Permafrost Boundary Shift in Western Siberia May Not Modify Dissolved Nutrient Concentrations in Rivers
Abstract
:1. Introduction
2. Study Site and Methods
3. Results
3.1. Element Correlations, PCA, and Cluster Analysis
3.2. Latitudinal Pattern of Nutrient Concentration
3.3. Impact of Landscape and Physico-Geographical Parameters on Individual Components
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hobbie, J.E.; Peterson, B.J.; Bettez, N.; Deegan, L.; O’Brien, W.J.; Kling, G.W.; Kipphut, G.W.; Bowden, W.B.; Hershey, A.E. Impact of global change on the biogeochemistry and ecology of an Arctic freshwater system. Polar Res. 1999, 18, 207–214. [Google Scholar] [CrossRef]
- Holmes, R.M.; Peterson, B.J.; Gordeev, V.V.; Zhulidov, A.V.; Meybeck, M.; Lammers, R.B.; Vorosmarty, C.J. Flux of nutrients from Russian rivers to the Arctic Ocean: Can we establish a baseline against which to judge future changes? Water Resour. Res. 2000, 36, 2309–2320. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, J.-Z.; Guéguen, C. Speciation and fluxes of nutrients (N, P, Si) from the upper Yukon River. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Heinze, C.; Meyer, S.; Goris, N.; Anderson, L.; Chang, N.; Le Quéré, C.; Bakker, D.C.E. The ocean carbon sink—Impacts, vulnerabilities and challenges. Earth Syst. Dyn. 2015, 6, 327–358. [Google Scholar] [CrossRef] [Green Version]
- Toohey, R.C.; Herman-Mercer, N.M.; Schuster, P.F.; Mutter, E.A.; Koch, J.C. Multidecadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost. Geophys. Res. Lett. 2016, 43. [Google Scholar] [CrossRef]
- White, D.; Hinzman, L.; Alessa, L.; Cassano, J.; Chambers, M.; Falkner, K.; Francis, J.; Gutowski, W.J., Jr.; Holland, M.; Holmes, R.M.; et al. The arctic freshwater system: Changes and impacts. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Tank, S.E.; Frey, K.E.; Striegl, R.G.; Raymond, P.A.; Holmes, R.M.; McClelland, J.W.; Peterson, B.J. Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal. Glob. Biogeochem. Cycles 2012, 26. [Google Scholar] [CrossRef]
- Frey, K.E.; McClelland, J.W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol. Process. 2009, 23, 169–182. [Google Scholar] [CrossRef]
- Frey, K.E.; McClelland, J.W.; Holmes, R.M.; Smith, L.C. Impacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Frey, K.E.; Siegel, D.I.; Smith, L.C. Geochemistry of west Siberian streams and their potential response to permafrost degradation. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Frappart, F.; Papa, F.; Güntner, A.; Werth, S.; Ramillien, G.; Prigent, C.; Rossow, W.; Bonnet, M.-P. Interannual variations of the terrestrial water storage in the Lower Ob’ Basin from a multisatellite approach. Hydrol. Earth Syst. Sci. 2010, 14, 2443–2453. [Google Scholar]
- Romanovsky, V.E.; Drozdov, D.S.; Oberman, N.G.; Malkova, G.V.; Kholodov, A.L.; Marchenko, S.S.; Moskalenko, N.G.; Sergeev, D.O.; Ukraintseva, N.G.; Abramov, A.A.; et al. Thermal state of permafrost in Russia. Permafr. Periglac. Process. 2010, 21, 136–155. [Google Scholar] [CrossRef]
