Essentials of Endorheic Basins and Lakes: A Review in the Context of Current and Future Water Resource Management and Mitigation Activities in Central Asia
Abstract
:1. An Overview of the World’s Main Endorheic Basins and Lakes
1.1. Background
1.2. Main Aim of this Review Paper
1.3. Overview of Key Endorheic Basins and Lakes Worldwide
1.3.1. North America
1.3.2. South America
1.3.3. Africa
1.3.4. Australia
1.3.5. Central Asia
2. Key Factors Affecting Water Resources in CA Endorheic Basins
2.1. Anthropogenic Activities and its Relation to Water Resources Mismanagement in CA
2.2. Effects of the Global Circulation, Climate Change and Local Land-Surface-Atmosphere Feedbacks
3. The Human Dimension
3.1. Water–Energy–Food Security Nexus Issues in CA
3.2. Solutions for Improved Water Conservation and Management in CA
3.2.1. Managed Aquifer Recharge
3.2.2. Evaporation-Reducing Covers, including Floating Solar Covers
3.2.3. Climate Change Adaptation and Mitigation Activities
4. Synthesis and Outlook
4.1. Past and Present State of CA Endorheic Basins
4.2. Future Pressures on Endorheic Basins in CA
4.3. Implications for Water Resource Research and Management in CA Region
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vii, F.S. Sedimentary Processes, Environments and Basins; Nichols, G., Williams, E., Paola, C., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2007; ISBN 9781444304411. [Google Scholar]
- Sawe, B. Fluvial Landforms: What Is an Endorheic Basin?—WorldAtlas. Available online: http://www.worldatlas.com/articles/fluvial-landforms-what-is-an-endorheic-basin.html (accessed on 25 July 2017).
- Hostetler, S.W. Hydrological and Thermal Response of Lakes to Climate: Description and Modeling; Springer: Berlin/Heidelberg, Germany, 1995; Volume 60, ISBN 3-540-57891-9. [Google Scholar]
- Varis, O.; Kummu, M. The major central Asian River Basins: An assessment of vulnerability. Int. J. Water Resour. 2012, 28, 433–452. [Google Scholar] [CrossRef]
- Galat, D.L.; Lider, E.L.; Vigg, S.; Robertson, S.R. Limnology of a large, deep, North American terminal lake, Pyramid Lake, Nevada, U.S.A. In Salt Lakes; Springer: Dordrecht, The Netherlands, 1981; pp. 281–317. [Google Scholar]
- Benson, L.V.; Lund, S.P.; Smoot, J.P.; Rhode, D.E.; Spencer, R.J.; Verosub, K.L.; Louderback, L.A.; Johnson, C.A.; Rye, R.O.; Negrini, R.M. The rise and fall of Lake Bonneville between 45 and 10.5 ka. Quat. Int. 2011, 235, 57–69. [Google Scholar] [CrossRef]
- Mohammed, I.N.; Tarboton, D.G. On the interaction between bathymetry and climate in the system dynamics and preferred levels of the Great Salt Lake. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Belovsky, G.E.; Stephens, D.; Perschon, C.; Birdsey, P.; Paul, D.; Naftz, D.; Baskin, R.; Larson, C.; Mellison, C.; Luft, J.; et al. The Great Salt Lake Ecosystem (Utah, USA): Long term data and a structural equation approach. Ecosphere 2011, 2, art33. [Google Scholar] [CrossRef]
- Huybers, K.; Rupper, S.; Roe, G.H. Response of closed basin lakes to interannual climate variability. Clim. Dyn. 2016, 46, 3709–3723. [Google Scholar] [CrossRef]
- Cross, S.L.; Baker, P.A.; Seltzer, G.O.; Fritz, S.C.; Dunbar, R.B. A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology. Holocene 2000, 10, 21–32. [Google Scholar] [CrossRef]
- Dejoux, C. Lake Titicaca: A Synthesis of Limnological Knowledge; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 68, ISBN 940112406X. [Google Scholar]
- Thomson Reuters Lake Poopo Dries up|Reuters. Available online: https://www.reuters.com/news/picture/lake-poopo-dries-up-idUSRTX1Z7EZ (accessed on 25 July 2017).
