Do Consumers of Environmentally Friendly Farming Products in Downstream Areas Have a WTP for Water Quality Protection in Upstream Areas?
Abstract
:1. Introduction
2. Method
2.1. Study Area
2.2. Downstream Consumers Survey: Data and Study Design
2.3. Downstream Consumers Survey: WTP Elicitation Formats
2.4. Downstream Consumer’s Survey: Empirical Model
2.5. Upstream Farmers’ Data Collection and Study Design
2.6. Calculation of Income Loss of Environmentally Friendly Farmers during Transition Period
3. Result
3.1. Downstream Citizens’ WTP for Water Quality Improvement through EFF
3.2. Key Factors Affecting Downstream Willingness to Pay for the Water Quality Improvement through the Adoption of EFF
3.3. Upstream Farmers’ Response and Reasons to Change Farming Technique to EFF
3.4. A Comparison between Income Loss of Upstream Farmer and Aggregate WTP of Downstream Consumer
4. Discussion
4.1. Willingness to Pay Estimates for Water Quality through the Adoption of EFF Practices
4.2. Key Factors Influencing the Willingness to Pay for Water Quality Improvement Combined with EFF Practices
4.3. Upstream Farmers’ Response for Their Farming Practices and Income Loss of EFF Farmers during Transition Period
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, S.; Nguyen, T.T.; Poppenborg, P.; Shin, H.J.; Koellner, T. Conventional, Partially Converted and Environmentally Friendly Farming in South Korea: Profitability and Factors Affecting Farmers’ Choice. Sustainability 2016, 8, 704. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ruidisch, M.; Koellner, T.; Tenhunen, J. Synergies and tradeoffs between nitrate leaching and net farm income: The case of nitrogen best management practices in South Korea. Agric. Ecosyst. Environ. 2014, 186, 160–169. [Google Scholar] [CrossRef]
- Hanemann, W.M. Valuing the environment through contingent valuation. J. Econ. Perspect. 1994, 8, 19–43. [Google Scholar] [CrossRef]
- Bateman, I.J.; Carson, R.T.; Day, B.; Hanemann, M.; Hanleys, N.; Hett, T.; Jones-Lee, M.; Loomes, G.; Mourato, S.; Özdemiroglu, E.; et al. Economic Valuation with Stated Preference Techniques: A Manual; Edward Elgar: Cheltenham, UK, 2002; ISBN 1840649194. [Google Scholar]
- Shah, S.A.; Hoag, D.L.K.; Davies, S. Household preferences and willingness to pay (WTP) for freshwater quality improvement in Pakistan’s Swat River Valley. Environ. Dev. Sustain. 2016, 18, 1081–1093. [Google Scholar] [CrossRef]
- Aref, F. Farmers’ Participation in Agricultural Development: The Case of Fars Province, Iran. Indian J. Sci. Technol. 2011, 4, 155–158. [Google Scholar]
- Zheng, S.; Wang, Z.; Awokuse, T.O. Determinants of Producers’ Participation in Agricultural Cooperatives: Evidence from Northern China. Appl. Econ. Perspect. Policy 2012, 34, 167–186. [Google Scholar] [CrossRef]
- Chandrasekaran, K.; Devarajulu, S.; Kuppannan, P. Farmers’ Willingness to Pay for Irrigation Water: A Case of Tank Irrigation Systems in South India. Water 2009, 1, 5–18. [Google Scholar] [CrossRef]
- Afroz, R.; Hanaki, K.; Hasegawa-Kurisu, K. Willingness to pay for waste management improvement in Dhaka city, Bangladesh. J. Environ. Manag. 2009, 90, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Basha, M.B.; Mason, C.; Shamsudin, M.F.; Hussain, H.I.; Salem, M.A. Consumers Attitude towards Organic Food. Procedia Econ. Financ. 2015, 31, 444–452. [Google Scholar] [CrossRef]
