y}_{0}$ = 0.085 m, ${U}_{0}$ = 0.81 m/s, ${F}_{0}$ = 0.89); (

**e**) run 33 (s = 0.0052, ${Y}_{0}$ = 0.011 m, ${U}_{0}$ = 0.43 m/s, ${F}_{0}$ = 1.31); (

**f**) run 37 (s = 0.0052, ${Y}_{0}$ = 0.032 m, ${U}_{0}$ = 0.81 m/s, ${F}_{0}$ = 1.45).

**Figure 6.**Relative maximum depth at the first wave crest, ${Y}_{max}/{Y}_{0}$, as a function of surge Froude number, ${F}_{S}$. The black curve denotes the conjugate depths ratio as given by Equation (14); the dashed curve is from Equation (15), the dot-dashed line denotes the breaking criterion for a solitary wave $({Y}_{max}-{Y}_{0})/{Y}_{0}$ = 0.78.

**Figure 7.**Comparison between the 0D model (black solid lines) and the numerical solution of the Shallow Water Equations using the Finite Volumes model (red dashed lines), in terms of dimensionless position of the front to dimensionless time (

**a**–

**e**), and dimensionless front height (

**f**–

**h**) and surge celerity (

**i**–

**m**) to dimensionless position of the front; run 3 (s = 0.0002, ${Y}_{0}$ = 0.084 m, ${U}_{0}$ = 0.34 m/s, ${F}_{0}$ = 0.37), run 12 (s = 0.0005, ${Y}_{0}$ = 0.102 m, ${U}_{0}$ = 0.47 m/s, ${F}_{0}$ = 0.47), run 22 (s = 0.001, ${Y}_{0}$ = 0.058 m, ${U}_{0}$ = 0.46 m/s, ${F}_{0}$ = 0.61), Run 30 (s = 0.0022, ${Y}_{0}$ = 0.037 m, ${U}_{0}$ = 0.52 m/s, ${F}_{0}$ = 0.87), and run 33 (s = 0.0052, ${Y}_{0}$ = 0.011 m, ${U}_{0}$ = 0.43 m/s, ${F}_{0}$ = 1.31). Horizontal dashed lines denote the theoretical limit for a stationary jump (panel

**h**, Equation (14) with ${F}_{S}={F}_{0}$) and for an infinitesimal perturbation (panels

**i**–

**l**, $a={c}_{0}-{U}_{0}$, i.e., $a/{c}_{0}=1-{F}_{0}$).

**Figure 8.**Free surface profiles at different times, t/$\tau $, after sluice gate closure; (

**a**) t/$\tau $ = 0.16, 0.32, 0.48, 0.64, 0.80 (run 3); (

**b**) t/$\tau $ = 0.61, 1.21, 1.82, 2.43, 3.03 (run 24). $h/{Y}_{0}$ is the non-dimensional free surface elevation and $xs/{Y}_{0}$ is the non-dimensional coordinate in the flow direction, positive upstream.

**Table 1.**Summary of experimental conditions. Runs 1 to 41 are performed in the long flume, runs 42 to 73 are performed in the short flume; ${F}_{S}$ is the surge Froude number defined by Equation (13).

Run | s | ${{U}}_{0}$ | ${{Y}}_{0}$ | ${{F}}_{0}$ | ${{F}}_{{S}}$ |
---|---|---|---|---|---|

(-) | (m/s) | (m) | (-) | (-) | |

1–7 | 0.0002 | 0.23–0.41 | 0.045–0.165 | 0.31–0.35 | 1.19–1.28 |

8–14 | 0.0005 | 0.27–0.51 | 0.038–0.131 | 0.45–0.46 | 1.31–1.36 |

15–23 | 0.0010 | 0.24–0.60 | 0.022–0.112 | 0.53–0.61 | 1.28–1.49 |

24–32 | 0.0022 | 0.31–0.81 | 0.015–0.085 | 0.70–0.86 | 1.46–1.69 |

33–41 | 0.0052 | 0.43–1.13 | 0.011–0.062 | 1.08–1.41 | 1.75–2.17 |

42–49 | 0.0005 | 0.18–0.43 | 0.047–0.154 | 0.26–0.35 | 1.18–1.25 |

50–57 | 0.00075 | 0.23–0.47 | 0.036–0.142 | 0.38–0.41 | 1.25–1.34 |

58–65 | 0.0010 | 0.25–0.53 | 0.034–0.126 | 0.43–0.48 | 1.28–1.38 |

66–73 | 0.0025 | 0.32–0.72 | 0.026–0.093 | 0.64–0.81 | 1.39–1.67 |

**Table 2.**Summary of numerical conditions. ${k}_{St}$ is the roughness coefficient in the Strickler formula for uniform flow.

s | ${{k}}_{{St}}$ | ${{F}}_{0}$ |
---|---|---|

(-) | (m${}^{1/3}$s${}^{-1}$) | (-) |

0.0002 | 30–90 | 0.31–0.35 |

0.0005 | 25–95 | 0.45–0.46 |

0.0010 | 15–90 | 0.53–0.61 |

0.0020 | 20–90 | 0.53–0.61 |

0.0050 | 80–90 | 1.30–1.75 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Viero, D.P.; Peruzzo, P.; Defina, A. Positive Surge Propagation in Sloping Channels. *Water* **2017**, *9*, 518.
https://doi.org/10.3390/w9070518

**AMA Style**

Viero DP, Peruzzo P, Defina A. Positive Surge Propagation in Sloping Channels. *Water*. 2017; 9(7):518.
https://doi.org/10.3390/w9070518

**Chicago/Turabian Style**

Viero, Daniele Pietro, Paolo Peruzzo, and Andrea Defina. 2017. "Positive Surge Propagation in Sloping Channels" *Water* 9, no. 7: 518.
https://doi.org/10.3390/w9070518