Occurrence of Pharmaceuticals in Wastewater and Their Interaction with Shallow Aquifers: A Case Study of Horní Beřkovice, Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Pilot Locality at Horní Beřkovice
2.2. An Overview of the Natural Conditions at the Locality of Horní Beřkovice
2.3. Monitoring System at the Horní Beřkovice Locality
2.4. Characteristics of the Wastewater Treatment Plants
2.5. Analytical Methods
3. Results and Discussion
3.1. Comparison of the Data from Horní Beřkovice to the Common Values in the Czech Republic
3.2. Removal Efficiency of Pharmaceuticals during Wastewater Treatment
3.3. The Behavior of Pharmaceuticals after Passing through Wastewater Treatment Plants
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Carrara, C.; Ptacek, C.J.; Robertson, W.D.; Blowes, D.W.; Moncur, M.C.; Sverko, E.; Backus, S. Fate of pharmaceutical and trace organic compounds in three septic system plumes, Ontario, Canada. Environ. Sci. Technol. 2008, 42, 2805–2811. [Google Scholar] [CrossRef] [PubMed]
- Bouwer, H. Ground Water Recharge with Sewage Effluent. Water Sci. Technol. 1990, 23, 2099–2108. [Google Scholar]
- Costanzo, S.D.; Murby, J.; Bates, J. Ecosystem response to antibiotics entering the aquatic environment. Mar. Pollut. Bull. 2005, 51, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Peake, B.M.; Braund, R. Environmental Aspects of the Disposal of Pharmaceuticals in New Zealand. Chem. N. Z. 2009, 73, 58–63. [Google Scholar]
- Jobling, S.; Williams, R.; Johnson, A.; Taylor, A.; Gross-Sorokin, M.; Nolan, M.; Tyler, C.R.; van Aerle, R.; Santos, E.; Brighty, G. Predicted exposures to steroid estrogens in U.K. rivers correlate with widespread sexual disruption in wild fish populations. Environ. Health Perspect. 2006, 114, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Deo, R.P.; Halden, R.U. Pharmaceuticals in the Built and Natural Water Environment of the United States. Water 2013, 5, 1346–1365. [Google Scholar] [CrossRef]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewater and the environment: Current knowledge, understanding areas and recommendations for the future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Dvořáková Březinová, T.; Koželuh, M.; Kule, L. Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic—The first year of monitoring. Ecol. Eng. 2017, 98, 354–364. [Google Scholar] [CrossRef]
- Vymazal, J.; Dvořáková Březinová, T. Removal of saccharin from municipal sewage: The first result from constructed wetlands. Chem. Eng. J. 2016, 306, 1067–1070. [Google Scholar] [CrossRef]
- Jekel, M.; Heberer, T. Occurrence and Fate of Drug Residues and Related Polar Contaminants during Bank Filtration and Artificial Recharge; Final Report of the NASRI Project; Berlin Centre of Competence for Water: Berlin, Germany, 2014. [Google Scholar]
- Standley, L.J.; Rudel, R.A.; Swartz, C.H.; Attfield, K.R.; Christian, J. Wastewater contaminated groundwater as a source of endogenous hormones and pharmaceuticals to surface water ecosystems. Environ. Toxicol. Chem. 2008, 27, 2457–2468. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.J.; Meek, J. Helena Valley Ground Water: Pharmaceuticals, Personal Care Products, Endocrine Disruptors (Ppcps) and Microbial Indicators of Faecal Contamination; Open File Report 532; Montana Department of Environmental Quality: Butte, MT, USA, 2006.