- Bring, A.; Fedorova, I.; Dibike, Y.; Hinzman, L.; Mård, J.; Mernild, S.H.; Prowse, T.; Semenova, O.; Stuefer, S.L.; Woo, M.-K. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J. Geophys. Res.-Biogeosci. 2016, 121, 621–649. [Google Scholar] [CrossRef]
- Vonk, J.E.; Tank, S.E.; Bowden, W.B.; Laurion, I.; Vincent, W.F.; Alekseychik, P.; Amyot, M.; Billet, M.F.; Canário, J.; Cory, R.M.; et al. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 2015, 12, 7129–7167. [Google Scholar] [CrossRef]
- McClelland, J.W.; Stieglitz, M.; Pan, F.; Holmes, R.M.; Peterson, B.J. Recent changes in nitrate and dissolved organic carbon export from the upper Kuparuk River, North Slope, Alaska. J. Geophys. Res.-Biogeosci. 2007, 112. [Google Scholar] [CrossRef]
- Wrona, F.J.; Johansson, M.; Culp, J.M.; Jenkins, A.; Mård, J.; Myers-Smith, I.H.; Prowse, T.D.; Vincent, W.F.; Wookey, P.A. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime. J. Geophys. Res.-Biogeosci. 2016, 121, 650–674. [Google Scholar] [CrossRef] [Green Version]
- Emmerton, C.A.; Lesack, L.F.W.; Vincent, W.F. Mackenzie River nutrient delivery to the Arctic Ocean and effects of the Mackenzie Delta during open water conditions. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Emmerton, C.A.; Lesack, L.F.W.; Vincent, W.F. Nutrient and organic matter patterns across the Mackenzie River, estuary and shelf during the seasonal recession of sea-ice. J. Mar. Syst. 2008, 74, 741–755. [Google Scholar] [CrossRef]
- Yool, A.; Popova, E.E.; Coward, A.C. Future change in ocean productivity: Is the Arctic the new Atlantic? J. Geophys. Res.-Oceans 2015, 120, 7771–7790. [Google Scholar] [CrossRef] [Green Version]
- Grosse, G.; Goetz, S.; McGuire, A.D.; Romanovsky, V.E.; Schuur, E.A.G. Changing permafrost in a warming world and feedbacks to the Earth system. Environ. Res. Lett. 2016, 11, 040201. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Chadburn, S.E.; Burke, E.J.; Cox, P.M.; Friedlingstein, P.; Hugelius, G.; Westermann, S. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Chang. 2017, 22, 1–6. [Google Scholar] [CrossRef]
- Gordeev, V.V. River input of water, sediment, major ions, nutrients and trace metals from Russian territory to the Arctic Ocean. In The Freshwater Budget of the Arctic Ocean; Lewis, E.L., Ed.; Kluwer Academic: Dordrecht, The Netherlands, 2000; pp. 297–322. [Google Scholar]
- Lobbes, J.M.; Fitznar, H.P.; Kattner, G. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochim. Cosmochim. Acta 2000, 64, 2973–2983. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Amon, R.M.W.; Rinehart, A.J.; Walker, S.A. The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Mar. Chem. 2011, 124, 108–118. [Google Scholar] [CrossRef]
- McClelland, J.W.; Townsend-Small, A.; Holmes, R.M.; Pan, F.; Stieglitz, M.; Khosh, M.; Peterson, B. River export of nutrients and organic matter from the North Slope of Alaska to the Beaufort Sea. Water Resour. Res. 2014, 50, 1823–1839. [Google Scholar] [CrossRef]
