Quantifying River Channel Stability at the Basin Scale
Abstract
:1. Introduction
2. Concepts, Methods and Data Acquisition
2.1. Stream Energy Approaches in Fluvial Studies: Underpinning Concepts and Current State of Knowledge
- In using a single reference discharge, the method presents rather a time-invariant snapshot of the river network. This is important as bankfull discharge, or representation thereof, denotes one of a range of morphologically-significant flows and in some cases might even be a relatively ineffective flow over the long term;
- In coarse bed rivers the exclusion of a critical stream power term for incipient bedload motion removes sediment size from the assessment. This might be important where excess stream power is low during high in-bank flows because of bed armouring and where the sediment calibre changes markedly along the course of a river;
- The method of quantifying stream power balance as a ‘ratio’ and not ‘differential’ (difference between upstream and locally averaged values) might misleadingly emphasise large ratios that in fact correspond to very small absolute differences in sediment volumes between contiguous reaches;
- In this type of longitudinal assessment, the capability of a stream to perform geomorphological work relates to total energy supplied by the flow to the subject cross-section and is not correctly represented here by stream power per unit bed area. This may be demonstrated by considering the hypothetical situation where two reaches have different widths but the same specific stream power. The bed material loads per unit width at the two sites would be identical or very similar and yet the total annual loads (for the cross-section as a whole) would be quite different. In the same way, although the available energy per unit width at the two sites would be the same, the difference in total energy (for the cross-section) would also be different and it is in terms of total energy that such an accounting system is conceptually best framed. Dividing by width here actually removes the ability of the model to systematically account for width variability along a river network. The use of ‘total’ stream power as an indicator of sediment transport process and sediment yield has also been suggested by Vocal Ferencevic and Ashmore [120] and Gartner et al. [121].
2.2. River Energy Audit Scheme
2.2.1. The Concept
2.2.2. Annual Geomorphic Energy
2.2.3. The Auditing Process
- Each cross-section represents a single reach (appropriate, perhaps, when cross-sections are spaced at regular but broad intervals);
- Sediment transfer reaches based upon existing qualitative assessments and expert knowledge, such as the Fluvial Audit;
- Limits based upon measurable thresholds in boundary conditions, such as breaks of slope in the bed profile or tributary junctions, or;
- Reaches defined autogenically in the process by aggregating cross-sections and identifying marked changes in AGE along a river network based on some threshold criterion.
2.2.4. Data Acquisition
Cross-Sections and Slope
Bed Material Gradation
Channel Discharge
3. Application Case Study: River Kent, Cumbria, UK
3.1. Background
3.2. Application
- Balance (indicative of stability or equilibrium in sediment transfer);
- Negative (indicative of the potential for erosional processes), and;
- Positive (indicative of the potential for depositional processes).
- Stable (grouping three sub-categories);
- Minor erosion (mainly washout around trees);
- Extensive active erosion (defined here as ‘major erosion’);
- Sediment hotspot (major management issue), and;
- Deposition (although no reaches were defined as entirely depositional).
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Downs, P.W.; Gregory, K.J. River Channel Management: Towards Sustainable Catchment Hydrosystems; Arnold: London, UK, 2014. [Google Scholar]
- Lea, D.M.; Legleiter, C.J. Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone. Geomorphology 2016, 252, 66–79. [Google Scholar] [CrossRef]
- Thorne, C.R.; Soar, P.J.; Skinner, K.S.; Sear, D.A.; Newson, M.D. Driving processes II. Investigating, characterising and managing river sediment dynamics. In Guidebook of Applied Fluvial Geomorphology; Sear, D.A., Newson, M.D., Thorne, C.R., Eds.; Thomas Telford: London, UK, 2010; pp. 120–195. [Google Scholar]
- Thorne, C.R.; Wallerstein, N.P.; Soar, P.J.; Brookes, A.; Duncan, W.; Biedenharn, D.S.; Gibson, S.A.; Little, C.D.; Mooney, D.M.; Watson, C.C.; et al. Accounting for sediment in flood risk management. In Flood Risk Science and Management; Pender, G., Faulkner, H., Eds.; Wiley-Blackwell: Oxford, UK, 2011; pp. 87–113. [Google Scholar]
- Lane, E.M. The importance of fluvial morphology in hydraulic engineering. Am. Soc. Civ. Eng. Proc. Sep. 1955, 81, 1–17. [Google Scholar]
- Schmidt, J.C.; Wilcock, P.R. Metrics for assessing the downstream effects of dams. Water Resour. Res. 2008, 44, W04404. [Google Scholar] [CrossRef]
- Darby, S.E.; Rinaldi, M.; Dapporto, S. Coupled simulations of fluvial erosion and mass wasting for cohesive river banks. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef]
- Stover, S.C.; Montgomery, D.R. Channel change and flooding, Skokomish River, Washington. J. Hydrol. 2001, 243, 272–286. [Google Scholar] [CrossRef]
- Raven, E.K.; Lane, S.N.; Ferguson, R.I.; Bracken, L.J. The spatial and temporal patterns of aggradation in a temperate, upland, gravel-bed river. Earth Surf. Process. Landf. 2009, 34, 1181–1197. [Google Scholar] [CrossRef]
- Bullen Consultants Ltd. Glossop Brook Flood Event Appraisal: 30 July 2002 Flood Event; Bullen Consultants Ltd.: Birkenhead, Merseyside, UK, 2003; p. 46. [Google Scholar]
- Department of the Environment. The Occurrence and Significance of Erosion, Deposition and Flooding in Great Britain; Department of the Environment: London, UK, 1995; p. 178.