- Khai, H.V. Assessing Consumer Preferences for Organic Vegetables: A Case Study in the Mekong Delta, Vietnam. Inf. Manag. Bus. Rev. 2015, 7, 41–47. [Google Scholar]
- Sivathanu, B. Factors Affecting Consumer Preference towards the Organic Food Purchases. Indian J. Sci. Technol. 2015, 8, 1–6. [Google Scholar] [CrossRef]
- Hsu, S.-Y.; Chang, C.-C.; Lin, T.T. An analysis of purchase intentions toward organic food on health consciousness and food safety with/under structural equation modeling. Br. Food J. 2016, 118, 200–216. [Google Scholar] [CrossRef]
- Rigby, D.; Cáceres, D. Organic farming and the sustainability of agricultural systems. Agric. Syst. 2001, 68, 21–40. [Google Scholar] [CrossRef]
- Hass, R.; Canavari, M.; Slee, B.; Tong, C.; Anurugsa, B. Looking East, Looking West: Organic and Quality Food Marketing in Asia and Europe; Academic Publishers: Wageningen, The Netherlands, 2010. [Google Scholar]
- Barataud, F.; Aubry, C.; Wezel, A.; Mundler, P. Management of drinking water catchment areas in cooperation with agriculture and the specific role of organic farming. Experiences from Germany and France. Land Use Policy 2014, 36, 585–594. [Google Scholar] [CrossRef]
- Schoumans, O.F.; Chardon, W.J.; Bechmann, M.E.; Gascuel-Odoux, C.; Hofman, G.; Kronvang, B.; Rubæk, G.H.; Ulén, B.; Dorioz, J.-M. Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: A review. Sci. Total Environ. 2014, 468–469, 1255–1266. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.-X.; Huang, B.; Qu, M.-K.; Tian, K.; Yao, L.-P.; Fu, M.-M.; Yin, L.-P. Effect of Farming Practices on the Variability of Phosphorus Status in Intensively Managed Soils. Pedosphere 2015, 25, 438–449. [Google Scholar] [CrossRef]
- Shin, H.-J.; Jeon, C.-H.; Choi, I.-C.; Yeon, I.-C. Estimation of Beneficiary’s Willingness to Pay in Mid.Down-Stream Area to the Water Quality Improvements in Upper Bukhan River Basin. Seoul Stud. 2009, 10, 91–106. (In Korean) [Google Scholar]
- Choi, I.-C.; Kim, H.-N.; Shin, H.-J.; Tenhunen, J.; Nguyen, T.T. Willingness to Pay for a Highland Agricultural Restriction Policy to Improve Water Quality in South Korea: Correcting Anomalous Preference in Contingent Valuation Method. Water 2016, 8, 547. [Google Scholar] [CrossRef]
- Fripp, E.; Shantiko, B. Payment for Ecosystem Services (PES): Assessment of PES Potential in Kapuas Hulu; Working Paper 165; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2014. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). The Environmental Effects of Agricultural Land Diversion Programs; OECD: Paris, France, 1997. [Google Scholar]
- Baylis, K.; Peplow, S.; Rausser, G.; Simon, L. Agri-environmental policies in the EU and United States: A comparison. Ecol. Econ. 2008, 65, 753–764. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; de Groot, R.; Lomas, P.L.; Montes, C. The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecol. Econ. 2010, 69, 1209–1218. [Google Scholar] [CrossRef]
- Boisvert, V.; Méral, P.; Froger, G. Market-Based Instruments for Ecosystem Services: Institutional Innovation or Renovation? Soc. Nat. Resour. 2013, 26, 1122–1136. [Google Scholar] [CrossRef]
- Lamba, P.; Filson, G.; Adekunle, B. Factors affecting the adoption of best management practices in southern Ontario. Environmentalist 2009, 29, 64. [Google Scholar] [CrossRef]
- Ullah, A.; Shah, S.N.M.; Ali, A.; Naz, R.; Mahar, A.; Kalhoro, S.A. Factors affecting the adoption of organic farming in Peshawar-Pakistan. Agric. Sci. 2015, 6, 587–593. [Google Scholar] [CrossRef]
