Study on the Formation and Initial Transport for Non-Homogeneous Debris Flow
Abstract
:1. Introduction
2. Experimental Design
2.1. Factor Selection
2.2. Experimental Setup and Procedure
2.3. Debris-Flow Formation and Initial Transport
3. Results and Analysis
3.1. Results from the Range Analysis (RA)
3.2. Results from Analysis of Variance (ANOVA)
3.3. Results from Regression Analysis
4. Discussion
4.1. Comparison between the Results from the Three Analysis Methods
4.2. Relevance and Implications
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jakob, M.; Hungr, O. Debris-Flow Hazard Analysis; Springer: Berlin, Germany, 2005. [Google Scholar]
- Tang, C.; Zhang, S.C. Study progress and expectation for initiation mechanism and prediction of hydraulic-driven debris flows. Adv. Earth Sci. 2008, 23, 787–793. [Google Scholar]
- Ni, H.Y. Experimental study on initiation of gully-type debris flow based on artificial rainfall and channel runoff. Environ. Earth Sci. 2015, 73, 6213–6227. [Google Scholar] [CrossRef]
- Giannecchini, R.; Naldini, D.; Avanzi, G.D.; Puccinelli, A. Modelling of the initiation of rainfall-induced debris flows in the Cardoso basin (Apuan Alps, Italy). Quat. Int. 2007, 171, 108–117. [Google Scholar] [CrossRef]
- Zhuang, J.Q.; Cui, P.; Ge, Y.G.; Hong, Y. Relationship between rainfall characteristics and total amount of debris flow. J. Beijing For. Univ. 2009, 31, 77–83. [Google Scholar]
- Zhuang, J.Q.; Cui, P.; Ge, Y.G.; He, Y.P.; Liu, Y.H.; Guo, X.J. Probability assessment of river blocking by debris flow associated with the Wenchuan Earthquake. Int. J. Remote Sens. 2010, 31, 3465–3478. [Google Scholar] [CrossRef]
- Hu, K.H.; Cui, P.; Wang, C.C.; Li, Y.; Lu, X.B. Characteristic rainfall for warning of debris flows. J. Mt. Sci. 2010, 7, 207–214. [Google Scholar] [CrossRef]
- Caine, N. The rainfall intensity: Duration control of shallow landslides and debris flows. Geogr. Ann. 1980, 62, 23–27. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Meyer, N.K.; Dyrrdal, A.V.; Frauenfelder, R.; Etzelmüller, B.; Nadim, F. Hydrometeorological threshold conditions for debris flow initiation in Norway. Nat. Hazards Earth Syst. Sci. 2012, 12, 3059–3073. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, C. Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area, southwestern China. Landslides 2014, 11, 877–887. [Google Scholar] [CrossRef]
- Cannon, S.H.; Kirkham, R.M.; Parise, M. Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado. Geomorphology 2001, 39, 171–188. [Google Scholar] [CrossRef]
- Larsen, I.J.; Pederson, J.L.; Schmidt, J.C. Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument. Geomorphology 2006, 81, 114–127. [Google Scholar] [CrossRef]
- Gabet, E.J.; Sternberg, P. The effects of vegetative ash on infiltration capacity, sediment transport, and the generation of progressively bulked debris flows. Geomorphology 2008, 101, 666–673. [Google Scholar] [CrossRef]
- Lanza, N.L.; Meyer, G.A.; Okubo, C.H.; Newsom, H.E.; Wiens, R.C. Evidence for debris flow gully formation initiated by shallow subsurface water on Mars. Icarus 2010, 205, 103–112. [Google Scholar] [CrossRef]
- Legg, N.T.; Meigs, A.J.; Grant, G.E.; Kennard, P. Debris flow initiation in proglacial gullies on Mount Rainier, Washington. Geomorphology 2014, 226, 249–260. [Google Scholar] [CrossRef]
- Gregoretti, C. The initiation of debris flow at high slopes: Experimental results. J. Hydraul. Res. 2000, 38, 83–88. [Google Scholar] [CrossRef]