- Sear, D.A.; Newson, M.D.; Brookes, A. Sediment-related river maintenance: The role of fluvial geomorphology. Earth Surf. Process. Landf. 1995, 20, 629–647. [Google Scholar] [CrossRef]
- Newson, M.D. Geomorphic thresholds in gravel-bed rivers. In Dynamics of Gravel-Bed Rvers; Billi, P., Hey, R.D., Thorne, C.R., Tacconi, P., Eds.; John Wiley & Sons: Chichester, UK, 1992; pp. 3–15. [Google Scholar]
- Hooke, J. Coarse sediment connectivity in river channel systems: A conceptual framework and methodology. Geomorphology 2003, 56, 79–94. [Google Scholar] [CrossRef]
- Biedenharn, D.S.; Thorne, C.R.; Watson, C.C. Recent morphological evolution of the Lower Mississippi River. Geomorphology 2000, 34, 227–249. [Google Scholar] [CrossRef]
- Booth, D.B.; Fischenich, C.J. A channel evolution model to guide sustainable urban stream restoration. Area 2015, 47, 408–421. [Google Scholar] [CrossRef]
- Soar, P.J.; Thorne, C.R. Channel Restoration Design for Meandering Rivers; ERDC/CHL Report CR-01-1; U.S. Army Corps of Engineers Engineer Research & Development Center: Vicksburg, MS, USA, 2001; p. 429. [Google Scholar]
- Pollock, M.M.; Beechie, T.J.; Wheaton, J.M.; Jordan, C.E.; Bouwes, N.; Weber, N.; Volk, C. Using beaver dams to restore incised stream ecosystems. Bioscience 2014, 64, 279–290. [Google Scholar] [CrossRef]
- Shields, F.D.J.; Doyle, M.W. Sedimentation engineering design in river restoration: System stability assessment for design guidance. In Proceedings of the 1999 International Water Resources Engineering Conference, Seattle, WA, USA, 8–12 August 1999; Walton, R., Nece, R.E., Eds.; Environmental and Water Resources Institute of the American Society of Civil Engineers: Reston, VA, USA, 1999. [Google Scholar]
- Dust, D.; Wohl, E. Conceptual model for complex river responses using an expanded Lane’s relation. Geomorphology 2012, 139–140, 109–121. [Google Scholar] [CrossRef]
- Huang, H.Q.; Liu, X.; Nanson, G.C. Commentary on a “Conceptual model for complex river responses using an expanded Lane diagram by David Dust and Ellen Wohl”. Geomorphology 2014, 209, 140–142. [Google Scholar] [CrossRef]
- Kiraga, M.; Popek, Z. Using a modified Lane’s relation in local bed scouring studies in the laboratory channel. Water 2016, 8, 16. [Google Scholar] [CrossRef]
- Harvey, A.M. Effective timescales of coupling within fluvial systems. Geomorphology 2002, 44, 175–201. [Google Scholar] [CrossRef]
- Brierley, G.; Fryirs, K.; Jain, V. Landscape connectivity: The geographic basis of geomorphic applications. Area 2006, 38, 165–174. [Google Scholar] [CrossRef]
- Bracken, L.J.; Croke, J. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrol. Process. 2007, 21, 1749–1763. [Google Scholar] [CrossRef]
- Raven, E.K.; Lane, S.N.; Bracken, L.J. Understanding sediment transfer and morphological change for managing upland gravel-bed rivers. Prog. Phys. Geogr. 2010, 34, 23–45. [Google Scholar] [CrossRef]
- Fryirs, K. (Dis)Connectivity in catchment sediment cascades: A fresh look at the sediment delivery problem. Earth Surf. Process. Landf. 2013, 38, 30–46. [Google Scholar] [CrossRef]
- Koiter, A.J.; Owens, P.N.; Petticrew, E.L.; Lobb, D.A. The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins. Earth Sci. Rev. 2013, 125, 24–42. [Google Scholar] [CrossRef]
- Bracken, L.J.; Turnbull, L.; Wainwright, J.; Bogaart, P. Sediment connectivity: A framework for understanding sediment transfer at multiple scales. Earth Surf. Process. Landf. 2015, 40, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, R.J.P.; Bizzi, S.; Castelletti, A. Tracking multiple sediment cascades at the river network scale identifies controls and emerging patterns of sediment connectivity. Water Resour. Res. 2016, 52, 3941–3965. [Google Scholar] [CrossRef]
- Downs, P.W.; Dusterhoff, S.; Leverich, G.; Soar, P.J.; Napolitano, M. Structured insights into Anthropocene fluvial system dynamics evidenced through sediment budget analysis of a highly regulated catchment. Earth Surf. Process. Landf. 2017. under review. [Google Scholar]
- Wohl, E.; Bledsoe, B.P.; Jacobson, R.B.; Poff, N.L.; Rathburn, S.L.; Walters, D.M.; Wilcox, A.C. The natural sediment regime in rivers: Broadening the foundation for ecosystem management. Bioscience 2015, 65, 358–371. [Google Scholar] [CrossRef]
- Iacob, O.; Rowan, J.S.; Brown, I.; Ellis, C. Evaluating wider benefits of natural flood management strategies: An ecosystem-based adaptation perspective. Hydrol. Res. 2014, 45, 774–787. [Google Scholar] [CrossRef]
- Newson, M.D.; Large, A.R.G. “Natural” rivers, “hydromorphological quality” and river restoration: A challenging new agenda for applied fluvial geomorphology. Earth Surf. Process. Landf. 2006, 31, 1606–1624. [Google Scholar] [CrossRef]
- Wallerstein, N.P.; Thorne, C.R.; Soar, P.J.; Brookes, A.; Biedenharn, D.S.; Watson, C.C.; Gibson, S.; Little, C.; Mooney, D.; Green, A.P.; et al. Accounting for Sediment in Rivers: A Tool Box of Sediment Transport and Transfer Analysis Methods and Models to Support Hydromophologically-Sustainable Flood Risk Management in the UK; Flood Risk Management Research Consortium, University of Nottingham: Nottingham, UK, 2006; p. 134. [Google Scholar]
- Environment Agency. River Geomorphology: A Practical Guide; Guide Note 18; Environment Agency: Bristol, UK, 1998; p. 56. [Google Scholar]
- Sear, D.; Newson, M.; Hill, C.; Old, J.; Branson, J.A. method for applying fluvial geomorphology in support of catchment-scale river restoration planning. Aquat. Conserv. Mar. Freshw. Ecosyst. 2009, 19, 506–519. [Google Scholar] [CrossRef]
- Thorne, C.R.; Soar, P.J.; Skinner, K.S. Characterising and managing river sediment dynamics. In Guidebook of Applied Fluvial Geomorphology; Sear, D.A., Thorne, C.R., Newson, M.D., Eds.; Thomas Telford: London, UK, 2010; pp. 120–195. [Google Scholar]