- Tank, S.E.; Manizza, M.; Holmes, R.M.; McClelland, J.W.; Peterson, B.J. The processing and impact of dissolved riverine nitrogen in the Arctic Ocean. Estuaries Coasts 2012, 35, 401–415. [Google Scholar] [CrossRef]
- Tank, S.E.; Striegl, R.G.; McClelland, J.W.; Kokelj, S.V. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean. Environ. Res. Lett. 2016, 11, 054015. [Google Scholar] [CrossRef]
- O’Donnell, J.A.; Aiken, G.R.; Swanson, D.K.; Panda, S.; Butler, K.D.; Baltensperger, A.P. Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon. Glob. Biogeochem. Cycles 2016, 30, 1811–1826. [Google Scholar] [CrossRef]
- Kaiser, K.; Canedo-Oropeza, M.; McMahon, R.; Amon, R.M.W. Origins and transformations of dissolved organic matter in large Arctic rivers. Sci. Rep. 2017, 7, 13064. [Google Scholar] [CrossRef] [PubMed]
- Gordeev, V.V.; Martin, J.M.; Sidorov, I.S.; Sidorova, M.V. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. Am. J. Sci. 1996, 296, 664–691. [Google Scholar] [CrossRef]
- Leonov, A.B.; Chicherina, O.V. Export of biogenic components of the riverine flux to the White Sea. Water Resour. 2004, 31, 170–192. [Google Scholar]
- Nikanorov, A.M.; Smirnov, M.P.; Klimenko, O.A. Long-term trends in total and anthropogenic discharge of organic and biogenic substances by Russian rivers into the Arctic and Pacific Seas. Water Resour. 2010, 37, 361–371. [Google Scholar] [CrossRef]
- Magritsky, D.V. Annual suspended matter flow of the Russian rivers belonging to the Arctic Ocean basin and its anthropogenic transformation. Vestn. Mosk. Univ. Ser. Geogr. 2010, 5, 17–24. [Google Scholar]
- Holmes, R.M.; Peterson, B.J.; Zhulidov, A.V.; Gordeev, V.V.; Makkaveev, P.N.; Stunzhas, P.A.; Kosmenko, L.S.; Kohler, G.H.; Shiklomanov, A.I. Nutrient chemistry of the Ob’ and Yenisey Rivers, Siberia: Results from June 2000 expedition and evaluation of long-term data sets. Mar. Chem. 2001, 75, 219–227. [Google Scholar] [CrossRef]
- Holmes, R.M.; McClelland, J.W.; Peterson, B.J.; Tank, S.E.; Bulygina, E.; Eglinton, T.I.; Gordeev, V.V.; Gurtovaya, T.Y.; Raymond, P.A.; Repeta, D.J.; et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries Coasts 2012, 35, 369–382. [Google Scholar] [CrossRef]
- McClelland, J.W.; Holmes, R.M.; Raymond, P.A.; Striegl, R.G.; Zhulidov, A.V.; Zimov, S.A.; Zimov, N.; Tank, S.E.; Spencer, R.G.M.; Staples, R.; et al. Particulate organic carbon and nitrogen export from major Arctic rivers. Glob. Biogeochem. Cycles 2016, 30. [Google Scholar] [CrossRef]
- Sheng, Y.; Smith, L.C.; MacDonald, G.M.; Kremenetski, K.V.; Frey, K.E.; Velichko, A.A.; Lee, M.; Beilman, D.W.; Dubinin, P. A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Frey, K.E.; Smith, L.C. Amplified carbon release from vast West Siberian peatlands by 2100. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Manasypov, R.M.; Shirokova, L.S.; Loiko, S.V.; Krickov, I.V.; Kopysov, S.G.; Zemtzov, V.A.; Kulizhsky, S.P.; Vorobyev, S.N.; Kirpotin, S.N. Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberia rivers. Biogeosciences 2015, 12, 6301–6320. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Manasypov, R.M.; Loiko, S.; Krickov, I.A.; Kopysov, S.G.; Kolesnichenko, L.G.; Vorobyev, S.N.; Kirpotin, S.N. Trace element transport in western Siberia rivers across a permafrost gradient. Biogeosciences 2016, 13, 1877–1900. [Google Scholar] [CrossRef]