- Drewes, J.E.; Heberer, T.; Rauch, T.; Reddersen, K. Fate of pharmaceuticals during ground water recharge. Ground Water Monit. Remediat. 2003, 23, 64–72. [Google Scholar] [CrossRef]
- Banzhaf, S.; Krein, A.; Scheytt, T. Using selected pharmaceutical compounds as indicators for surface water and groundwater interaction in the hyporheic zone of a low permeability riverbank. Hydrol. Process. 2013, 27, 2892–2902. [Google Scholar] [CrossRef]
- Banzhaf, S.; Hebig, K.H. Use of column experiments to investigate the fate of organic micropollutants—A review. Hydrol. Earth Syst. Sci. 2016, 20, 3719–3737. [Google Scholar] [CrossRef]
- Scheytt, T.; Mersmann, P.; Leidig, M.; Pekdeger, A.; Heberer, T. Transport of pharmaceutically active compounds in saturated laboratory columns. Ground Water 2004, 42, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Swartz, C.H.; Reddy, S.; Benotti, M.J.; Yin, H.F.; Barber, L.B.; Brownawell, B.J.; Rudel, R.A. Steroid estrogens, nonylphenol ethoxylate metabolites, and other wastewater contaminants in groundwater affected by a residential septic system on Cape Cod, MA. Environ. Sci. Technol. 2006, 40, 4894–4902. [Google Scholar] [CrossRef]
- Yamamoto, H.; Nakamura, Y.; Moriguchi, S.; Nakamura, Y.; Honda, Y.; Tamura, I. Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: Laboratory photolysis, biodegradation, and sorption experiments. Water Res. 2009, 43, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.; Higgins, C.; McCray, J. Sorption of Emerging Organic Wastewater Contaminants to Four Soils. Water 2014, 6, 1028–1042. [Google Scholar] [CrossRef]
- Kostich, M.S.; Lazorchak, J.M. Risks to aquatic organisms posed by human pharmaceutical use. Sci. Total Environ. 2008, 389, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Schwaiger, J.; Ferling, H.; Mallow, U.; Wintermayr, H.; Negele, R. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: Histopathological alterations and bioaccumulation in rainbow trout. D. Aquat. Toxicol. 2004, 68, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Oaks, J.L.; Gilbert, M.; Virani, M.Z.; Watson, R.T. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 2004, 427, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Watknson, A.J.; Murby, E.J.; Costanzo, S.D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007, 41, 4164–4176. [Google Scholar] [CrossRef]
- Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Costanzo, S.D. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Sci. Total Environ. 2009, 407, 2711–2723. [Google Scholar] [CrossRef] [PubMed]
- Leung, H.W.; Jin, L.; Wei, S.; Tsui, M.M.P.; Zhou, B.; Jiao, L.; Cheung, P.C.; Chun, Y.K.; Burkhardt Murphy, M.; Lam, P.K.S. Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China. Environ. Health Perspect. 2013, 121, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Furlong, E.T.; Batt, A.L.; Glassmeyer, S.T.; Noriega, M.C.; Kolpin, D.W.; Mash, H.; Schenck, K.M. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States: Pharmaceuticals. Sci. Total Environ. 2017, 579, 1629–1642. [Google Scholar] [CrossRef] [PubMed]
- Fram, M.S.; Belitz, K. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Sci. Total Environ. 2011, 409, 3409–3417. [Google Scholar] [CrossRef] [PubMed]