- Johnson, P.A. Preliminary assessment and rating of stream channel stability near bridges. J. Hydraul. Eng. 2005, 131, 845–852. [Google Scholar] [CrossRef]
- Johnson, P.A.; Whittington, R.M. Vulnerability-based risk assessment for stream instability at bridges. J. Hydraul. Eng. 2011, 137, 1248–1256. [Google Scholar] [CrossRef]
- Cluer, B.; Thorne, C.R. A stream evolution model integrating habitat and ecosystem benefits. River Res. Appl. 2014, 30, 135–154. [Google Scholar] [CrossRef]
- Brierley, G.J.; Fryirs, K.A. Geomorphology and River Management: Applications of the River Styles Framework; Blackwell Publishing: Oxford, UK, 2005. [Google Scholar]
- Belletti, B.; Rinaldi, M.; Buijse, A.D.; Gurnell, A.M.; Mosselman, E. A review of assessment methods for river hydromorphology. Environ. Earth Sci. 2014, 73, 2079–2100. [Google Scholar] [CrossRef]
- Gomez, B.; Church, M. An assessment of bed load sediment transport formulae for gravel bed rivers. Water Resour. Res. 1989, 25, 1161–1186. [Google Scholar] [CrossRef]
- Wilcock, P.R. Toward a practical method for estimating sediment-transport rates in gravel-bed rivers. Earth Surf. Process. Landf. 2001, 26, 1395–1408. [Google Scholar] [CrossRef]
- Barry, J.J.; Buffington, J.M.; King, J.G. A general power equation for predicting bed load transport rates in gravel bed rivers. Water Resour. Res. 2004, 40, W10401. [Google Scholar] [CrossRef]
- Martin, Y.; Ham, D. Testing bedload transport formulae using morphologic transport estimates and field data: Lower Fraser River, British Columbia. Earth Surf. Process. Landf. 2005, 30, 1265–1282. [Google Scholar] [CrossRef]
- Papanicolaou, A.N.; Elhakeem, M.; Krallis, G.; Prakash, S.; Edinger, J. Sediment transport modeling review: Current and future developments. J. Hydraul. Eng. 2008, 134, 1–14. [Google Scholar] [CrossRef]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A review of erosion and sediment transport models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- Reaney, S.M.; Lane, S.N.; Heathwaite, A.L.; Dugdale, L.J. Risk-based modelling of diffuse land use impacts from rural landscapes upon salmonid fry abundance. Ecol. Model. 2011, 222, 1016–1029. [Google Scholar] [CrossRef]
- Coulthard, T.J.; Neal, J.C.; Bates, P.D.; Ramirez, J.; de Almeida, G.A.M.; Hancock, G.R. Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: Implications for modelling landscape evolution. Earth Surf. Process. Landf. 2013, 38, 1897–1906. [Google Scholar] [CrossRef]
- Biedenharn, D.S.; Hubbard, L.C.; Thorne, C.R.; Watson, C.C. Understanding Sediment Sources, Pathways, and Sinks in Regional Sediment Management: Application of Wash Load and Bed-Material Load Concept; Technical Notes TN-SWWRP-06-4; U.S. Army Corps of Engineers, Engineer Research & Development Center: Vicksburg, MS, USA, 2006; p. 12. [Google Scholar]
- Gibson, S.A.; Little, C.D. Implementation of the Sediment Impact Assessment Model (SIAM) in HEC-RAS. In Proceedings of the Eighth Federal Interagency Sedimentation Conference (8th FISC), Reno, NV, USA, 2–6 April 2006; pp. 65–72.
- Little, C.D.; Jonas, M. Sediment Impact Analysis Method (SIAM): Overview of model capabilities, applications, and limitations. In Proceedings of the 2nd Joint Federal Interagency Conference on Sedimentation and Hydrologic Modeling, Las Vegas, NV, USA, 27 June–1 July 2010.
- Wolman, M.G.; Miller, J.P. Magnitude and frequency of forces in geomorphic processes. J. Geol. 1960, 68, 54–74. [Google Scholar] [CrossRef]
- Andrews, E.D. Effective and bankfull discharges of streams in the Yampa River basin, Colorado and Wyoming. J. Hydrol. 1980, 46, 311–330. [Google Scholar] [CrossRef]
- Soar, P.J.; Thorne, C.R. Design discharge for river restoration. In Stream Restoration in Dynamic Fluvial Systems; Simon, A., Bennett, S.J., Castro, J.M., Eds.; American Geophysical Union: Washington, DC, USA, 2011; pp. 123–149. [Google Scholar]
- Sholtes, J.; Werbylo, K.; Bledsoe, B. Physical context for theoretical approaches to sediment transport magnitude-frequency analysis in alluvial channels. Water Resour. Res. 2014, 50, 7900–7914. [Google Scholar] [CrossRef]
- Biedenharn, D.S.; Copeland, R.R.; Thorne, C.R.; Soar, P.J.; Hey, R.D.; Watson, C.C. Effective Discharge: A Practical Guide; ERDC/CHL Technical Report TR-00-15; U.S. Army Corps of Engineers, Engineer Research & Development Center: Vicksburg, MS, USA, 2000; p. 48. [Google Scholar]
- Reid, L.M.; Dunne, T. Sediment budgets as an organising framework in fluvial geomorphology. In Tools in Fluvial Geomorphology; Kondolf, G.M., Piégay, H., Eds.; John Wiley & Sons: Chichester, UK, 2003; pp. 463–500. [Google Scholar]
- Fuller, I.C.; Large, A.R.G.; Charlton, M.E.; Heritage, G.L.; Milan, D.J. Reach-scale sediment transfers: An evaluation of two morphological budgeting approaches. Earth Surf. Process. Landf. 2003, 28, 889–903. [Google Scholar] [CrossRef]
- Rovira, A.; Batalla, R.J.; Sala, M. Fluvial sediment budget of a Mediterranean river: The lower Tordera (Catalan Coastal Ranges, NE Spain). Catena 2005, 60, 19–42. [Google Scholar] [CrossRef]
- Walling, D.E.; Collins, A.L.; Jones, P.A.; Leeks, G.J.L.; Old, G. Establishing fine-grained sediment budgets for the Pang and Lambourn LOCAR catchments, UK. J. Hydrol. 2006, 330, 126–141. [Google Scholar] [CrossRef]
- Wilkinson, S.N.; Prosser, I.P.; Rustomji, P.; Read, A.M. Modelling and testing spatially distributed sediment budgets to relate erosion processes to sediment yields. Environ. Model. Softw. 2009, 24, 489–501. [Google Scholar] [CrossRef]
- Gellis, A.C.; Walling, D.E. Sediment source fingerprinting (tracing) and sediment budgets as tools in targeting river and watershed restoration programs. In Stream Restoration in Dynamic Fluvial Systems; Simon, A., Bennet, S.J., Castro, J.M., Eds.; American Geophysical Union: Washington, DC, USA, 2011; pp. 263–291. [Google Scholar]