- Zhuang, J.Q.; Cui, P.; Peng, J.B.; Hu, K.H.; Iqbal, J. Initiation process of debris flows on different slopes due to surface flow and trigger-specific strategies for mitigating post-earthquake in old Beichuan County, China. Environ. Earth. Sci. 2013, 68, 1391–1403. [Google Scholar] [CrossRef]
- Dai, F.; Lee, C.F.; Wang, S. Analysis of rainstorm-induced slide-debris flows on natural terrain of Lantau Island, Hong Kong. Eng. Geol. 1999, 51, 279–290. [Google Scholar]
- Egashira, S.; Honda, N.; Itoh, T. Experimental study on the entrainment of bed material into debris flows. Phys. Chem. Earth C 2001, 26, 645–650. [Google Scholar] [CrossRef]
- Chen, H.; Dadson, S.; Chi, Y.G. Recent rainfall-induced landslides and debris flow in northern Taiwan. Geomorphology 2006, 77, 112–125. [Google Scholar] [CrossRef]
- Brayshaw, D.; Hassan, M.A.; Brayshaw, D.; Hassan, M.A. Debris flow initiation and sediment recharge in gullies. Geomorphology 2009, 109, 122–131. [Google Scholar] [CrossRef]
- Chen, N.S.; Zhou, W.; Yang, C.L.; Hu, G.S.; Gao, Y.C.; Han, D. The processes and mechanism of failure and debris flow initiation for gravel soil with different clay content. Geomorphology 2010, 121, 222–230. [Google Scholar] [CrossRef]
- Anderson, S.A.; Sitar, N. Analysis of rainfall-induced debris flows. J. Geotech. Eng. 1995, 122, 544–552. [Google Scholar] [CrossRef]
- Iverson, N.R.; Mann, J.E.; Iverson, R.M. Effects of soil aggregates on debris-flow mobilization: Results from ring-shear experiments. Eng. Geol. 2010, 114, 84–92. [Google Scholar] [CrossRef]
- Milne, F.D.; Brown, M.J.; Knappett, J.A.; Davies, M.C.R. Centrifuge modelling of hillslope debris flow initiation. Catena 2012, 92, 162–171. [Google Scholar] [CrossRef]
- Li, C.; Zhu, W.H.; Li, L.; Lu, X.B.; Yao, D.; Farshad, A. Experimental analysis for the dynamic initiation mechanism of debris flows. J. Mt. Sci. 2016, 13, 581–592. [Google Scholar] [CrossRef]
- Cui, P. Study on conditions and mechanisms of debris flow initiation by means of experiment. Sci. Bull. 1992, 37, 759–763. [Google Scholar]
- Klubertanz, G.; Laloui, L.; Vulliet, L. Identification of mechanisms for landslide type initiation of debris flows. Eng. Geol. 2009, 109, 114–123. [Google Scholar] [CrossRef]
- Chen, C.C.; Tseng, C.Y.; Dong, J.J. New entropy-based method for variables selection and its application to the debris-flow hazard assessment. Eng. Geol. 2007, 94, 19–26. [Google Scholar] [CrossRef]
- Fei, X.J.; Shu, A.P. Movement Mechanism and Disaster Control for Debris Flow; Tsinghua University Press: Beijing, China, 2004. (In Chinese) [Google Scholar]
- Xiong, G. Mechanism of Viscous Debris Flow. Ph.D. Thesis, Tsinghua University, Beijing, China, 1996. (In Chinese). [Google Scholar]
- Shu, A.P.; Zhang, Z.D.; Wang, L.; Fei, X.J. Method for determining the critical grain size of viscous debris flow based on energy dissipation principle. J. Hydraul. Eng. 2008, 38, 257–263. (In Chinese) [Google Scholar]
- Shu, A.P.; Fei, X.J.; Feng, Y. A Preliminary Study on Energy Dissipating Mechanism for Viscous Debris Flow. In Proceedings of the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Chengdu, China, 10–13 September 2007; Millpress Science Publishers: Chengdu, China, 2007; pp. 131–137. [Google Scholar]
- Shu, A.P.; Wang, L.; Yang, K.A. Investigation on movement characteristics for non-homogeneous and solid-liquid two-phase debris flow. Chin. Sci Bull. 2010, 55, 3006–3012. (In Chinese) [Google Scholar] [CrossRef]
- Naylor, M.A. The origin of inverse grading in muddy debris flow deposits—A review. J. Sediment. Res. 1980, 50, 1111–1116. [Google Scholar]
- Major, J.J. Experimental Studies of Deposition at A Debris-Flow Flume; Fact Sheet 028-94; US Geological Survey: Reston, VA, USA, 1995.