- Patil, S.; Reidsma, P.; Shah, P.; Purushothaman, S.; Wolf, J. Comparing conventional and organic agriculture in Karnataka, India: Where and when can organic farming be sustainable? Land Use Policy 2014, 37, 40–51. [Google Scholar] [CrossRef]
- Sarker, M.A.; Itohara, Y.; Hoque, M. Determinants of adoption decisions: The case of organic farming in Bangladesh. Ext. Farming Syst. J. 2010, 5, 39–46. [Google Scholar]
- Mabuza, M.L.; Sithole, M.M.; Wale, E.; Ortmann, G.F.; Darroch, M.A.G. Factors influencing the use of alternative land cultivation technologies in Swaziland: Implications for smallholder farming on customary Swazi Nation Land. Land Use Policy 2013, 33, 71–80. [Google Scholar] [CrossRef]
- Constance, D.-H.; Choi, J.-Y. Overcoming the Barriers to Organic Adoption in the United States: A Look at Pragmatic Conventional Producers in Texas. Sustainability 2010, 2, 163–188. [Google Scholar] [CrossRef]
- Mahoney, P.R.; Olson, K.D.; Porter, P.M.; Huggins, D.R.; Perillo, C.A.; Kent Crookston, R. Profitability of organic cropping systems In Southwestern Minnesota. Renew. Agric. Food Syst. 2004, 19, 35–46. [Google Scholar] [CrossRef]
- Delbridge, T.-A.; King, R.P. Transitioning to Organic Crop Production: A Dynamic Programming Approach. J. Agric. Resour. Econ. 2016, 41, 481–498. [Google Scholar]
- Nyongesa, J.M.; Bett, H.K.; Lagat, J.K.; Ayuya, O.I. Estimating farmers’ stated willingness to accept pay for ecosystem services: Case of Lake Naivasha watershed Payment for Ecosystem Services scheme-Kenya. Ecol. Process. 2016, 5, 15. [Google Scholar] [CrossRef]
- Cummings, R.G.; Brookshire, D.S.; Schulze, W.D. Valuing Environmental Goods: A State of the Arts Assessment of the Contingent Valuation Method; Roweman and Allanhelds: Totowa, NJ, USA, 1986. [Google Scholar]
- Mitchell, R.C.; Carson, R.T. Using Surveys to Value Public Goods: The Contingent Valuation Method; Resource for the Future: Washington, DC, USA, 1989. [Google Scholar]
- Freeman, A.M. The Benefits of Environmental Improvement: Theory and Practice; Johns Hopkins University Press: Baltimore, MD, USA, 1979. [Google Scholar]
- Arrow, K.J.; Solow, R.M.; Portney, P.R.; Leamer, E.E.; Radner, R.; Schuman, H. Report of the NOAA-Panel on Contingent Valuation. Fed. Regist. 1993, 58, 4601–4614. [Google Scholar]
- Hanemann, W.M.; Loomis, J.; Kanninen, B. Statistical efficiency of double bounded dichotomous choice contingent valuation. Am. J. Agric. Econ. 1991, 73, 1255–1263. [Google Scholar] [CrossRef]
- Haab, T.C.; McConnell, K.E. Valuing Environmental and Natural Resources: The Econometrics of Non-Market Valuation; Edward Elgar Publishing: Cheltenham, UK, 2002. [Google Scholar]
- Hanemann, W.M. Welfare Evaluations in Contingent Valuation Experiments with Discrete Responses. Am. J. Agric. Econ. 1984, 66, 332–341. [Google Scholar] [CrossRef]
- Cameron, T.A. Interval Estimates of Non-Market Resource Values from Referendum Contingent valuation Surveys. Land Econ. 1991, 67, 413–421. [Google Scholar] [CrossRef]
- Kennedy, P.E. Estimation with Correctly Interpreted Dummy Variables in Semilogarithmic Equations. Am. Econ. Rev. 1981, 71, 801. [Google Scholar]
- Seoul, Seoul Statistical Yearbook, Seoul Metropolitan Government. 2014. Available online: http://ebook.seoul.go.kr/Viewer/ZV975O62TBCW (accessed on 31 January 2017).