- Allison, M.A.; Demas, C.R.; Ebersole, B.A.; Kleiss, B.A.; Little, C.D.; Meselhe, E.A.; Powell, N.J.; Pratt, T.C.; Vosburg, B.M. A water and sediment budget for the lower Mississippi-Atchafalaya River in flood years 2008–2010: Implications for sediment discharge to the oceans and coastal restoration in Louisiana. J. Hydrol. 2012, 432–433, 84–97. [Google Scholar] [CrossRef]
- López-Tarazón, J.A.; Batalla, R.J.; Vericat, D.; Francke, T. The sediment budget of a highly dynamic mesoscale catchment: The River Isábena. Geomorphology 2012, 138, 15–28. [Google Scholar] [CrossRef]
- Slaymaker, O. The sediment budget as conceptual framework and management tool. Hydrobiologia 2003, 494, 71–82. [Google Scholar] [CrossRef]
- Walling, D.E.; Collins, A.L. The catchment sediment budget as a management tool. Environ. Sci. Policy 2008, 11, 136–143. [Google Scholar] [CrossRef]
- Erwin, S.O.; Schmidt, J.C.; Wheaton, J.M.; Wilcock, P.R. Closing a sediment budget for a reconfigured reach of the Provo River, Utah, United States. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Merz, J.E.; Pasternack, G.B.; Wheaton, J.M. Sediment budget for salmonid spawning habitat rehabilitation in a regulated river. Geomorphology 2006, 76, 207–228. [Google Scholar] [CrossRef]
- Smith, S.M.C.; Belmont, P.; Wilcock, P.R. Closing the gap between watershed modeling, sediment budgeting, and stream restoration. In Stream Restoration in Dynamic Fluvial Systems; Simon, A., Bennett, S.J., Castro, J.M., Eds.; American Geophysical Union: Washington, DC, USA, 2011; pp. 293–317. [Google Scholar]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Leopold, L.; Langbein, W. The Concept of Entropy in Landscape Evolution; U.S. Geological Survey Professional Paper 500-A; U.S. Government Printing Office: Washington, DC, USA, 1962; pp. A1–A20.
- Gilbert, G.K. The Transport of Debris by Running Water; U.S. Geological Survey Professional Paper 86; U.S. Government Printing Office: Washington, DC, USA, 1914; p. 263.
- Rubey, W.W. Equilibrium conditions in debris-laden streams. Trans. Geophys. Union 1933, 14, 497–505. [Google Scholar] [CrossRef]
- Velikanov, M.A. Sediment and bed flow. In Dynamics of Alluvial Streams; State Publishing House for Theoretical and Technical Literature: Moscow, Russia, 1955; Volume II. [Google Scholar]
- Bagnold, R.A. Sediment Discharge and Stream Power. A Preliminary Announcement; U.S. Geological Survey Circular 421; U.S. Government Printing Office: Washington, DC, USA, 1960; p. 28.
- Bagnold, R.A. An Approach to the Sediment Transport Problem from General Physics; U.S. Geological Survey Professional Paper 422-I; U.S. Government Printing Office: Washington, DC, USA, 1966; p. 42.
- Bagnold, R.A. An empirical correlation of bedload transport rates in flumes and natural rivers. Proc. R. Soc. Lond. A Math. Phys. Sci. 1980, 372, 453–473. [Google Scholar] [CrossRef]
- Shields, A. Application of Similarity Principles and Turbulence Research to Bed-Load Movement; Hydrodynamics Laboratory Publications 167; U.S. Soil Conservation Service Cooperative Laboratory California Institute of Technology: Pasadena, CA, USA, 1936. [Google Scholar]
- Martin, Y.; Church, M. Re-examination of Bagnold’s empirical bedload formulae. Earth Surf. Process. Landf. 2000, 25, 1011–1024. [Google Scholar] [CrossRef]
- Engelund, F.; Hansen, E. A Monograph on Sediment Transport in Alluvial Streams; Teknisk Forlag: Copenhagen, Denmark, 1967. [Google Scholar]
- Yang, C.T. Incipient motion and sediment transport. J. Hydraul. Div. 1973, 99, 1679–1704. [Google Scholar]
- Yang, C.T. Unit stream power equation for gravel. J. Hydraul. Eng. 1984, 110, 1783–1797. [Google Scholar] [CrossRef]
- Pacheco-Ceballos, P. Transport of sediments: Analytical solution. J. Hydraul. Res. 1989, 27, 501–518. [Google Scholar] [CrossRef]
- Eaton, B.C.; Church, M. A rational sediment transport scaling relation based on dimensionless stream power. Earth Surf. Process. Landf. 2011, 36, 901–910. [Google Scholar] [CrossRef]
- Tooth, S.; Nanson, G.C. Equilibrium and nonequilibrium conditions in dryland rivers. Phys. Geogr. 2000, 21, 183–211. [Google Scholar]
- Lawler, D.M. Process dominance in bank erosion systems. In Lowland Floodplain Rivers; Carling, P.A., Petts, G.E., Eds.; John Wiley & Sons: Chichester, UK, 1992; pp. 117–143. [Google Scholar]
- Abernethy, B.; Rutherfurd, I.D. Where along a river’s length will vegetation most effectively stabilise stream banks? Geomorphology 1998, 23, 55–75. [Google Scholar] [CrossRef]
- Whipple, K.X.; DiBiase, R.A.; Crosby, B.T. Bedrock rivers. In Treatise on Geomorphology; Wohl, E.E., Ed.; Academic Press: San Diego, CA, USA, 2013; Volume 9, pp. 550–573. [Google Scholar]
- Schumm, S.A. The Fuvial System; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Knighton, D.A.; Nanson, G.C. Anastomosis and the continuum of channel pattern. Earth Surf. Process. Landf. 1993, 18, 613–625. [Google Scholar] [CrossRef]
- Ferguson, R.I. Channel form and channel changes. In British Rivers; Lewin, J., Ed.; Allen and Unwin: London, UK, 1981; pp. 90–125. [Google Scholar]
- McEwen, L.J. Channel planform adjustment and stream power variations on the middle River Coe, Western Grampian Highlands, Scotland. Catena 1994, 21, 357–374. [Google Scholar] [CrossRef]
- Nanson, G.C.; Croke, J.C. A genetic classification of floodplains. Geomorphology 1992, 4, 459–486. [Google Scholar] [CrossRef]
- Molnar, P.; Ramírez, J.A. An analysis of energy expenditure in Goodwin Creek. Water Resour. Res. 1998, 34, 1819–1829. [Google Scholar] [CrossRef]
- Molnar, P.; Ramírez, J.A. On downstream hydraulic geometry and optimal energy expenditure: Case study of the Ashley and Taieri Rivers. J. Hydrol. 2002, 259, 105–115. [Google Scholar] [CrossRef]