- Delclaux, F.; Coudrain, A.; Condom, T. Evaporation estimation on Lake Titicaca: A synthesis review and modelling. Hydrol. Process. 2007, 21, 1664–1677. [Google Scholar] [CrossRef]
- Canedo, C.; Pillco Zolá, R.; Berndtsson, R. Role of hydrological studies for the development of the TDPS system. Water 2016, 8, 144. [Google Scholar] [CrossRef]
- Gao, H.; Bohn, T.J.; Podest, E.; McDonald, K.C.; Lettenmaier, D.P. On the causes of the shrinking of Lake Chad. Environ. Res. Lett. 2011, 6, 34021. [Google Scholar] [CrossRef]
- Lemoalle, J.; Bader, J.-C.; Leblanc, M.; Sedick, A. Recent changes in Lake Chad: Observations, simulations and management options (1973–2011). Glob. Planet. Chang. 2012, 80–81, 247–254. [Google Scholar] [CrossRef]
- Fuhriman, D.K.; Merritt, L.B.; Miller, A.W.; Stock, H.S. Hydrology and water quality of Utah Lake. Gt. Basin Nat. Mem. 1981, 43–67. [Google Scholar]
- Isiorho, S.A.; Matisof, G. Groundwater recharge from Lake Chad. Limnol. Oceanogr. 1990, 35, 931–938. [Google Scholar] [CrossRef]
- Habeck-Fardy, A.; Nanson, G.C. Environmental character and history of the Lake Eyre Basin, one seventh of the Australian continent. Earth-Sci. Rev. 2014, 132, 39–66. [Google Scholar] [CrossRef]
- Lake Eyre Basin Secretariat Lake Eyre Basin about the Basin. Available online: http://www.lakeeyrebasin.gov.au/about-basin (accessed on 19 July 2017).
- Mueller, L.; Suleimenov, M.; Karimov, A.; Qadir, M.; Saparov, A.; Balgabayev, N.; Helming, K.; Lischeid, G. Land and water resources of Central Asia, their utilisation and ecological status. In Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–59. ISBN 3319010166. [Google Scholar]
- Apel, H.; Abdykerimova, Z.; Agalhanova, M.; Baimaganbetov, A.; Gerlitz, L.; Kalashnikova, O.; Unger-shayesteh, K.; Vorogushyn, S. Statistical forecast of seasonal discharge in Central Asia for water resources management: Development of a generic linear modelling tool for operational use. Hydrol. Earth Syst. Sci. 2017, 1–31. [Google Scholar] [CrossRef]
- Mannig, B.; Müller, M.; Starke, E.; Merkenschlager, C.; Mao, W.; Zhi, X.; Podzun, R.; Jacob, D.; Paeth, H. Dynamical downscaling of climate change in Central Asia. Glob. Planet. Chang. 2013, 110, 26–39. [Google Scholar] [CrossRef]
- Yapiyev, V.; Sagintayev, Z.; Verhoef, A.; Kassymbekova, A.; Baigaliyeva, M.; Zhumabayev, D.; Malgazhdar, D.; Abudanash, D.; Ongdas, N.; Jumassultanova, S. The changing water cycle: Burabay National Nature Park, Northern Kazakhstan. Wiley Interdiscip. Rev. Water 2017, e01227. [Google Scholar] [CrossRef]
- Zhupankhan, A.; Tussupova, K.; Berndtsson, R. Could changing power relationships lead to better water sharing in Central Asia? Water 2017, 9, 139. [Google Scholar] [CrossRef]
- Numaguti, A. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res. D Atmos. 1999, 104, 1957–1972. [Google Scholar] [CrossRef]
- Miralles, D.G.; Nieto, R.; McDowell, N.G.; Dorigo, W.A.; Verhoest, N.E.; Liu, Y.Y.; Teuling, A.J.; Dolman, A.J.; Good, S.P.; Gimeno, L. Contribution of water-limited ecoregions to their own supply of rainfall. Environ. Res. Lett. 2016, 11, 124007. [Google Scholar] [CrossRef]
- Chen, F.-H.; Huang, W. Multi-scale climate variations in the arid Central Asia. Adv. Clim. Chang. Res. 2017, 8, 1–2. [Google Scholar] [CrossRef]
- Fang, S.; Pei, H.; Liu, Z.; Beven, K.; Wei, Z. Water resources assessment and regional virtual water potential in the Turpan Basin, China. Water Resour. Manag. 2010, 24, 3321–3332. [Google Scholar] [CrossRef]