- Zakharova, E.A.; Kouraev, A.V.; Kolmakova, M.V.; Mognard, N.M.; Zemtsov, V.A.; Kirpotin, S.N. The modern hydrological regime of the northern part of Western Siberia from in situ and satellite observations. Int. J. Environ. Stud. 2009, 66, 447–463. [Google Scholar] [CrossRef]
- Kremenetski, K.V.; Velichko, A.A.; Borisova, O.K.; MacDonald, G.M.; Smith, L.C.; Frey, K.E.; Orlova, L.A. Peatlands of the West Siberian Lowlands: Current knowledge on zonation, carbon content, and Late Quaternary history. Quat. Sci. Rev. 2003, 22, 703–723. [Google Scholar] [CrossRef]
- Nikitin, S.P.; Zemtsov, V.A. The Variability of Hydrological Parameters of Western Siberia; Nauka: Novosibirsk, Russia, 1986; 204p. (In Russian) [Google Scholar]
- De la Cruz, O.; Olmes, S. The duality diagram in data analysis: Examples of modern applications. Ann. Appl. Stat. 2011, 5, 2266–2277. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data; John Wiley and Sons Inc.: New York, NY, USA, 2005; p. 368. [Google Scholar]
- Ala-aho, P.; Soulsby, C.; Pokrovsky, O.S.; Kirpotin, S.N.; Kalrsson, J.; Serikova, S.; Vorobyev, S.N.; Manasypov, R.M.; Loiko, S.; Tetzlaff, D. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. J. Hydrol. 2018, 556, 279–293. [Google Scholar] [CrossRef]
- Vasil’evskaya, V.D.; Ivanov, V.V.; Bogatyrev, L.G. Soils of North of Western Siberia; Moscow University Publishing House: Moscow, Russia, 1986; 227p. (In Russian) [Google Scholar]
- Raudina, T.V.; Loiko, S.V.; Lim, A.G.; Krickov, I.V.; Shirokova, L.S.; Istignichev, G.I.; Kuzmina, D.M.; Kulizhsky, S.P.; Vorobyev, S.N.; Pokrovsky, O.S. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia. Biogeosciences 2017, 14, 3561–3584. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Bierkens, M.F.P.; Griffioen, J.; Hefting, M.M.; Middelburg, J.J.; Middelkoop, H.; Slomp, C.P. Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: Towards integration of ecological and biogeochemical models. Biogeosciences 2013, 10, 1–23. [Google Scholar] [CrossRef]
- Lidman, F.; Kohler, S.J.; Morth, C.-M.; Laudon, H. Metal transport in the boreal landscape—The role of wetlands and the affinity for organic matter. Environ. Sci. Technol. 2014, 48, 3783–3790. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.G. The role of rock weathering in the phosphorus budget of terrestrial watersheds. Biogeochemistry 1990, 11, 97–110. [Google Scholar] [CrossRef]
- Dornblaser, M.M.; Striegl, R.G. Nutrient (N, P) loads and yields at multiple scales and subbasin types in the Yukon River basin, Alaska. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Novikov, S.M.; Moskvin, Y.P.; Trofimov, S.A.; Usova, L.I.; Batuev, V.I.; Tumanovskaya, S.M.; Smirnova, V.P.; Markov, M.L.; Korotkevicth, A.E.; Potapova, T.M. Hydrology of Bog Territories of the Permafrost Zone of Western Siberia; BBM Publishing House: St. Petersbourg, Russia, 2009; 535p. (In Russian) [Google Scholar]