- Yang, C.T. Potential energy and stream morphology. Water Resour. Res. 1971, 7, 311–322. [Google Scholar] [CrossRef]
- Chang, H.H. Minimum stream power and river channel patterns. J. Hydrol. 1979, 41, 303–327. [Google Scholar] [CrossRef]
- Yang, C.T.; Song, C.C.S. Theory of minimum rate of energy dissipation. J. Hydraul. Div. ASCE 1979, 105, 769–784. [Google Scholar]
- Phillips, J.D.; Slattery, M.C. Downstream trends in discharge, slope, and stream power in a lower coastal plain river. J. Hydrol. 2007, 334, 290–303. [Google Scholar] [CrossRef]
- Bendix, J. Stream power influence on southern Californian riparian vegetation. J. Veg. Sci. 1999, 10, 243–252. [Google Scholar] [CrossRef]
- Bendix, J.; Hupp, C.R. Hydrological and geomorphological impacts on riparian plant communities. Hydrol. Process. 2000, 14, 2977–2990. [Google Scholar] [CrossRef]
- Moir, H.J.; Gibbins, C.N.; Buffington, J.M.; Webb, J.H.; Soulsby, C.; Brewer, M.J. A new method to identify the fluvial regimes used by spawning salmonids. Can. J. Fish. Aquat. Sci. 2009, 66, 1404–1408. [Google Scholar] [CrossRef]
- Brierley, G.J.; Fryirs, K.A. The use of evolutionary trajectories to guide “moving targets” in the management of river futures. River Res. Appl. 2016, 32, 823–835. [Google Scholar] [CrossRef]
- Tilleard, J.W. River Channel Adjustment to Hydrologic Change. Ph.D. Thesis, Department of Civil and Environmental Engineering, University of Melbourne, Melbourne, Australia, 2001. [Google Scholar]
- Brookes, A. River Channelization: Perspectives for Environmental Management; John Wiley & Sons: Chichester, UK, 1988. [Google Scholar]
- Brookes, A.; Shields, F.D.J. (Eds.) River Channel Restoration: Guiding Principles for Sustainable Projects; John Wiley & Sons: Chichester, UK, 1996.
- Mackin, J.H. Concept of the graded river. Bull. Geol. Soc. Am. 1948, 59, 463–512. [Google Scholar] [CrossRef]
- Leopold, L.B.; Bull, W.B. Base level, aggradation, and grade. Proc. Am. Philos. Soc. 1979, 123, 168–202. [Google Scholar]
- Bull, W.B. Threshold of critical power in streams. Bull. Geol. Soc. Am. 1979, 90, 453–464. [Google Scholar] [CrossRef]
- Magilligan, F.J. Thresholds and the spatial variability of flood power during extreme floods. Geomorphology 1992, 5, 373–390. [Google Scholar] [CrossRef]
- Brookes, A. The distribution and management of channelized streams in Denmark. Regul. Rivers Res. Manag. 1987, 1, 3–16. [Google Scholar] [CrossRef]
- Brookes, A. River channel adjustments downstream from channelization works in England and Wales. Earth Surf. Process. Landf. 1987, 12, 337–351. [Google Scholar] [CrossRef]
- Reinfelds, I.; Cohen, T.; Batten, P.; Brierley, G. Assessment of downstream trends in channel gradient, total and specific stream power: A GIS approach. Geomorphology 2004, 60, 403–416. [Google Scholar] [CrossRef]
- Jain, V.; Preston, N.; Fryirs, K.; Brierley, G. Comparative assessment of three approaches for deriving stream power plots along long profiles in the upper Hunter River catchment, New South Wales, Australia. Geomorphology 2006, 74, 297–317. [Google Scholar] [CrossRef]
- Parker, C.; Thorne, C.R.; Clifford, N.J. Development of ST:REAM: A reach-based stream power balance approach for predicting alluvial river channel adjustment. Earth Surf. Process. Landf. 2015, 40, 403–413. [Google Scholar] [CrossRef]
- Robson, A.J.; Reed, D.W. Statistical procedures for flood frequency estimation. In Flood Estimation Handbook (Procedures for Flood Frequency Estimation); Institute of Hydrology: Wallingford, UK, 1999; Volume 3, p. 338. [Google Scholar]
- Vocal Ferencevic, M.; Ashmore, P. Creating and evaluating digital elevation model-based stream-power map as a stream assessment tool. River Res. Appl. 2012, 28, 1394–1416. [Google Scholar] [CrossRef]
- Gartner, J.D.; Dade, W.B.; Renshaw, C.E.; Magilligan, F.J.; Buraas, E.M. Gradients in stream power influence lateral and downstream sediment flux in floods. Geology 2015, 43, 983–986. [Google Scholar] [CrossRef]
- Bizzi, S.; Lerner, D.N. Characterizing physical habitats in rivers using map-derived drivers of fluvial geomorphic processes. Geomorphology 2012, 169–170, 64–73. [Google Scholar] [CrossRef]
- Bizzi, S.; Lerner, D.N. The use of stream power as an indicator of channel sensitivity to erosion and deposition processes. River Res. Appl. 2015, 31, 16–27. [Google Scholar] [CrossRef]
- Hey, R.D.; Thorne, C.R. Stable channels with mobile gravel beds. J. Hydraul. Eng. 1986, 112, 671–689. [Google Scholar] [CrossRef]
- Barker, D.M.; Lawler, D.M.; Knight, D.W.; Morris, D.G.; Davies, H.N.; Stewart, E.J. Longitudinal distributions of river flood power: The combined automated flood, elevation and stream power (CAFES) methodology. Earth Surf. Process. Landf. 2009, 34, 280–290. [Google Scholar] [CrossRef]
- Biron, P.M.; Choné, G.; Buffin-Bélanger, T.; Demers, S.; Olsen, T. Improvement of streams hydro-geomorphological assessment using LiDAR DEMs. Earth Surf. Process. Landf. 2013, 38, 1808–1821. [Google Scholar] [CrossRef]
- Wallerstein, N.P.; Soar, P.J.; Thorne, C.R. River Energy Auditing Scheme (REAS) for catchment flood management planning. In Proceedings of the IAHR River Flow, Lisbon, Portugal, 6–8 September 2006; Ferreira, R.M.L., Alves, E.C.T.L., Leal, J.G.A.B., Cardoso, A.H., Eds.; Taylor & Francis Group: London, UK, 2006; Volume 2, pp. 1923–1932. [Google Scholar]
- Vanoni, V.A. Sedimentation Engineering, Manuals and Reports on Engineering Practice No. 54; American Society of Civil Engineers: New York, NY, USA, 1975. [Google Scholar]
- Gibson, S.A.; Bruner, G.W.; Piper, S.S. Sediment transport computations with HEC-RAS. In Proceedings of the Eighth Federal Interagency Sedimentation Conference (8th FISC), Reno, NV, USA, 2–6 April 2006; pp. 57–64.