- Morteani, G.; Moller, P.; Fuganti, A.; Paces, T. Input and fate of anthropogenic estrogens and gadolinium in surface water and sewage plants in the hydrological basin of Prague (Czech Republic). Environ. Geochem. Health 2006, 28, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Kožíšek, F.; Jeligová, H. Methods of pharmaceuticals risk health assessment in drinking water (in Czech). Čas Lék 2012, 151, 5–8. [Google Scholar]
- Čadek, V.; Kožíšek, F.; Pomykačová, I.; Jeligová, H.; Svobodová, V. Trace pharmaceuticals concentration in drinking water in the Czech Republic (in Czech). Vodní Hospod. 2012, 62, 6–8. [Google Scholar]
- Rozman, D.; Hrkal, Z.; Eckhardt, P.; Novotná, E.; Boukalová, Z. Pharmaceuticals in groundwaters: A case study of the psychiatric hospital at Horní Beřkovice, Czech Republic. Environ. Earth Sci. 2014, 73, 3775–3784. [Google Scholar] [CrossRef]
- Zelenka, Z. Geological Map of Czech Republic Scale 1:25,000, Explanatory Notes (in Czech); Czech Geological Survey: Prague, Czech Republic, 1994. [Google Scholar]
- Bendz, D.; Paxéus, N.A.; Ginn, T.R.; Loge, F.J. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J. Hazard Mater. 2005, 122, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Writer, J.H.; Ferrer, I.; Barber, L.B.; Thurman, E.M. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters. Sci. Total Environ. 2013, 461–462, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.; Kumar, A.; Du, J.; Hepplewhite, C.; Ellis, D.J.; Christy, A.G.; Beavis, S.G. Pharmaceuticals and personal care products (PPCP) in Australias largest inland sewage treatment plant, and its contribution to major Australian river during high and low flow. Sci. Total Environ. 2016, 541, 1625–1637. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illitic drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009, 43, 363–380. [Google Scholar] [CrossRef] [PubMed]
Sampling Site | Characteristics of the Monitoring Site |
---|---|
1 | The inflow into the wastewater treatment plant—a mixture of pharmaceuticals in the wastewater from the village and in the wastewater from the psychiatric hospital |
2 | The outflow from the wastewater treatment plant (the difference between the results of the monitoring at points 1 and 2 indicates the efficiency of purification) |
3 | Sediments deposited in the first recharge pond |
4 | Sediments deposited in the third recharge pond |
5 | Outflow from the third recharge pond |
6 | Zonal sampling of soil from the unsaturated zone |
7 | Monitoring borehole below the third (last) recharge pond. This section provides information on the behavior of drugs after passing through the unsaturated zone and then through about 100 m in a saturated environment. |
8–10 | Wells in the village of Daminěves determine the concentrations of pharmaceuticals after passing through about 1 km of the aquifer. The pharmaceuticals that are detected in this area passed through various degradation processes, dilution, sorption, etc. |
Substance | WWTP A | WWTP B | WWTP C | WWTP D | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Input | Output | Cleaning Efficiency | Input | Output | Cleaning Efficiency | Input | Output | Cleaning Efficiency | Input | Output | Cleaning Efficiency | |
ng/L | % | ng/L | % | ng/L | % | ng/L | % | |||||
Ibuprofen | 21,600 | 380 | 98 | 8700 | 930 | 89 | 7700 | 125 | 98 | 18,500 | 180 | 99 |
Diclofenac | 400 | 910 | −128 | 600 | 860 | −43 | 420 | 500 | −19 | 870 | 890 | −2 |
Carbamazepine | 604 | 924 | −53 | 260 | 330 | −27 | 350 | 420 | −20 | 1230 | 1325 | −8 |