- Hughner, R.S.; Mcdonagh, P.; Prothero, A.; Shultz, C.J.; Stanton, J. Who are organic food consumers? A compilation and review of why people purchase organic food. J. Consum. Behav. 2007, 6, 1479–1838. [Google Scholar] [CrossRef]
- Owusu, V.; Anifori, M.O. Consumer Willingness to Pay a Premium for Organic Fruit and Vegetable in Ghana. Int. Food Agribus. Manag. 2013, 16, 67–86. [Google Scholar]
- Aryal, K.P.; Chaudhary, P.; Pandit, S.; Sharma, G. Consumers’ Willingness to Pay for Organic Products: A Case from Kathmandu Valley. J. Agric. Environ. 2009, 10, 15–26. [Google Scholar] [CrossRef]
- Haghiri, M.; Hobbs, J.E.; McNamara, M.L. Assessing consumer preferences for organically grown fresh fruit and vegetables in Eastern New Brunswick. Int. Food Agribus. Manag. 2009, 12, 81–99. [Google Scholar]
- Janssen, M.; Hamm, U. The mandatory EU logo for organic food: Consumer perceptions. J. Consum. Behav. 2012, 114, 335–352. [Google Scholar] [CrossRef]
- Kim, H.; Heo, S.W.; Lee, J.Y. An Analysis of Social and Economic Effects on the Certification for Environment-Friendly Agricultural Products Dankook University Report; National Agricultural Products Quality Management Service (NAQS): Seoul, Korea, 2009. (In Korean) [Google Scholar]
- Stevenson, J.R.; Serraj, R.; Cassman, K.G. Evaluating conservation agriculture for small-scale farmers in Sub-Saharan Africa and South Asia. Agric. Ecosyst. Environ. 2014, 187, 1–10. [Google Scholar] [CrossRef]
- Tiwari, K.R.; Sitaula, B.K.; Nyborg, I.L.; Paudel, G.S. Determinants of Farmers’ Adoption of Improved Soil Conservation Technology in a Middle Mountain Watershed of Central Nepal. Environ. Manag. 2008, 42, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Menozzi, D.; Martina, F.; Michele, D. Farmer’s motivation to adopt sustainable agricultural practices. BAE 2015, 4, 125–147. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Hoang, V.-N.; Seo, B. Cost and environmental efficiency of rice farms in South Korea. Agric. Econ. 2012, 43, 369–378. [Google Scholar] [CrossRef]
- Ryan, R.; Erickson, D.; De Young, R. Farmers’ Motivations for Adopting Conservation Practices along Riparian Zones in a Mid-western Agricultural Watershed. J. Environ. Plan. Manag. 2003, 46, 19–37. [Google Scholar] [CrossRef]
- Roebeling, P.C.; Cunha, M.C.; Arroja, L.; van Grieken, M.E. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems. Water Sci. Technol. 2015, 72, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Gren, I.-M. Resilience value of constructed coastal wetlands for combating eutrophication. Ocean Coast Manag. 2010, 53, 358–365. [Google Scholar] [CrossRef]
- Laukkanen, M.; Huhtala, A. Optimal Management of a Eutrophied Coastal Ecosystem: Balancing Agricultural and Municipal Abatement Measures. Environ. Resour. Econ. 2008, 39, 139–159. [Google Scholar] [CrossRef]
- Roebeling, P.C.; Van Grieken, M.E.; Webster, A.J.; Biggs, J.; Thorburn, P. Cost-effective water quality improvement in linked terrestrial and marine ecosystems: A spatial environmental–economic modelling approach. Mar. Freshw. Res. 2009, 60, 1150–1158. [Google Scholar] [CrossRef]
- Gren, I.M. Adaptation and mitigation strategies for controlling stochastic water pollution: An application to the Baltic Sea. Ecol. Econ. 2008, 66, 337–347. [Google Scholar] [CrossRef]
- Söderqvist, T. Constructed wetlands as nitrogen sinks in southern Sweden: An empirical analysis of cost determinants. Ecol. Eng. 2002, 19, 161–173. [Google Scholar] [CrossRef]
- Motallebi, M.; Hoag, D.L.; Tasdighi, A.; Arabi, M.; Osmond, D.L. An economic inquisition of water quality trading programs, with a case study of Jordan Lake, NC. J. Environ. Manag. 2017, 193, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Corrales, J.; Naja, G.M.; Bhat, M.G.; Miralles-Wilhelm, F. Water quality trading opportunities in two sub-watersheds in the northern Lake Okeechobee watershed. J. Environ. Manag. 2017, 196, 544–559. [Google Scholar] [CrossRef] [PubMed]