- Pritchard, H.D. Asia’s glaciers are a regionally important buffer against drought. Nat. Publ. Gr. 2017, 545, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Vekerdy, Z.; Dost, R.J.J.; Reinink, G.; Partow, H. History of Environmental Change in the Sistan Basin Based on Satellite Image Analysis: 1976–2005; United Nations Environmental Programme (UNEP): Geneva, Switzerland, 2006. [Google Scholar]
- Whitney, J.W. Geology, Water, and Wind in the Lower Helmand Basin, Southern Afghanistan, 1st ed.; USGS: Reston, VA, USA, 2006. [Google Scholar]
- Sagintayev, Z.; Sultan, M.; Khan, S.D.; Khan, S.A.; Mahmood, K.; Yan, E.; Milewski, A.; Marsala, P. A remote sensing contribution to hydrologic modelling in arid and inaccessible watersheds, Pishin Lora basin, Pakistan. Hydrol. Process. 2012, 26, 85–99. [Google Scholar] [CrossRef]
- Shinneman, A.L.C.; Almendinger, J.E.; Umbanhowar, C.E.; Edlund, M.B.; Nergui, S. Paleolimnologic evidence for recent eutrophication in the Valley of the Great Lakes (Mongolia). Ecosystems 2009, 12, 944–960. [Google Scholar] [CrossRef]
- Zhao, J.; Yin, X.; Harbor, J.M.; Lai, Z.; Liu, S.; Li, Z.; Frechen, M.; Lehmkuhl, F. Quaternary glacial chronology of the Kanas River valley, Altai Mountains, China. Quat. Int. 2013, 311, 44–53. [Google Scholar] [CrossRef]
- Yakutin, M.V.; Andrievskii, V.S.; Lhagvasuren, C. Change in the main components of the destruction link of biological cycle in the series of plain soils of the Great Lakes Depression in West Mongolia. Contemp. Probl. Ecol. 2010, 3, 305–311. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, F.; Hu, H.; Sivapalan, M. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: The Taiji-Tire model. Hydrol. Earth Syst. Sci. 2014, 18, 1289–1303. [Google Scholar] [CrossRef] [Green Version]
- Rumbaur, C.; Thevs, N.; Disse, M.; Ahlheim, M.; Brieden, A.; Cyffka, B.; Doluschitz, R.; Düthmann, D.; Feike, T.; Frör, O. Sustainable management of river oases along the Tarim River in North-Western China under conditions of climate change. Earth Syst. Dyn. Discuss. 2014, 5, 1221–1273. [Google Scholar] [CrossRef]
- Arpe, K.; Bengtsson, L.; Golitsyn, G.S.; Mokhov, I.I.; Semenov, V.A.; Sporyshev, P.V. Connection between Caspian Sea level variability and ENSO. Geophys. Res. Lett. 2000, 27, 2693–2696. [Google Scholar] [CrossRef]
- Dumont, H.J. The Caspian Lake: History, biota, structure, and function. Limnol. Oceanogr. 1998, 43, 44–52. [Google Scholar] [CrossRef]
- Chen, J.L.; Pekker, T.; Wilson, C.R.; Tapley, B.D.; Kostianoy, A.G.; Cretaux, J.F.; Safarov, E.S. Long-term Caspian Sea level change. Geophys. Res. Lett. 2017, 44, 6993–7001. [Google Scholar] [CrossRef]
- Glazovsky, N. The Aral Sea Basin; United Nations University Press: Tokyo, Japan, 1995; pp. 92–139. [Google Scholar]
- Bai, J.; Chen, X.; Yang, L.; Fang, H. Monitoring variations of inland lakes in the arid region of Central Asia. Front. Earth Sci. 2012, 6, 147–156. [Google Scholar] [CrossRef]
- Micklin, P.; Aladin, N.; Plotnikov, I. Uzboy and the Aral regressions: A hydrological approach. Quat. Int. 2007, 173, 125–136. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Li, J.; Yang, L.; Fang, H. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environ. Monit. Assess. 2011, 178, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Panichkin, V.; Sagin, J.; Miroshnichenko, O.; Trushel, L.; Zakharova, N.; Yerikuly, Z.; Livinskiy, Y. Assessment and forecasting of the subsurface drain of the Aral Sea, Central Asia. Int. J. Environ. Stud. 2017, 74, 202–213. [Google Scholar] [CrossRef]
- Micklin, P. The future Aral Sea: Hope and despair. Environ. Earth Sci. 2016, 75, 844. [Google Scholar] [CrossRef]