Substance | Data from the Želivka Reservoir Catchments | Horní Beřkovice WWTP | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chmelná CW | Onšov CW | Popelištná CW | Moraveč CW | CW average | ||||||||||||||
Input | Output | Cleaning Efficiency | Input | Output | Cleaning Efficiency | Input | Output | Cleaning Efficiency | Input | Output | Cleaning Efficiency | Input | Output | Cleaning Efficiency | Input | Output | Cleaning Efficiency | |
ng/L | % | ng/L | % | ng/L | % | ng/L | % | ng/L | % | ng/L | % | |||||||
Furosemide | 13,000 | 3700 | 72 | 71,500 | 11,000 | 85 | 1700 | 2160 | 0 | 16,900 | 3500 | 79 | 25,775 | 5090 | 59 | 1745 | 144 | 92 |
Paracetamol | 12,100 | 34 | 100 | 45,500 | 9800 | 78 | 239 | 305 | 0 | 8450 | 11,670 | 0 | 16,572 | 5452 | 45 | 39,225 | 25 | 100 |
Caffeine | 7800 | <10 | 100 | 17,000 | 5250 | 69 | 10,750 | 2000 | 81 | 26,500 | 10,750 | 59 | 15,513 | 4500 | 77 | 185,000 | 38 | 100 |
Saccharin | 11,500 | 4900 | 57 | 11,350 | 5200 | 54 | 940 | 480 | 49 | 6350 | 11,000 | 0 | 7535 | 5395 | 40 | 43,250 | 60 | 100 |
Ibuprofen | 9900 | 5250 | 47 | 2550 | 1650 | 35 | 6550 | 5200 | 21 | 2950 | 12,950 | 0 | 5488 | 6263 | 26 | 37,250 | 42 | 100 |
Hydrochlorothiazide | 5050 | 3200 | 37 | 400 | 1600 | 0 | 2000 | 2300 | 0 | 19,500 | 3900 | 80 | 6738 | 2750 | 29 | 1512 | 2550 | 0 |
Metoprolol | 1720 | 176 | 90 | 341 | 164 | 52 | 664 | 487 | 27 | 1618 | 1745 | 0 | 1086 | 643 | 42 | 1980 | 29 | 99 |
Diclofenac | 720 | 495 | 31 | 700 | 325 | 54 | 770 | 765 | 1 | 750 | 695 | 7 | 735 | 570 | 23 | 1237 | 500 | 60 |
Atenolol | 350 | 55 | 84 | 1700 | 1020 | 40 | 455 | 240 | 47 | <10 | <10 | 626 | 329 | 43 | 643 | <10 | 100 | |
Warfarin | 45 | 24 | 47 | 37 | 15 | 59 | 21 | 11 | 48 | 60 | 42 | 30 | 41 | 23 | 46 | 27 | 16 | 41 |
Gabapentin | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | 14,050 | 1177 | 92 |
Carbamazepine | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | 2850 | 2725 | 4 |
Clarithromycin | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | 2035 | 84 | 96 |
Naproxen | <50 | <50 | - | <50 | <50 | - | <50 | <50 | - | <50 | <50 | - | <50 | <50 | - | 1054 | <50 | 100 |
Sulfamethoxazole | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | 621 | 633 | 0 |
Ketoprofen | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | 393 | <10 | 100 |
Triclocarban | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | 303 | <10 | 100 |
Trimetoprim | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | 250 | 3 | 99 |
Erythromycin | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | 152 | 6 | 96 |
Iopromide | <50 | <50 | - | <50 | <50 | - | <50 | <50 | - | <50 | <50 | - | <50 | <50 | - | 95 | <50 | 100 |
Sulfamethazine | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | 53 | 7 | 87 |
Sulfapyridine | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | 57 | 534 | 0 |
Penicillin G | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | 15 | <10 | 100 |
Sulfamerazine | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | <10 | <10 | - | 12 | <10 | 100 |
Chloramphenicol | <20 | <20 | - | <20 | <20 | - | <20 | <20 | - | <20 | <20 | - | <20 | <20 | - | 9 | <20 | 100 |
Sulfanilamide | <50 | <50 | - | <50 | <50 | - | <50 | <50 | - | <50 | <50 | - | <50 | <50 | - | 0 | 40 | 0 |
Substance | Detection Limit (ng/L) | Substance | Detection Limit (ng/L) |
---|---|---|---|