- Elofsson, K. Cost-effective reductions of stochastic agricultural loads to the Baltic Sea. Ecol. Econ. 2003, 47, 13–31. [Google Scholar] [CrossRef]
- Gren, I.M.; Savchuk, O.P.; Jansson, T. Cost-Effective Spatial and Dynamic Management of a Eutrophied Baltic Sea. Mar. Resour. Econ. 2013, 28, 263–284. [Google Scholar] [CrossRef]
- Lescot, J.M.; Bordenave, P.; Petit, K.; Leccia, O.A. spatially distributed cost-effectiveness analysis framework for controlling water pollution. Environ. Model. Softw. 2013, 41, 107–122. [Google Scholar] [CrossRef]
- Laukkanen, M.; Ekholm, P.; Huhtala, A.; Pitkänen, H.; Kiirikki, M.; Rantanen, P.; Inkala, A. Integrating ecological and economic modeling of eutrophication: Toward optimal solutions for a coastal area suffering from sediment release of phosphorus. Ambio 2009, 38, 225–235. [Google Scholar] [CrossRef] [PubMed]
Explanatory Variable | Coefficient | Std. Err. |
---|---|---|
WTP (Yes 1) | ||
ln (Bid 1) | −0.838217 *** | 0.164895 |
Buyers | 0.000004 *** | 0.000002 |
Constant | 6.109605 *** | 1.371691 |
WTP (Yes 2) | ||
ln (Bid 2) | −0.783377 *** | 0.111559 |
Buyers | 0.000004 *** | 0.000002 |
Constant | 5.497683 *** | 0.908565 |
Athrho | 3.30 | 1.56 |
rho(ρ) | 0.99 | 0.01 |
Mean WTP [KRW/Year] (A) | Lower Bound WTP [KRW/Year] (B) | Upper Bound WTP [KRW/Year] (C) | CI a/Mean | Total Number of Households (D) | Aggregate Mean WTPs b (E) = (A) × (D) | Aggregate Lower Bound WTPs b [KRW 10,000/Year] (F) = (B) × (D) | Aggregate Upper Bound WTPs b [KRW 10,000/Year] (G) = (C) × (D) |
---|---|---|---|---|---|---|---|
36,115 | 27,471 | 58,975 | 0.87 | 4,182,351 | 15,104,594 | 11,488,918 | 24,664,997 |
Variable | Coefficient | Standard Error |
---|---|---|
Future purchase intention of current consumers with EFF products | 0.0257 *** | 0.0050 |
Label | 0.0840 * | 0.0503 |
Children | 0.0155 | 0.0634 |
Age | −0.0002 | 0.0024 |
Income | −0.0067 | 0.0177 |
Education | 0.0021 | 0.0118 |
Constant | 8.0861 *** | 0.2446 |
*** p < 0.01, ** p < 0.05, * p < 0.1 | ||
N | 185 | |
F-value | 5.53 *** | |
Adjusted-R2 | 0.13 | |
Mean VIF | 1.26 |
Farming Techniques | Conventional Farmer (N = 85) | Partially Converted Farmer (N = 65) | Total (N = 150) |
---|---|---|---|
Yes | 40 (47.1) | 39 (60.0) | 79 (52.7) |
No | 45 (52.9) | 26 (40.0) | 71 (47.3) |
Total | 85 (100) | 65 (100) | 150 (100) |
(A) Total Highland Farm Area (ha) | (B) Annual Income Loss of EFF per ha [KRW 10,000/ha] | (C = A * B) Total Annual Compensation [KRW 10,000] | Annual Aggregate WTP [KRW 10,000] |
---|---|---|---|
3925 | 1534 | 6,020,950 | 15,104,594 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Nguyen, T.T.; Kim, H.N.; Koellner, T.; Shin, H.-J. Do Consumers of Environmentally Friendly Farming Products in Downstream Areas Have a WTP for Water Quality Protection in Upstream Areas? Water 2017, 9, 511. https://doi.org/10.3390/w9070511
Lee S, Nguyen TT, Kim HN, Koellner T, Shin H-J. Do Consumers of Environmentally Friendly Farming Products in Downstream Areas Have a WTP for Water Quality Protection in Upstream Areas? Water. 2017; 9(7):511. https://doi.org/10.3390/w9070511
Chicago/Turabian StyleLee, Saem, Trung Thanh Nguyen, Hyun No Kim, Thomas Koellner, and Hio-Jung Shin. 2017. "Do Consumers of Environmentally Friendly Farming Products in Downstream Areas Have a WTP for Water Quality Protection in Upstream Areas?" Water 9, no. 7: 511. https://doi.org/10.3390/w9070511
APA StyleLee, S., Nguyen, T. T., Kim, H. N., Koellner, T., & Shin, H. -J. (2017). Do Consumers of Environmentally Friendly Farming Products in Downstream Areas Have a WTP for Water Quality Protection in Upstream Areas? Water, 9(7), 511. https://doi.org/10.3390/w9070511