- Izhitskiy, A.S.; Zavialov, P.O.; Sapozhnikov, P.V.; Kirillin, G.B.; Grossart, H.P.; Kalinina, O.Y.; Zalota, A.K.; Goncharenko, I.V.; Kurbaniyazov, A.K. Present state of the Aral Sea: Diverging physical and biological characteristics of the residual basins. Sci. Rep. 2016, 6, 23906. [Google Scholar] [CrossRef] [PubMed]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; van de Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810–813. [Google Scholar] [CrossRef]
- Propastin, P. Patterns of lake balkhash water level changes and their climatic correlates during 1992–2010 period. Lakes Reserv. Res. Manag. 2012, 17, 161–169. [Google Scholar] [CrossRef]
- Kezer, K.; Matsuyama, H. Decrease of river runoff in the Lake Balkhash basin in Central Asia. Hydrol. Process. 2006, 20, 1407–1423. [Google Scholar] [CrossRef]
- Propastin, P. Assessment of climate and human induced disaster risk over shared water resources in the Balkhash Lake drainage basin. In Climate Change and Disaster Risk Management; Springer: Berlin/Heidelberg, Germany, 2013; pp. 41–54. [Google Scholar]
- Macaulay, E.A.; Sobel, E.R.; Mikolaichuk, A.; Wack, M.; Gilder, S.A.; Mulch, A.; Fortuna, A.B.; Hynek, S.; Apayarov, F. The sedimentary record of the Issyk Kul basin, Kyrgyzstan: Climatic and tectonic inferences. Basin Res. 2016, 28, 57–80. [Google Scholar] [CrossRef]
- Romanovsky, V.V. Water level variations and water balance of Lake Issyk-Kul. In Lake Issyk-Kul: Its Natural Environment NATO Science Series (Series IV: Earth And Environmental Sciences); Klerkx, J., Imanackunov, B., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; Volume 13, pp. 45–58. [Google Scholar]
- Klein, I.; Dietz, A.J.; Gessner, U.; Galayeva, A.; Myrzakhmetov, A.; Kuenzer, C. Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 335–349. [Google Scholar] [CrossRef]
- Goudie, A.; Kent, P.; Viles, H. Pan morphology, Distribution and formation in Kazakhstan and Neighbouring areas of the Russian federation. Desert 2016, 21, 1–13. [Google Scholar]
- NASA Tengiz and Korgaljinski Lakes, Kazakhstan: Image of the Day. Available online: https://earthobservatory.nasa.gov/IOTD//view.php?id=9027 (accessed on 26 July 2017).
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Abdullaev, I.; Rakhmatullaev, S. Setting up the agenda for water reforms in Central Asia: Does the nexus approach help? Environ. Earth Sci. 2016, 75, 870. [Google Scholar] [CrossRef]
- Sorg, A.; Mosello, B.; Shalpykova, G.; Allan, A.; Hill Clarvis, M.; Stoffel, M. Coping with changing water resources: The case of the Syr Darya river basin in Central Asia. Environ. Sci. Policy 2014, 43, 68–77. [Google Scholar] [CrossRef]
- Birkett, C.M.; Mason, I.M. A new Global Lakes database for a remote sensing program studying climatically sensitive large lakes. J. Gt. Lakes Res. 1995, 21, 307–318. [Google Scholar] [CrossRef]
- Mason, I.M.; Guzkowska, M.A.J.; Rapley, C.G.; Street-Perrott, F.A. The response of lake levels and areas to climatic change. Clim. Chang. 1994, 27, 161–197. [Google Scholar] [CrossRef]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Liu, G.; Schwartz, F.W. On modeling the paleohydrologic response of closed-basin lakes to fluctuations in climate: Methods, applications, and implications. Water Resour. Res. 2014, 50, 2975–2992. [Google Scholar] [CrossRef]
- Wetzel, R.G.; Likens, G. Limnological Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 1475740980. [Google Scholar]
- Tarasov, P.E.; Pushenko, M.Y.; Harrison, S.P.; Saarse, L.; Andreev, A.A.; Aleshinskaya, Z.V.; Davydova, N.N.; Dorofeyuk, N.I.; Efremov, Y.V.; Elina, G.A. Lake Status Records from the Former Soviet Union and Mongolia: Documentation of the Second Version of the Database; NOAA-NGDC Paleoclimatology Program: Boulder, CO, USA, 1996.