Carbamazepine | 10 | Chloramphenicol | 20 |
Erythromycin | 10 | Bezafibrate | 10 |
Sulfamethoxazole | 10 | Warfarin | 10 |
Iopromide | 50 | Saccharin | 50 |
Ibuprofen | 20 | Gabapentin | 10 |
Diclofenac | 20 | Tramadol | 10 |
Iopamidol | 50 | Paracetamol | 10 |
Atenolol | 10 | Sulfanilamide | 50 |
Caffeine | 100 | Clarithromycin | 10 |
Ketoprofen | 10 | Roxithromycin | 10 |
Metoprolol | 10 | Carbamazepine-10,11-epoxide | 10 |
Penicillin G | 10 | Carbamazepine 10,11-dihydro-10-hydroxy | 10 |
Sulfamerazine | 10 | Carbamazepine 10,11-dihydroxy | 10 |
Sulfamethazine | 10 | Oxcarbazepine | 10 |
Sulfapyridine | 10 | Ibuprofen-2-hydroxy | 30 |
Trimetoprim | 10 | Ibuprofen-carboxy | 20 |
Furosemide | 50 | Diclofenac-4′-hydroxy | 20 |
Gemfibrozil | 10 | Naproxen-O-desmethyl | 20 |
Hydrochlorothiazide | 50 | Venlafaxine | 10 |
Naproxen | 50 | Sertraline | 10 |
Triclocarban | 10 | Ranitidine | 10 |
Triclosan | 20 | Iohexol | 50 |
Metabolite | Horní Beřkovice Data | ||
---|---|---|---|
Input | Output | Cleaning Efficiency | |
ng/L | % | ||
Carbamazepine-10,11-epoxide | 320 | 460 | 0 |
Carbamazepine 10,11-dihydro-10-hydroxy | <10 | <10 | - |
Carbamazepine 10,11-dihydroxy | <10 | <10 | - |
Oxcarbazepine | <10 | <10 | - |
Ibuprofen-2-hydroxy | <30 | <30 | - |
Ibuprofen-carboxy | 31,000 | <20 | 100 |
Diclofenac-4′-hydroxy | 140,000 | <20 | 100 |
Naproxen-O-desmethyl | 400 | <20 | 100 |
Venlafaxine | 210 | <10 | 100 |
Sertraline | 3100 | 1600 | 48 |
Ranitidine | 580 | 220 | 62 |
Iohexol | 430 | 19 | 96 |
Sampling Site | Carbamazepine | Ibuprofen | Diclofenac | Caffeine | Metoprolol | Sulfapyridine | Hydrochlorothiazide | Triclocarban | Triclosan | Tramadol | Clarithromycin |
---|---|---|---|---|---|---|---|---|---|---|---|
ng/kg | |||||||||||
1st infiltration pond | 76,000 | 27,000 | 15,000 | 27,000 | 5850 | 2350 | 36,000 | 46,000 | 107,000 | 75,000 | 13,300 |
3rd infiltration pond | 10,000 | <10 | <10 | 4700 | 8100 | 1500 | <10 | <10 | <10 | 1500 | <10 |
Depth (m) | Carbamazepine | Caffeine | Metoprolol | Sulfapyridine | Hydrochlorothiazide | Gabapentin | Tramadol | Roxithromycin | Clarithromycin |
---|---|---|---|---|---|---|---|---|---|
ng/kg | |||||||||
0.5 | 15,000 | <10 | 8600 | <10 | <10 | <10 | <10 | <10 | <10 |
1.0 | 110,000 | 6700 | 47,000 | 5000 | 11,000 | 11,000 | 21,000 | 5700 | 5200 |
1.5 | 12,000 | <10 | 10,000 | 2200 | <10 | <10 | <10 | <10 | <10 |
2.0 | 16,000 | 5400 | 7900 | 2700 | <10 | <10 | 1700 | <10 | <10 |
2.5 | 12,000 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |
3.0 | 6600 | 2300 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozman, D.; Hrkal, Z.; Váňa, M.; Vymazal, J.; Boukalová, Z. Occurrence of Pharmaceuticals in Wastewater and Their Interaction with Shallow Aquifers: A Case Study of Horní Beřkovice, Czech Republic. Water 2017, 9, 218. https://doi.org/10.3390/w9030218
Rozman D, Hrkal Z, Váňa M, Vymazal J, Boukalová Z. Occurrence of Pharmaceuticals in Wastewater and Their Interaction with Shallow Aquifers: A Case Study of Horní Beřkovice, Czech Republic. Water. 2017; 9(3):218. https://doi.org/10.3390/w9030218
Chicago/Turabian StyleRozman, David, Zbyněk Hrkal, Miroslav Váňa, Jan Vymazal, and Zuzana Boukalová. 2017. "Occurrence of Pharmaceuticals in Wastewater and Their Interaction with Shallow Aquifers: A Case Study of Horní Beřkovice, Czech Republic" Water 9, no. 3: 218. https://doi.org/10.3390/w9030218