- Krumbein, W.C.; Sloss, L.L. Stratigraphy and Sedimentation; H. Freeman: San Francisco, CA, USA, 1963. [Google Scholar]
- Ferguson, R.I. Estimating critical stream power for bedload transport calculations in gravel-bed rivers. Geomorphology 2005, 70, 33–41. [Google Scholar] [CrossRef]
- Andrews, E.D. Entrainment of gravel from naturally sorted riverbed material. Geol. Soc. Am. Bull. 1983, 94, 1225–1231. [Google Scholar] [CrossRef]
- Alber, A.; Piégay, H. Spatial disaggregation and aggregation procedures for characterizing fluvial features at the network-scale: Application to the Rhône basin (France). Geomorphology 2011, 125, 343–360. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Eisank, C. Object representations at multiple scales from digital elevation models. Geomorphology 2011, 129, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Leviandier, T.; Alber, A.; Le Ber, F.; Piégay, H. Comparison of statistical algorithms for detecting homogeneous river reaches along a longitudinal continuum. Geomorphology 2012, 138, 130–144. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Fernández, V.; Solana-Gutiérrez, J.; González del Tánago, M.; García de Jalón, D. Automatic procedures for river reach delineation: Univariate and multivariate approaches in a fluvial context. Geomorphology 2016, 253, 38–47. [Google Scholar] [CrossRef]
- Gill, D. Application of a statistical zonation method to a reservoir evaluation and digitised log analysis. Am. Assoc. Pet. Geol. Bull. 1970, 54, 719–729. [Google Scholar]
- Davis, J.C. Statistics and Data Analysis in Geology, 3rd ed.; John Wiley & Sons: Chichester, UK, 2002. [Google Scholar]
- Harmar, O.P.; Clifford, N.J. Planform dynamics of the Lower Mississippi River. Earth Surf. Process. Landf. 2006, 31, 825–843. [Google Scholar] [CrossRef]
- Parker, C.; Clifford, N.J.; Thorne, C.R. Automatic delineation of functional river reach boundaries for river research and applications. River Res. Appl. 2012, 28, 1708–1725. [Google Scholar] [CrossRef]
- Hohenthal, J.; Alho, P.; Hyyppa, J.; Hyyppa, H. Laser scanning applications in fluvial studies. Prog. Phys. Geogr. 2011, 35, 782–809. [Google Scholar] [CrossRef]
- Bailly, J.-S.; Kinzel, P.J.; Allouis, T.; Feurer, D.; Le Coarer, Y. Airborne LiDAR methods applied to riverine environments. In Fluvial Remote Sensing for Science and Management; Carbonneau, P.E., Piégay, H., Eds.; John Wiley & Sons: Chichester, UK, 2012; pp. 141–161. [Google Scholar]
- Bizzi, S.; Demarchi, L.; Grabowski, R.C.; Weissteiner, C.J.; van de Bund, W. The use of remote sensing to characterise hydromorphological properties of European rivers. Aquat. Sci. 2016, 78, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Cook, A.; Merwade, V. Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. J. Hydrol. 2009, 377, 131–142. [Google Scholar] [CrossRef]
- Merwade, V.; Cook, A.; Coonrod, J. GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping. Environ. Model. Softw. 2008, 23, 1300–1311. [Google Scholar] [CrossRef]
- Pilotti, M. Extraction of cross sections from digital elevation model for one-dimensional dam-break wave propagation in mountain valleys. Water Resour. Res. 2016, 52, 52–68. [Google Scholar] [CrossRef]
- Ackerman, C. HEC-GeoRAS User’s Manual, Computer Program Documentation; USACE Hydrologic Engineering Center: Davis, CA, USA, 2009. [Google Scholar]
- Mount, N.J.; Louis, J.; Teeuw, R.M.; Zukowskyj, P.M.; Stott, T. Estimation of error in bankfull width comparisons from temporally sequenced raw and corrected aerial photographs. Geomorphology 2003, 56, 65–77. [Google Scholar] [CrossRef]
- Pavelsky, T.M.; Smith, L.C. RivWidth: A software tool for the calculation of river widths from remotely sensed imagery. IEEE Geosci. Remote Sens. Lett. 2008, 5, 70–73. [Google Scholar] [CrossRef]
- Carbonneau, P.; Fonstad, M.A.; Marcus, W.A.; Dugdale, S.J. Making riverscapes real. Geomorphology 2012, 137, 74–86. [Google Scholar] [CrossRef]
- Legleiter, C.J. Remote measurement of river morphology via fusion of LiDAR topography and spectrally based bathymetry. Earth Surf. Process. Landf. 2012, 37, 499–518. [Google Scholar] [CrossRef]
- Sofia, G.; Tarolli, P.; Cazorzi, F.; Dalla Fontana, G. Downstream hydraulic geometry relationships: Gathering reference reach-scale width values from LiDAR. Geomorphology 2015, 250, 236–248. [Google Scholar] [CrossRef] [Green Version]
- Bray, D.I. Representative discharges for gravel-bed rivers in Alberta, Canada. J. Hydrol. 1975, 27, 143–153. [Google Scholar] [CrossRef]
- Alber, A.; Piégay, H. Characterizing and modelling river channel migration rates at a regional scale: Case study of south-east France. J. Environ. Manag. 2016. [Google Scholar] [CrossRef] [PubMed]
- Rawlins, B.G.; Clark, L.; Boyd, D.S. Using air photos to parameterize landscape predictors of channel wetted width. Earth Surf. Process. Landf. 2014, 39, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Fisher, G.B.; Amos, C.B.; Bookhagen, B.; Burbank, D.W.; Godard, V. Channel widths, landslides, faults, and beyond: The new world order of high-spatial resolution Google Earth imagery in the study of earth surface processes. Geol. Soc. Am. Spec. Pap. 2012, 492, 1–22. [Google Scholar]
- Fisher, G.B.; Bookhagen, B.; Amos, C.B. Channel planform geometry and slopes from freely available high-spatial resolution imagery and DEM fusion: Implications for channel width scalings, erosion proxies, and fluvial signatures in tectonically active landscapes. Geomorphology 2013, 194, 46–56. [Google Scholar] [CrossRef]