- Harrison, S.P.; Yu, G.; Tarasov, P.E. Late quaternary lake-level record from Northern Eurasia. Quat. Res. 1996, 45, 138–159. [Google Scholar] [CrossRef]
- Tarasov, P.E.; Webb, T., III; Andreev, A.A.; Afanas’eva, N.B.; Berezina, N.A.; Bezusko, L.G.; Blyakharchuk, T.A.; Bolikhovskaya, N.S.; Cheddadi, R.; Chernavskaya, M.M.; et al. Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. J. Biogeogr. 1998, 25, 1029–1053. [Google Scholar] [CrossRef]
- Kremenetski, C.V.; Tarasov, P.E.; Cherkinsky, A.E. Postglacial development of Kazakhstan pine forests. Geogr. Phys. Quat. 1997, 51, 391–404. [Google Scholar] [CrossRef]
- Blunden, J.; Arndt, D.S. State of the Climate in 2014. Bull. Am. Meteorol. Soc. 2015, 96, ES1–ES32. [Google Scholar] [CrossRef]
- Woolway, R.I.; Merchant, C.J. Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability. Sci. Rep. 2017, 7, 4130. [Google Scholar] [CrossRef] [PubMed]
- Elguindi, N.; Solmon, F.; Turuncoglu, U. Quantifying some of the impacts of dust and other aerosol on the Caspian Sea region using a regional climate model. Clim. Dyn. 2016, 46, 41–55. [Google Scholar] [CrossRef]
- Syed, F.S.; Giorgi, F.; Pal, J.S.; Keay, K. Regional climate model simulation of winter climate over central-southwest Asia, with emphasis on NAO and ENSO effects. Int. J. Climatol. 2010, 30, 220–235. [Google Scholar] [CrossRef]
- Unger-Shayesteh, K.; Vorogushyn, S.; Farinotti, D.; Gafurov, A.; Duethmann, D.; Mandychev, A.; Merz, B. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Glob. Planet. Chang. 2013, 110, 4–25. [Google Scholar] [CrossRef]
- Roderick, M.L.; Rotstayn, L.D.; Farquhar, G.D.; Hobbins, M.T. On the attribution of changing pan evaporation. Geophys. Res. Lett. 2007, 34, L17403. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. The cause of decreased pan evaporation over the past 50 years. Science 2002, 298, 1410–1411. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Xu, M.; Henderson, M.; Gong, W. A spatial analysis of pan evaporation trends in China, 1955–2000. J. Geophys. Res. D Atmos. 2004, 109, 1–9. [Google Scholar] [CrossRef]
- Miralles, D.; Mccabe, M.F. Land evaporation. State of the Climate 2016. Bull. Am. Meteorol. Soc. 2017, 98, S34–S35. Available online: https://www.researchgate.net/publication/319262235_Land_evaporation_State_of_the_Climate_2016 (accessed on 17 October 2017).
- Wang, T.; Zhang, J.; Sun, F.; Liu, W. Pan evaporation paradox and evaporative demand from the past to the future over China: A review. Wiley Interdiscip. Rev. Water 2017, e1207. [Google Scholar] [CrossRef]
- Shahgedanova, M.; Afzal, M.; Usmanova, Z.; Kapitsa, V.; Mayr, E.; Hagg, W.; Severskiy, I.; Zhumabayev, D. Impacts of climate change on river discharge in the northern Tien Shan: Results from the long-term observations and modelling. In Proceedings of the 19th EGU General Assembly Conference (EGU2017), Vienna, Austria, 23–28 April 2017; Volume 19, p. 10032. [Google Scholar]
- Roderick, M.L.; Sun, F.; Lim, W.H.; Farquhar, G.D. A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci. 2014, 18, 1575–1589. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Dai, A.; Wei, Y.; Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Chang. 2017, 7. [Google Scholar] [CrossRef]
- European Space Agence SMOS—Earth Online—ESA. Available online: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/smos (accessed on 25 July 2017).
- Jet Propulsion Laboratory SMAP. Available online: https://smap.jpl.nasa.gov/ (accessed on 25 July 2017).
- Smol, J.P.; Douglas, M.S. Crossing the final ecological threshold in high Arctic ponds. Proc. Natl. Acad. Sci. USA 2007, 104, 12395–12397. [Google Scholar] [CrossRef] [PubMed]
- Seddon, A.W.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, L.; McCabe, M.F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 2016, 6, 20716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Ukkola, A.M.; Prentice, I.C.; Keenan, T.F.; van Dijk, A.I.J.M.; Viney, N.R.; Myneni, R.B.; Bi, J. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Chang. 2015, 6, 75–78. [Google Scholar] [CrossRef]
- Ahlstrom, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef] [PubMed]
- Lioubimtseva, E. Possible changes in the carbon budget of arid and semi-arid Central Asia inferred from land-use/landcover analyses during 1981–2001. In Climate Change and Carbon Sequestration in Central Asia; Taylor and Francis: New York, NY, USA, 2007; pp. 441–452. [Google Scholar]
- Zhang, C.; Ren, W. Complex climatic and CO2 controls on net primary productivity of temperate dryland ecosystems over Central Asia during 1980–2014. J. Geophys. Res. Biogeosci. 2017. [Google Scholar] [CrossRef]
- Sagin, J.; Adenova, D.; Tolepbayeva, A.; Poryadin, V. Underground water resources in Kazakhstan. Int. J. Environ. Stud. 2017, 1–13. [Google Scholar] [CrossRef]
- Sagin, J.; Yerikuly, Z.; Zhaparkhanov, S.; Panichkin, V.; Miroshnichenko, O.; Mashtayeva, S. Groundwater inflow modeling for a Kazakhstan copper ore deposit. J. Environ. Hydrol. 2015, 23. Available online: https://www.researchgate.net/publication/282704178_Groundwater_inflow_modeling_for_a_kazakhstan_copper_ore_deposit (accessed on 13 October 2017).