- Loiko, S.V.; Pokrovsky, O.S.; Raudina, T.; Lim, A.; Kolesnichenko, L.G.; Shirokova, L.S.; Vorobyev, S.N.; Kirpotin, S.N. Abrupt permafrost collapse enhances organic carbon, CO2, nutrient, and metal release into surface waters. Chem. Geol. 2017, 471, 153–165. [Google Scholar] [CrossRef]
- Khrenov, V.Y. Soils of Cryolithozone of Western Siberia: Morphology, Physico-Chemical Properties and Geochemistry; Nauka: Moscow, Russia, 2011; 214p. (In Russian) [Google Scholar]
- Laiho, R.; Prescott, C.E. Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: A synthesis. Can. J. For. Res. 2004, 34, 763–777. [Google Scholar] [CrossRef]
- Kim, Y.; Ullah, S.; Moore, T.R.; Roulet, N.T. Dissolved organic carbon and total dissolved nitrogen production by boreal soils and litter: The role of flooding, oxygen concentration, and temperature. Biogeochemistry 2014, 118, 35–48. [Google Scholar] [CrossRef]
- Tyrtikov, A.P. Thawing of soils in tundra of western Siberia. In Natural Environment of Western Siberia; Popov, A.I., Ed.; Izd-vo MG: Moscow, Russia, 1973; Issue 3, pp. 160–169. (In Russian) [Google Scholar]
- Tyrtikov, A.P. Dynamics of Vegetation Coverage and Permafrost Development in Western Siberia; Nauka: Moscow, Russia, 1979; 191p. (In Russian) [Google Scholar]
- Schlesinger, W.H. Biogeochemistry: An Analysis of Global Change; Academic Press: San Diego, CA, USA, 1991; p. 443. [Google Scholar]
- Kortelainen, P.; Saukkonen, S.; Mattsson, T. Leaching of nitrogen from forested catchments in Finland. Glob. Biogeochem. Cycles 1997, 11, 627–638. [Google Scholar] [CrossRef]
- Kortelainen, P.; Mattsson, T.; Finér, L.; Ahtiainen, M.; Saukkonen, S.; Sallantaus, T. Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquat. Sci. 2006, 68, 453–468. [Google Scholar] [CrossRef]
- Behrendt, H.; Opitz, D. Retention of nutrients in river systems: Dependence on specific runoff and hydraulic load. Hydrobiologia 2000, 410, 111–122. [Google Scholar] [CrossRef]
- Vink, R.J.; Behrendt, H.; Salomons, W. Point and diffuse source analysis of heavy metals in the Elbe drainage area: Comparing heavy metal emissions with transported river loads. Hydrobiologia 1999, 410, 307–314. [Google Scholar] [CrossRef]
D.C. | PO4 | Ptot | NO3 | NH4 | POC | DOC | DIC | Si | K | Ca | Mn | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 0.42 | 0.41 | 0.41 | 0.03 | 0.17 | −0.28 | 0.68 | 0.60 | 0.28 | 0.64 | 0.19 | 0.03 |
PO4 | 1.00 | 0.69 | 0.42 | 0.14 | −0.06 | 0.02 | 0.45 | 0.39 | 0.43 | 0.43 | 0.11 | 0.05 |
Ptot | 0.69 | 1.00 | 0.35 | 0.14 | 0.09 | 0.13 | 0.43 | 0.43 | 0.46 | 0.52 | 0.43 | 0.30 |
NO3 | 0.42 | 0.35 | 1.00 | 0.59 | 0.24 | 0.05 | 0.29 | 0.19 | 0.03 | 0.37 | −0.16 | −0.17 |
NH4 | 0.14 | 0.14 | 0.59 | 1.00 | 0.37 | 0.22 | 0.09 | 0.11 | −0.16 | 0.17 | 0.18 | −0.09 |
POC | −0.06 | 0.09 | 0.24 | 0.37 | 1.00 | 0.25 | 0.17 | 0.19 | 0.07 | 0.20 | 0.17 | −0.08 |
DOC | 0.02 | 0.13 | 0.05 | 0.22 | 0.25 | 1.00 | −0.13 | −0.04 | 0.15 | 0.22 | 0.03 | 0.33 |