- Downward, S.R. Information from topographic survey. In Changing River Channels; Gurnell, A.M., Petts, G.E., Eds.; John Wiley & Sons: Chichester, UK, 1995; pp. 303–323. [Google Scholar]
- Aggett, G.R.; Wilson, J.P. Creating and coupling a high-resolution DTM with a 1-D hydraulic model in a GIS for scenario-based assessment of avulsion hazard in a gravel-bed river. Geomorphology 2009, 113, 21–34. [Google Scholar] [CrossRef]
- English, J.T. Effectiveness of Extracting Water Surface Slopes from LiDAR Data within the Active Channel. Master’s Thesis, University of Oregon, Sandy River, OR, USA, 2009. [Google Scholar]
- Ashraf, M.I.; Zhao, Z.; Bourque, C.P.A.-A.; Meng, F.-R. GIS-evaluation of two slope-calculation methods regarding their suitability in slope analysis using high-precision LiDAR digital elevation models. Hydrol. Process. 2012, 26, 1119–1133. [Google Scholar] [CrossRef]
- Byun, J.; Seong, Y.B. An algorithm to extract more accurate stream longitudinal profiles from unfilled DEMs. Geomorphology 2015, 242, 38–48. [Google Scholar] [CrossRef]
- Feurer, D.; Bailly, J.-S.; Puech, C.; Le Coarer, Y.; Viau, A.A. Very-high-resolution mapping of river-immersed topography by remote sensing. Prog. Phys. Geogr. 2008, 32, 403–419. [Google Scholar] [CrossRef]
- Hilldale, R.C.; Raff, D. Assessing the ability of airborne LiDAR to map river bathymetry. Earth Surf. Process. Landf. 2008, 33, 773–783. [Google Scholar] [CrossRef]
- Kinzel, P.J.; Wright, C.W.; Nelson, J.M.; Burman, A.R. Evaluation of an experimental LiDAR for surveying a shallow, braided, sand-bedded river. J. Hydraul. Eng. 2007, 133, 838–842. [Google Scholar] [CrossRef]
- Allouis, T.; Bailly, J.S.; Pastol, Y.; Le Roux, C. Comparison of LiDAR waveform processing methods for very shallow water bathymetry using Raman, near-infrared and green signals. Earth Surf. Process. Landf. 2010, 35, 640–650. [Google Scholar] [CrossRef]
- Bailly, J.S.; le Coarer, Y.; Languille, P.; Stigermark, C.J.; Allouis, T. Geostatistical estimations of bathymetric LiDAR errors on rivers. Earth Surf. Process. Landf. 2010, 35, 1199–1210. [Google Scholar] [CrossRef]
- Kinzel, P.J.; Legleiter, C.J.; Nelson, J.M. Mapping river bathymetry with a small footprint green LiDAR: Applications and challenges. J. Am. Water Resour. Assoc. 2013, 49, 183–204. [Google Scholar] [CrossRef]
- Winterbottom, S.J.; Gilvear, D.J. Quantification of channel bed morphology in gravel-bed rivers using airborne multispectral imagery and aerial photography. Regul. Rivers Res. Manag. 1997, 13, 489–499. [Google Scholar] [CrossRef]
- Roberts, A.C.B.; Anderson, J.M. Shallow water bathymetry using integrated airborne multi-spectral remote sensing. Int. J. Remote Sens. 1999, 20, 497–510. [Google Scholar] [CrossRef]
- Carbonneau, P.E.; Lane, S.N.; Bergeron, N. Feature based image processing methods applied to bathymetric measurements from airborne remote sensing in fluvial environments. Earth Surf. Process. Landf. 2006, 31, 1413–1423. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Roberts, D.A.; Lawrence, R.L. Spectrally based remote sensing of river bathymetry. Earth Surf. Process. Landf. 2009, 34, 1039–1059. [Google Scholar] [CrossRef]
- Legleiter, C.J. Mapping river depth from publicly available aerial images. River Res. Appl. 2013, 29, 760–780. [Google Scholar] [CrossRef]
- Legleiter, C.J. Inferring river bathymetry via Image-to-Depth Quantile Transformation (IDQT). Water Resour. Res. 2016, 52, 3722–3741. [Google Scholar] [CrossRef]
- Marcus, W.A.; Fonstad, M.A. Optical remote mapping of rivers at sub-meter resolutions and watershed extents. Earth Surf. Process. Landf. 2008, 33, 4–24. [Google Scholar] [CrossRef]
- Buffington, J.M.; Montgomery, D.R. A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res. 1997, 33, 1993–2029. [Google Scholar] [CrossRef]
- Switzer, A.D. Measuring and analyzing particle size in a geomorphic context. In Treatise on Geomorphology; Switzer, A., Kennedy, D.M., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 14, pp. 224–242. [Google Scholar]
- Kondolf, G.M.; Lisle, T.E. Measuring bed sediment. In Tools in Fluvial Geomorphology; Kondolf, G.M., Piégay, H., Eds.; John Wiley & Sons: Chichester, UK, 2016; pp. 278–305. [Google Scholar]
- Carbonneau, P.E.; Lane, S.N.; Bergeron, N.E. Catchment-scale mapping of surface grain size in gravel bed rivers using airborne digital imagery. Water Resour. Res. 2004, 40, W07202. [Google Scholar] [CrossRef]
- Carbonneau, P.E.; Bergeron, N.; Lane, S.N. Automated grain size measurements from airborne remote sensing for long profile measurements of fluvial grain sizes. Water Resour. Res. 2005, 41, 1–9. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Carbonneau, P.E.; Campbell, D. Aerial photosieving of exposed gravel bars for the rapid calibration of airborne grain size maps. Earth Surf. Process. Landf. 2010, 35, 627–639. [Google Scholar] [CrossRef]
- Heritage, G.L.; Milan, D.J. Terrestrial Laser Scanning of grain roughness in a gravel-bed river. Geomorphology 2009, 113, 4–11. [Google Scholar] [CrossRef]
- Brasington, J.; Vericat, D.; Rychkov, I. Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Buraas, E.M.; Renshaw, C.E.; Magilligan, F.J.; Dade, W.B. Impact of reach geometry on stream channel sensitivity to extreme floods. Earth Surf. Process. Landf. 2014, 39, 1778–1789. [Google Scholar] [CrossRef]