- Global Water Partnership. Global Water Partnership—GWP. Available online: http://www.gwp.org/ (accessed on 3 October 2017).
- Bizikova, L.; Roy, D.; Swanson, D.; Venema, H.D.; McCandless, M. The Water-Energy-Food Security Nexus: Towards a Practical Planning and Decision-Support Framework for Landscape Investment and Risk Management; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2013. [Google Scholar]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Jalilov, S.M.; Keskinen, M.; Varis, O.; Amer, S.; Ward, F.A. Managing the water-energy-food nexus: Gains and losses from new water development in Amu Darya River Basin. J. Hydrol. 2016, 539, 648–661. [Google Scholar] [CrossRef]
- Keskinen, M.; Guillaume, J.; Kattelus, M.; Porkka, M.; Räsänen, T.; Varis, O. The water-energy-food nexus and the transboundary context: Insights from Large Asian Rivers. Water 2016, 8, 193. [Google Scholar] [CrossRef]
- O’Hara, S. Lessons from the past: Water management in Central Asia. Water Policy 2000, 2, 365–384. [Google Scholar] [CrossRef]
- Granit, J.; Jägerskog, A.; Lindström, A.; Björklund, G.; Bullock, A.; Löfgren, R.; de Gooijer, G.; Pettigrew, S. Regional options for addressing the water, energy and food nexus in Central Asia and the Aral Sea Basin. Int. J. Water Resour. Dev. 2012, 28, 419–432. [Google Scholar] [CrossRef]
- de Marsily, G.; Abarca-del-Rio, R. Water and food in the twenty-first century. Surv. Geophys. 2016, 37, 503–527. [Google Scholar] [CrossRef]
- Bernauer, T.; Siegfried, T. Climate change and international water conflict in Central Asia. J. Peace Res. 2012, 49, 227–239. [Google Scholar] [CrossRef]
- De Stefano, L.; Petersen-Perlman, J.D.; Sproles, E.A.; Eynard, J.; Wolf, A.T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Chang. 2017, 45, 35–46. [Google Scholar] [CrossRef]
- Karthe, D.; Chalov, S.; Borchardt, D. Water resources and their management in central Asia in the early twenty first century: Status, challenges and future prospects. Environ. Earth Sci. 2015, 73, 487–499. [Google Scholar] [CrossRef]
- Wegerich, K.; Van Rooijen, D.; Soliev, I.; Mukhamedova, N. Water security in the Syr Darya Basin. Water 2015, 7, 4657–4684. [Google Scholar] [CrossRef]
- Soliev, I.; Wegerich, K.; Kazbekov, J. The costs of benefit sharing: Historical and institutional analysis of shared water development in the Ferghana Valley, the Syr Darya Basin. Water 2015, 7, 2728–2752. [Google Scholar] [CrossRef]
- Schaitkin, H.; Ferenz, M.; Cross, K.; Dalton, J. Food-water-energy nexus in Central Asia. 2014. Available online: http://www.iwa-network.org/wp-content/uploads/2016/06/Food-Water-Energy-Nexus-in-Central-Asia.pdf (accessed on 11 September 2017).
- Jalilov, S.-M.; Varis, O.; Keskinen, M. Sharing benefits in transboundary rivers: An experimental case study of Central Asian water-energy-agriculture nexus. Water 2015, 7, 4778–4805. [Google Scholar] [CrossRef]
- Wegerich, K. Hydro-hegemony in the Amu Darya Basin. Water Policy 2008, 10, 71–88. [Google Scholar] [CrossRef]
- International Growndwater Resources Assessment Centre MAR Portal|IGRAC. Available online: https://www.un-igrac.org/special-project/mar-portal (accessed on 11 September 2017).
- International Growndwater Resources Assessment Centre IGRAC, INOWAS, DEMEAU and IAH Launch Global MAR Portal|IGRAC. Available online: https://www.un-igrac.org/news/igrac-inowas-demau-and-iah-launch-global-mar-portal (accessed on 11 September 2017).