- Major, J.J. Depositional processes in large-scale debris-flow experiments. J. Geol. 1997, 105, 345–366. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Tan, R.Z.; Jan, C.D.; Tian, B. Gravel accumulation in deposits of viscous debris flows with hyper-concentration. J. Mt. Sci. 2009, 6, 88–95. [Google Scholar] [CrossRef]
- Starheim, C.C.; Gomez, C.; Harrison, J.; Kain, C.; Brewer, N.J.; Owen, K.; Hadmoko, D.S.; Purdie, H.; Zawar-Reza, P.; Owens, I. Complex internal architecture of a debris-flow deposit revealed using ground-penetrating radar, Cass, New Zealand. N. Z. Geogr. 2013, 69, 26–38. [Google Scholar] [CrossRef]
- Cagnoli, B.; Romano, G.P. Vertical segregations in flows of angular rock fragments: Experimental simulations of the agitation gradient within dense geophysical flows. J. Volcanol. Geotherm. Res. 2013, 265, 52–59. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Filliben, J.J.; Micheals, R.J.; Phillips, P.J. Sensitivity analysis for biometric systems: A methodology based on orthogonal experiment designs. Comput. Vis. Image Underst. 2013, 117, 532–550. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Chen, H.L.; Fan, L.Y.; Chen, X.G.; Hu, Z.D. On-line conversion and determination of artemisinin and its kinetic parameters using orthogonal design by coupling of flow injection with capillary electrophoresis. Anal. Chim. Acta 2004, 525, 239–245. [Google Scholar] [CrossRef]
- Baldwin, J.E., II; Donley, H.F.; Howard, T.R. On debris flow/avalanche mitigation and control, San Francisco Bay Area, California. Rev. Eng. Geol. 1987, 7, 223–236. [Google Scholar]
- Chen, H. Controlling factors of hazardous debris flow in Taiwan. Quat. Int. 2006, 147, 3–15. [Google Scholar] [CrossRef]
- Mcdonnell, J.J. The influence of macropores on debris flow initiation. Q. J. Eng. Geol. Hydrogeol. 1990, 23, 325–331. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 7th ed.; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Stark, J.S.; Riddle, M.J.; Smith, S.D. Influence of an antarctic waste dump on recruitment to nearshore marine soft-sediment assemblages. Mar. Ecol. Prog. Ser. 2004, 276, 53–70. [Google Scholar] [CrossRef]
- Bai, Y.; Gao, H.M.; Wu, L.; Cao, N. Influence of plasma-mig welding parameters on aluminum weld porosity by orthogonal test. Trans. Nonferr. Metal. Soc. 2010, 20, 1392–1396. [Google Scholar] [CrossRef]
- Suresh, R.; Basavarajappa, S.; Samuel, G. Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool. Measurement 2012, 45, 1872–1884. [Google Scholar] [CrossRef]
- Mousavi, J.; Parvini, M. A sensitivity analysis of parameters affecting the hydrogen release and dispersion using ANOVA method. Int. J. Hydrogen Energy 2016, 41, 5188–5201. [Google Scholar] [CrossRef]
- Dong, J.J.; Lee, C.T.; Tung, Y.H.; Liu, C.N.; Lin, K.P.; Lee, J.F. The role of the sediment budget in understanding debris flow susceptibility. Earth Surf. Process. Landf. 2009, 34, 1612–1624. [Google Scholar] [CrossRef]