- Knighton, A.D. Downstream variation in stream power. Geomorphology 1999, 29, 293–306. [Google Scholar] [CrossRef]
- Young, A.R.; Grew, R.; Holmes, M.G.R. Low Flows 2000: A national water resources assessment and decision support tool. Water Sci. Technol. 2003, 48, 119–126. [Google Scholar] [PubMed]
- Wallingford HydroSolutions Ltd. LowFlows: UK Best Practice Low-Flow Estimation. Estimation of Natural and Influenced Flow Regimes in Ungauged Catchments. User Guide, version 2; Wallingford HydroSolutions Ltd.: Oxford, UK, 2010. [Google Scholar]
- Orr, H.G.; Block, C.; Newson, M.D. Kent Catchment Geomorphological Appraisal; HYSED Report to Environment Agency; North-West Region, University of Lancaster: Lancaster, UK, 2000. [Google Scholar]
- Wallerstein, N.P. Geomorphological Assessment of the River Kent Mainstem—A Brief Assessment; Report prepared by University of Nottingham; University of Nottingham: Nottingham, UK, 2007. [Google Scholar]
- Lane, S.N.; Reid, S.C.; Tayefi, V.; Yu, D.; Hardy, R.J. Reconceptualising coarse sediment delivery problems in rivers as catchment-scale and diffuse. Geomorphology 2008, 98, 227–249. [Google Scholar] [CrossRef]
- Thorne, C.R.; Soar, P.J. Analysis of Channels with Compound Cross Sections for Channel Restoration Design; Report Submitted to the U.S. Army Research, Development and Standardization Group UK, under Contract No. N68171-00-M-5506, Proj. No. W90C2K-8913-EN01; School of Geography, University of Nottingham: Nottingham, UK, 2000; p. 21. [Google Scholar]
- Thorne, C.R.; Soar, P.J. Performance of Channels with Compound Cross Sections for Channel Restoration Design; Report Submitted to the U.S. Army Research, Development and Standardization Group UK, under Contract No. N68171-01-M-5483, Proj. No. W90C2K-9125-EN01; School of Geography, University of Nottingham: Nottingham, UK, 2001; p. 29. [Google Scholar]
- Smith, M.J.; Pain, C.F. Applications of remote sensing in geomorphology. Prog. Phys. Geogr. 2009, 33, 568–582. [Google Scholar] [CrossRef]
- Wilson, J.P. Digital terrain modeling. Geomorphology 2012, 137, 107–121. [Google Scholar] [CrossRef]
- Napieralski, J.; Barr, I.; Kamp, U.; Kervyn, M. Remote sensing and GIScience in geomorphological mapping. In Treatise on Geomorphology; Bishop, M.P., Ed.; Academic Press: San Diego, CA, USA, 2013; Volume 3, pp. 187–227. [Google Scholar]
- Oguchi, T. Remote data in fluvial geomorphology: Characteristics and applications. In Treatise on Geomorphology; Wohl, E.E., Ed.; Academic Press: San Diego, CA, USA, 2013; Volume 9, pp. 711–729. [Google Scholar]
- Piégay, H.; Kondolf, G.M.; Minear, T.J.; Vaudor, L. Trends in publications in fluvial geomorphology over two decades: A truly new era in the discipline owing to recent technological revolution? Geomorphology 2015, 248, 489–500. [Google Scholar] [CrossRef]
- Gilvear, D.; Bryant, R. Analysis of remotely sensed data for fluvial geomorphology and river science. In Tools in Fluvial Geomorphology; Kondolf, G.M., Piégay, H., Eds.; John Wiley & Sons: Chichester, UK, 2016; pp. 103–132. [Google Scholar]
- Viles, H. Technology and geomorphology: Are improvements in data collection techniques transforming geomorphic science? Geomorphology 2016, 270, 121–133. [Google Scholar] [CrossRef]
- Grabowski, R.C.; Surian, N.; Gurnell, A.M. Characterizing geomorphological change to support sustainable river restoration and management. Wiley Interdiscip. Rev. Water 2014, 1, 483–512. [Google Scholar] [CrossRef]
- Roux, C.; Alber, A.; Bertrand, M.; Vaudor, L.; Piégay, H. “FluvialCorridor”: A new ArcGIS toolbox package for multiscale riverscape exploration. Geomorphology 2015, 242, 29–37. [Google Scholar] [CrossRef]
- Williams, B.S.; D’Amico, E.; Kastens, J.H.; Thorp, J.H.; Flotemersch, J.E.; Thoms, M.C. Automated riverine landscape characterization: GIS-based tools for watershed-scale research, assessment, and management. Environ. Monit. Assess. 2013, 185, 7485–7499. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M. A method for the assessment and analysis of the hydromorphological condition of Italian streams: The Morphological Quality Index (MQI). Geomorphology 2013, 180–181, 96–108. [Google Scholar] [CrossRef]
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M. A methodological framework for hydromorphological assessment, analysis and monitoring (IDRAIM) aimed at promoting integrated river management. Geomorphology 2015, 251, 122–136. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Rinaldi, M.; Belletti, B.; Bizzi, S.; Blamauer, B.; Braca, G.; Buijse, A.D.; Bussettini, M.; Camenen, B.; Comiti, F.; et al. A multi-scale hierarchical framework for developing understanding of river behaviour to support river management. Aquat. Sci. 2016, 78, 1–16. [Google Scholar] [CrossRef] [Green Version]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soar, P.J.; Wallerstein, N.P.; Thorne, C.R. Quantifying River Channel Stability at the Basin Scale. Water 2017, 9, 133. https://doi.org/10.3390/w9020133
Soar PJ, Wallerstein NP, Thorne CR. Quantifying River Channel Stability at the Basin Scale. Water. 2017; 9(2):133. https://doi.org/10.3390/w9020133
Chicago/Turabian StyleSoar, Philip J., Nicholas P. Wallerstein, and Colin R. Thorne. 2017. "Quantifying River Channel Stability at the Basin Scale" Water 9, no. 2: 133. https://doi.org/10.3390/w9020133