- Sagin, J.; Sizo, A.; Wheater, H.; Jardine, T.D.; Lindenschmidt, K.-E. A water coverage extraction approach to track inundation in the Saskatchewan River Delta, Canada. Int. J. Remote Sens. 2015, 36, 764–781. [Google Scholar] [CrossRef]
- Millions of “Shade Balls” to Prevent Evaporation in California Reservoirs|Discovery Blog|Discovery. Available online: http://www.discovery.com/dscovrd/tech/millions-of-shade-balls-to-prevent-evaporation-in-california-reservoirs/ (accessed on 8 September 2017).
- Benzaghta, M.A.; Mohamad, T.A. Evaporation from Reservoir and Reduction Methods: An Overview and Assessment Study. International Engineering Convention. Domascus, Syria and Medinah, Kingdom of Saudi Arabia, 2009. Available online: https://www.researchgate.net/profile/Mostafa_Benzaghta/publication/279983251_Evaporation_from_reservoir_and_reduction_methods_An_overview_and_assessment_study/links/55a1ae0a08aea54aa8144c17/Evaporation-from-reservoir-and-reduction-methods-An-overview-and-assessment-study.pdf (accessed on 13 October 2017).
- Choi, Y.-K. A study on power generation analysis of floating PV system considering environmental impact. Int. J. Softw. Eng. Appl. 2014, 8, 75–84. [Google Scholar] [CrossRef]
- Trapani, K.; Redón Santafé, M. A review of floating photovoltaic installations: 2007–2013. Prog. Photovolt. Res. Appl. 2015, 23, 524–532. [Google Scholar] [CrossRef]
- Sharma, P.; Muni, B.; Sen, D. Design parameters of 10 KW floating solar power plant. In Proceedings of the International Advanced Research Journal in Science, Engineering and Technology (IARJSET), National Conference on Renewable Energy and Environment (NCREE-2015), Ghaziabad, India, May 2015; Volume 2. Available online: http://www.iarjset.com/upload/2015/si/ncree-15/IARJSET%2017%20P127.pdf (accessed on 13 October 2017).
- Ferrer-Gisbert, C.; Ferrán-Gozálvez, J.J.; Redón-Santafé, M.; Ferrer-Gisbert, P.; Sánchez-Romero, F.J.; Torregrosa-Soler, J.B. A new photovoltaic floating cover system for water reservoirs. Renew. Energy 2013, 60, 63–70. [Google Scholar] [CrossRef]
- The World Bank Global Solar Atlas. Available online: http://globalsolaratlas.info/?c=-0.703107,20.742188,2 (accessed on 25 July 2017).
- Kerimray, A.; Kolyagin, I.; Suleimenov, B. Analysis of the energy intensity of Kazakhstan: From data compilation to decomposition analysis. Energy Effic. 2017, 1–21. [Google Scholar] [CrossRef]
- Kazinfrom Saxaul Planted on the Dried Aral Sea Bed of Area 20 Thousand Hectare, Ministry of Agriculture. Available online: http://www.inform.kz/en/na-vysohshem-dne-aral-skogo-morya-vysazhen-saksaul-na-ploschadi-okolo-20-tys-ga-minsel-hoz_a2784774 (accessed on 7 September 2017). (In Russian).
- Neimatullo, S.; Tatiana, N.; Ilia, D.; Asem, S.; Gulmira, K.; Jakhan, A.; Lina, V.; David, D.; Martine, R.-B.; Andreas, O.; et al. Biodiversity in Central Asia: A Visual Synthesis; Zoï Environment Network: Vernier, Switzerland, 2011. [Google Scholar]
- UNPD Kazakhstan Geoportal of Pilot Projects in Conversation and Sustainable Use of Ecosystems od UNPD in the Republic of Kazakhstan. Available online: http://pilots.biodiversity.kz/ (accessed on 7 September 2017). (In Russian).