- Ellen, S.D. Description and mechanics of soil slip/debrisflows in the storm. In Landslides, Floods and Marine Effects of the Storm of the January 3–5, 1982, in the San Francisco Bay Region, California; USGS Professional Paper; U.S. Geological Survey: Washington, DC, USA; Denver, CO, USA, 1988. [Google Scholar]
- Pack, R.T.; Tarboton, D.G.; Goodwin, C.N. Terrain Stability Mapping with SINMAP; Technical Description and Users Guide for Version 1.00; Utah State University: Logan, UT, USA, 1998. [Google Scholar]
- Berti, M.; Simoni, A. Experimental evidences and numerical modelling of debris flow initiated by channel runoff. Landslides 2005, 2, 171–182. [Google Scholar] [CrossRef]
- Iverson, R.M. The physics of debris flows. Rev. Geophys. 1997, 35, 245–296. [Google Scholar] [CrossRef]
- Chen, G. Prevention and Control of Debris Flow; China Railway Press: Beijing, China, 1983. (In Chinese) [Google Scholar]
- Koch, T. Testing various constitutive equations for debris flow modelling. IAHS Publ. Ser. Proc. Rep. Intern Assoc. Hydrol. Sci. 1998, 248, 249–258. [Google Scholar]
- Rickenmann, D. Empirical relationships for debris flows. Nat. Hazards 1999, 19, 47–77. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Q.; Chen, J.; Pan, Y. Forcast for average velocity of debris flow based on bp neural network. J. Jilin Univ. (Earth Sci. Ed.) 2013, 43, 186–191. (In Chinese) [Google Scholar]
- Kang, Z.C.; Cui, P.; Wei, F.Q. Data Collection of Dongchuan Debris Flow Observation and Research Station; Science Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Jiang, H.H.; Deng, Y.E.; Yuan, T. Formative conditions and transport characteristics of debris flows in Jiaba Gully. Ground Water 2012, 34, 149–152. (In Chinese) [Google Scholar]
- Deng, H.; Chen, N.S.; Hu, G.S.; Lu, Y. Calculation of dynamics parameters of Sanyanyu Gully in ZhouQu, GanSu. J. ChongQing JiaoTong Univ. 2011, 30, 833–838. (In Chinese) [Google Scholar]
Factor Level | (A) Median Grain Size d50 (mm) | (B) Flume Slope S (°) | (C) Flow Rate Q a (m3/h) | (D) Initial Water Content W (%) | (E) Vertical Grading coefficient ψ |
---|---|---|---|---|---|
1 | 3.0 | 25 | 1.0 | 4 | 0.43 |
2 | 5.0 | 30 | 3.0 | 10 | 1.00 |
3 | 7.0 | 35 | 5.0 | 20 | 2.33 |
4 | 10.0 |
Run No. | Factors | Measured a | ||||||
---|---|---|---|---|---|---|---|---|
d50 (mm) | S (°) | Q (m3/h) | W (%) | ψ | Tdff (s) | u (m/s) | Fr | |
No. 1 | 7 | 25 | 5 | 0.10 | 1.00 | 73 | ||
No. 2 | 3 | 25 | 3 | 0.04 | 1.00 | 199 | 2.82 | 4.02 |
No. 3 | 7 | 25 | 5 | 0.10 | 0.43 | 149 | 4.38 | 6.26 |
No. 4 | 5 | 25 | 10 | 0.20 | 1.00 | 125 | ||
No. 5 | 7 | 25 | 5 | 0.10 | 2.33 | 255 | 2.83 | 4.05 |
No. 6 | 5 | 25 | 10 | 0.20 | 2.33 | 150 | 2.93 | 4.19 |
No. 7 | 7 | 25 | 1 | 0.20 | 1.00 | 99 | ||
No. 8 | 3 | 25 | 3 | 0.04 | 2.33 | 470 | 2.56 | 3.66 |
No. 9 | 3 | 25 | 3 | 0.04 | 0.43 | 228 | 2.05 | 2.93 |
No. 10 | 5 | 25 | 10 | 0.20 | 0.43 | 139 | 3.09 | 4.42 |