DIC | 0.45 | 0.43 | 0.29 | 0.09 | 0.17 | −0.13 | 1.00 | 0.62 | 0.37 | 0.82 | 0.34 | −0.13 |
Si | 0.39 | 0.43 | 0.19 | 0.11 | 0.19 | −0.04 | 0.62 | 1.00 | 0.24 | 0.52 | 0.57 | 0.15 |
K | 0.43 | 0.46 | 0.03 | −0.16 | 0.07 | 0.15 | 0.37 | 0.24 | 1.00 | 0.53 | 0.16 | 0.29 |
Ca | 0.43 | 0.52 | 0.37 | 0.17 | 0.20 | 0.22 | 0.82 | 0.52 | 0.53 | 1.00 | 0.27 | 0.10 |
Mn | 0.11 | 0.43 | −0.16 | 0.18 | 0.17 | 0.03 | 0.34 | 0.57 | 0.16 | 0.27 | 1.00 | 0.38 |
Fe | 0.05 | 0.30 | −0.17 | −0.09 | −0.08 | 0.33 | −0.13 | 0.15 | 0.29 | 0.10 | 0.38 | 1.00 |
D.C. | Lat | Swatershed | Runoff | Bogs | Forest | Lakes | Permaf | Triver | Twatershed |
---|---|---|---|---|---|---|---|---|---|
pH | 0.34 | 0.22 | 0.40 | −0.46 | 0.48 | −0.41 | −0.06 | −0.38 | −0.35 |
PO4 | 0.12 | 0.17 | 0.30 | −0.27 | 0.37 | −0.36 | 0.06 | −0.21 | −0.09 |
Ptot | −0.04 | 0.14 | 0.14 | −0.29 | 0.35 | −0.34 | −0.15 | −0.20 | 0.10 |
NO3 | −0.07 | 0.05 | 0.11 | −0.03 | 0.07 | −0.02 | −0.01 | −0.12 | 0.08 |
NH4 | −0.18 | −0.21 | −0.37 | 0.12 | −0.09 | 0.08 | 0.02 | −0.19 | 0.15 |
POC | −0.10 | −0.04 | −0.07 | 0.06 | −0.05 | 0.08 | −0.09 | −0.23 | 0.07 |
DOC | −0.48 | −0.05 | −0.16 | 0.26 | −0.15 | −0.02 | −0.44 | 0.16 | 0.47 |
DIC | 0.27 | 0.07 | 0.23 | −0.53 | 0.53 | −0.51 | −0.20 | −0.56 | −0.30 |
Si | 0.03 | 0.01 | 0.13 | −0.58 | 0.69 | −0.62 | −0.27 | −0.60 | −0.04 |
K | −0.17 | 0.32 | 0.27 | −0.29 | 0.34 | −0.29 | −0.29 | 0.07 | 0.17 |
Ca | −0.11 | 0.18 | 0.22 | −0.39 | 0.45 | −0.47 | −0.50 | −0.26 | 0.08 |
Mn | −0.01 | −0.18 | −0.29 | −0.44 | 0.46 | −0.35 | −0.23 | −0.48 | −0.02 |
Fe | −0.28 | 0.00 | −0.16 | −0.06 | 0.13 | −0.14 | −0.27 | 0.14 | 0.27 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vorobyev, S.N.; Pokrovsky, O.S.; Serikova, S.; Manasypov, R.M.; Krickov, I.V.; Shirokova, L.S.; Lim, A.; Kolesnichenko, L.G.; Kirpotin, S.N.; Karlsson, J. Permafrost Boundary Shift in Western Siberia May Not Modify Dissolved Nutrient Concentrations in Rivers. Water 2017, 9, 985. https://doi.org/10.3390/w9120985
Vorobyev SN, Pokrovsky OS, Serikova S, Manasypov RM, Krickov IV, Shirokova LS, Lim A, Kolesnichenko LG, Kirpotin SN, Karlsson J. Permafrost Boundary Shift in Western Siberia May Not Modify Dissolved Nutrient Concentrations in Rivers. Water. 2017; 9(12):985. https://doi.org/10.3390/w9120985
Chicago/Turabian StyleVorobyev, Sergey N., Oleg S. Pokrovsky, Svetlana Serikova, Rinat M. Manasypov, Ivan V. Krickov, Liudmila S. Shirokova, Artem Lim, Larisa G. Kolesnichenko, Sergey N. Kirpotin, and Jan Karlsson. 2017. "Permafrost Boundary Shift in Western Siberia May Not Modify Dissolved Nutrient Concentrations in Rivers" Water 9, no. 12: 985. https://doi.org/10.3390/w9120985
APA StyleVorobyev, S. N., Pokrovsky, O. S., Serikova, S., Manasypov, R. M., Krickov, I. V., Shirokova, L. S., Lim, A., Kolesnichenko, L. G., Kirpotin, S. N., & Karlsson, J. (2017). Permafrost Boundary Shift in Western Siberia May Not Modify Dissolved Nutrient Concentrations in Rivers. Water, 9(12), 985. https://doi.org/10.3390/w9120985