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Pielke, R.A.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Niyogi, D.; Dutta, S.; Running, S.W. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2002, 360, 1705–1719. [Google Scholar] [CrossRef] [PubMed]
- Pielke, R.A.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, F.; Goldewijk, K.K.; Nair, U.; Betts, R.; Fall, S.; et al. Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 828–850. [Google Scholar] [CrossRef]
- Davin, E.L.; Seneviratne, S.I.; Ciais, P.; Olioso, A.; Wang, T. Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci. USA 2014, 111, 9757–9761. [Google Scholar] [CrossRef] [PubMed]
- Nurbekov, A.; Akramkhanov, A.; Kassam, A.; Sydyk, D.; Ziyadaullaev, Z.; Lamers, J.P.A. Conservation Agriculture for combating land degradation in Central Asia: A synthesis. AIMS Agric. Food 2016, 1, 144–156. [Google Scholar] [CrossRef]
- Maas, A.; Issayeva, G.; Rüttinger, L.; Umirbekov, A. Climate Change and the Water-Energy-Agriculture Nexus in Central Asia; Adelphi: Berlin, Germany, 2011. [Google Scholar]
- Chatalova, L.; Djanibekov, N.; Gagalyuk, T.V.V. The Paradox of water management projects in Central Asia: An institutionalist perspective. Water 2017, 9, 300. [Google Scholar] [CrossRef]
- Hamilton, D.P.; Carey, C.C.; Arvola, L.; Arzberger, P.; Brewer, C.; Cole, J.J.; Gaiser, E.; Hanson, P.C.; Ibelings, B.W.; Jennings, E.; et al. A Global lake ecological observatory network (GLEON) for synthesising high-frequency sensor data for validation of deterministic ecological models. Inland Waters 2015, 5, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Baldocchi, D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—The state and future of the eddy covariance method. Glob. Chang. Biol. 2014, 20, 3600–3609. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Energy. Office of Science. Fluxnet Data. Available online: http://fluxnet.fluxdata.org/ (accessed on 25 July 2017).
- Guillaume, J.H.A.; Kummu, M.; Eisner, S.; Varis, O. Transferable principles for managing the nexus: Lessons from historical global water modelling of central Asia. Water 2015, 7, 4200–4231. [Google Scholar] [CrossRef]
- CAWa. Geosciences, H.C.P.G.G.R.C. for CAWa—Central Asian Water. Available online: http://www.cawa-project.net/ (accessed on 28 July 2017).
- International Water Management Institute Indus Basin Knowledge Forum: IWMI. Available online: http://www.iwmi.cgiar.org/events/indus-basin-knowledge-forum/ (accessed on 25 July 2017).
Continent | Major Endorheic Basins/Lakes | Lake Type/Origin | Watershed/Lake Area, (km2) | Elevation, m.s.l. | Mean, Max Depth (m) | Salinity, g/L | Inflow/Outflow | Paleolake | Lake Stage | Distinctive Features |
---|---|---|---|---|---|---|---|---|---|---|
North America | Great Salt Lake 1 | hypersaline, hypereutrophic | 55,000/2470–5490 | 1280 | 5.5, 7.6–13.7 | 50–280 | river discharge, precipitation/evaporation | Bonneville | decline | surface area is divided into several parts |
Utah Lake 2 | eutrophic | 9960/380 | 1368 | 2.7, 4.2 | 0.9 | river discharge, snowmelt/evaporation, rivers | Bonneville | stable | outflow is regulated | |
South America | Lake Titicaca 3 | mountain/tectonic | 4900/8100 | 3800 | 10–135,285 | 1.2 4 | river discharge/evaporation, rivers discharge | Mataro 4 | decline | high-altitude |
Africa | Lake Chad 5 | shallow/tectonic | 2,500,000/1350 | 278–286 | 1.5, 11 | 0.1–03 6 | river discharge, precipitation/evaporation, groundwater | Mega-Chad | decline | surface area divided into several parts |
Australia | Lake Eyre 6 | salt playa/tectonic | 11,400,000 | −9/−15 | 1.5, 6 | 10–50 | river discharge, precipitation/evaporation | Lake Dieri | decline | surface area is divided into several parts |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yapiyev, V.; Sagintayev, Z.; Inglezakis, V.J.; Samarkhanov, K.; Verhoef, A. Essentials of Endorheic Basins and Lakes: A Review in the Context of Current and Future Water Resource Management and Mitigation Activities in Central Asia. Water 2017, 9, 798. https://doi.org/10.3390/w9100798
Yapiyev V, Sagintayev Z, Inglezakis VJ, Samarkhanov K, Verhoef A. Essentials of Endorheic Basins and Lakes: A Review in the Context of Current and Future Water Resource Management and Mitigation Activities in Central Asia. Water. 2017; 9(10):798. https://doi.org/10.3390/w9100798
Chicago/Turabian StyleYapiyev, Vadim, Zhanay Sagintayev, Vassilis J. Inglezakis, Kanat Samarkhanov, and Anne Verhoef. 2017. "Essentials of Endorheic Basins and Lakes: A Review in the Context of Current and Future Water Resource Management and Mitigation Activities in Central Asia" Water 9, no. 10: 798. https://doi.org/10.3390/w9100798