No. 11 | 7 | 25 | 1 | 0.20 | 0.43 | 175 | 1.72 | 2.46 |
No. 12 | 7 | 25 | 1 | 0.20 | 2.33 | 156 | 1.90 | 2.72 |
No. 13 | 5 | 30 | 5 | 0.10 | 2.33 | 169 | 2.98 | 4.26 |
No. 14 | 5 | 30 | 5 | 0.10 | 0.43 | 125 | 3.08 | 4.39 |
No. 15 | 5 | 30 | 5 | 0.10 | 1.00 | 77 | 3.29 | 4.70 |
No. 16 | 7 | 30 | 3 | 0.20 | 0.43 | 108 | 2.50 | 3.57 |
No. 17 | 7 | 30 | 3 | 0.20 | 2.33 | 155 | 2.73 | 3.90 |
No. 18 | 7 | 30 | 3 | 0.20 | 1.00 | 124 | 2.42 | 3.45 |
No. 19 | 7 | 30 | 10 | 0.04 | 2.33 | 81 | 3.18 | 4.54 |
No. 20 | 7 | 30 | 10 | 0.04 | 1.00 | 143 | 3.40 | 4.86 |
No. 21 | 7 | 30 | 10 | 0.04 | 0.43 | 218 | 3.32 | 4.75 |
No. 22 | 3 | 30 | 1 | 0.20 | 0.43 | 112 | 2.75 | 3.92 |
No. 23 | 3 | 35 | 5 | 0.20 | 0.43 | 116 | 2.87 | 4.10 |
No. 24 | 3 | 35 | 5 | 0.20 | 2.33 | 105 | 2.53 | 3.62 |
No. 25 | 3 | 35 | 5 | 0.20 | 1.00 | 75 | 2.66 | 3.80 |
No. 26 | 7 | 35 | 5 | 0.04 | 0.43 | 117 | 2.88 | 4.11 |
No. 27 | 7 | 35 | 3 | 0.10 | 1.00 | 77 | 2.83 | 4.04 |
No. 28 | 7 | 35 | 3 | 0.10 | 0.43 | 97 | 3.17 | 4.53 |
No. 29 | 7 | 35 | 3 | 0.10 | 2.33 | 100 | 2.73 | 3.89 |
No. 30 | 5 | 35 | 3 | 0.20 | 2.33 | 86 | 3.30 | 4.71 |
No. 31 | 5 | 35 | 3 | 0.20 | 0.43 | 80 | 2.80 | 3.99 |
No. 32 | 5 | 35 | 3 | 0.20 | 1.00 | 120 | 2.41 | 3.45 |
No. 33 | 5 | 35 | 1 | 0.04 | 0.43 | 1 | 2.80 | 3.99 |
No. 34 | 7 | 35 | 1 | 0.10 | 0.43 | 72 | 3.29 | 4.69 |
No. 35 | 7 | 35 | 10 | 0.20 | 0.43 | 98 | 3.96 | 5.66 |
No. 36 | 3 | 35 | 10 | 0.10 | 2.33 | 145 | 3.53 | 5.04 |
No. 37 | 3 | 35 | 10 | 0.10 | 0.43 | 133 | 3.58 | 5.12 |
No. 38 | 3 | 35 | 10 | 0.10 | 1.00 | 92 | 3.67 | 5.24 |
No. 39 | 7 | 35 | 5 | 0.04 | 2.33 | 170 | 3.47 | 4.95 |
No. 40 | 7 | 35 | 5 | 0.04 | 1.00 | 214 | 2.94 | 4.19 |
No. 41 | 7 | 35 | 10 | 0.20 | 1.00 | 122 | 2.85 | 4.08 |
No. 42 | 7 | 35 | 10 | 0.20 | 2.33 | 105 | 3.28 | 4.69 |
No. 43 | 7 | 30 | 1 | 0.20 | 1.00 | 68 | 2.10 | 2.25 |
No. 44 | 7 | 30 | 3 | 0.20 | 2.33 | 73 | 2.70 | 3.72 |
No. 45 | 7 | 30 | 3 | 0.20 | 2.33 | 73 | 2.70 | 2.25 |
No. 46 | 7 | 30 | 1 | 0.20 | 1.00 | 68 | 2.10 | 3.72 |
No. 47 | 5 | 35 | 1 | 0.04 | 0.43 | 35 | 2.00 | 2.04 |
No. 48 | 5 | 35 | 1 | 0.04 | 1.00 | 50 | 1.90 | 1.84 |
Influenced Parameters | Range Analysis | Influencing Factors | ||||
---|---|---|---|---|---|---|
A (d50) | B (S) | C (Q) | D (W) | E (ψ) | ||
Tdff | k1 | 96.42 | 184.83 | 187.60 | 160.50 | 107.88 |
k2 | 122.69 | 113.86 | 142.14 | 120.31 | 117.82 | |
k3 | 167.50 | 100.45 | 137.08 | 110.09 | 152.87 | |
k4 | 129.25 | |||||
R | 71.08 | 84.38 | 58.35 | 50.41 | 44.99 | |
u | k1 | 2.20 | 2.02 | 2.06 | 2.78 | 2.95 |
k2 | 2.55 | 2.80 | 2.69 | 3.03 | 2.21 | |
k3 | 2.67 | 2.97 | 2.82 | 2.45 | 2.89 | |
k4 | 3.07 | |||||
R | 0.47 | 0.95 | 1.01 | 0.58 | 0.74 | |
Fr | k1 | 3.15 | 2.89 | 2.76 | 3.62 | 4.17 |
k2 | 3.50 | 3.88 | 4.04 | 4.32 | 4.01 | |
k3 | 3.75 | 4.17 | 3.72 | 4.32 | 3.10 | |
k4 | 4.38 | |||||
R | 0.60 | 1.28 | 1.62 | 0.70 | 1.07 |
Influenced Parameters | Factors | SS | DF | Variance | F b | α |
---|---|---|---|---|---|---|
Tdff | Model | 893,234.32 | 12 | 74,436.19 | ||
A (d50) | 18,166.85 | 2 | 9083.42 | 3.86 | ** | |
B (S) | 22,888.56 | 2 | 11,444.28 | 4.87 | ** | |
C (Q) | 16,765.42 | 3 | 5588.47 | 2.32 | * | |
D (W) | 23,059.56 | 2 | 11,529.78 | 4.90 | ** | |
E (ψ) | 28,237.60 | 2 | 14,118.80 | 6.00 | *** | |
Error | 84,642.84 | 36 | 2351.19 (2404.63 a) | |||
Total | 977,877.16 | 48 | ||||
u | Model | 378.51 | 12 | 31.54 | ||
A (d50) | 0.12 | 2 | 0.06 | 0.58 | ||
B (S) | 1.51 | 2 | 0.75 | 7.14 | *** | |
C (Q) | 5.09 | 3 | 1.70 | 15.71 | *** | |
D (W) | 0.68 | 2 | 0.34 | 3.21 | ** | |
E (ψ) | 1.34 | 2 | 0.67 | 6.35 | *** | |
Error | 3.49 | 33 | 0.106 (0.108 a) | |||
Total | 382.00 | 45 | ||||
Fr | Model | 749.13 | 12 | 62.43 | ||
A (d50) | 1.76 | 2 | 0.88 | 2.65 | ** | |
B (S) | 6.87 | 2 | 3.44 | 10.33 | *** | |
C (Q) | 13.70 | 3 | 4.57 | 13.42 | *** | |
D (W) | 1.38 | 2 | 0.69 | 2.07 | ||
E (ψ) | 3.29 | 2 | 1.65 | 4.94 | ** | |
Error | 10.98 | 33 | 0.333 (0.340 a) | |||
Total | 760.11 | 45 |
Parameters | Rank | Range Analysis | ANOVA | Regression | ||
---|---|---|---|---|---|---|
Tdff | 1 | B (S) | E (ψ) | ≈ | D (W) | |
2 | A (d50) | D (W) | E (ψ) | |||
3 | C (Q) | B (S) | B (S) | |||
4 | D (W) | A (d50) | A (d50) | |||
5 | E (ψ) | C (Q) | C (Q) | |||
u | 1 | C (Q) | = | C (Q) | = | C (Q) |
2 | B (S) | B (S) | B (S) | |||
3 | E (ψ) | E (ψ) | E (ψ) | |||
4 | D (W) | D (W) | D (W) | |||
5 | A (d50) | A (d50) | A (d50) | |||
= | = | |||||
Fr | 1 | C (Q) | ≈ | C (Q) | D (W) | |
2 | B (S) | B (S) | B (S) | |||
3 | E (ψ) | E (ψ) | C (Q) | |||
4 | D (W) | A (d50) | E (ψ) | |||
5 | A (d50) | D (W) | A (d50) |
Site | Total Number of Debris Flows | Averaged Fr | Supercritical (Fr > 1) | Subcritical (Fr < 1) | ||
---|---|---|---|---|---|---|
No. | Percent | No. | Percent | |||
This Study (Yunnan) | 48 | 2.39 | 48 | 100.0% | 0 | 0 |
Jiangjia Gully (Yunnan, Kang et al. [61]) | 18 | 2.41 | 18 | 100.0% | 0 | 0 |
Jiaba Gully (Sichuan, Jiang et al. [62]) | 3 | 1.45 | 3 | 100.0% | 0 | 0 |
ZhouQu–Sanyanyu Gully (Gansu, Deng et al. [63]) | 3 | 0.80 | 1 | 33.3% | 2 | 66.7% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, A.P.; Wang, L.; Zhang, X.; Ou, G.Q.; Wang, S. Study on the Formation and Initial Transport for Non-Homogeneous Debris Flow. Water 2017, 9, 253. https://doi.org/10.3390/w9040253
Shu AP, Wang L, Zhang X, Ou GQ, Wang S. Study on the Formation and Initial Transport for Non-Homogeneous Debris Flow. Water. 2017; 9(4):253. https://doi.org/10.3390/w9040253
Chicago/Turabian StyleShu, An Ping, Le Wang, Xin Zhang, Guo Qiang Ou, and Shu Wang. 2017. "Study on the Formation and Initial Transport for Non-Homogeneous Debris Flow" Water 9, no. 4: 253. https://doi.org/10.3390/w9040253
APA StyleShu, A. P., Wang, L., Zhang, X., Ou, G. Q., & Wang, S. (2017). Study on the Formation and Initial Transport for Non-Homogeneous Debris Flow. Water, 9(4), 253. https://doi.org/10.3390/w9040253