The Potential for the Treatment of Antimony-Containing Wastewater by Iron-Based Adsorbents
Abstract
:1. Introduction
2. Characteristics of Adsorption Treatment of Sb-Containing Wastewater by Iron Adsorbents
2.1. The Range of Iron-Based Adsorbents for Antimony and Their Adsorption Capacity
2.2. Effect of pH
2.3. Effect of Contact Time
2.4. Effect of Initial Concentration Range and Adsorbents Dose
2.5. Effect of Temperature
2.6. Effect of Co-Existing/Competing Anions
2.7. Effect of Specific Surface Area
3. Adsorption Isotherm Models, Adsorption Kinetics and Thermodynamic Models
3.1. Adsorption Isotherm Models
3.2. Adsorption Kinetics
3.3. Thermodynamic Model of Adsorption
4. Exploring Adsorption Mechanisms
4.1. FTIR Analysis
4.2. XPS Characterization
4.3. XAFS Analysis
4.4. Surface Complexation Model
5. Conclusions
- Iron-based adsorbents are functionally superior to many common aqueous metal sorption systems. pH, contact time, initial concentration, adsorbent dose, temperature, specific surface area and co-existing/competing ions are the factors to affect the adsorption of Iron-based adsorbents. In addition, pH is the most crucial factor and must remain a high priority during adsorption process.
- New iron-based absorbents with simple, environment-friendly and low-cost procedures should be explored. The binary metal oxides, such as iron-zirconium and iron-manganese yielded very interesting results, considering their considerable adsorption capacities and low cost.
- Many in depth and comprehensive research studies including adsorption isotherm, kinetics and thermodynamic have been published. The Freundlich model has a good fit with experimental data for Sb(III) and Sb(V) adsorption on many Iron-based adsorbents, which indicates that the adsorption process is mainly chemical adsorption. The adsorption of Sb(III) or Sb(V) onto most iron-based adsorbents follows the pseudo-second-order kinetic model.
- The removal mechanisms and possibility of redox reactions and conversion between Sb(III) and Sb(V) during the adsorption process should be considered comprehensively. Quantitative-qualitative analysis of the mechanisms of complexing, electrostatic attraction, redox and ion exchange can be improved through modern analytical technologies, such as FTIR, XPS, atomic force microscopy and X-ray absorption near-edge structure. Such an analysis is a priority to optimise the regulation of adsorption sites and functional groups and to enhance adsorbent performance. Doing so would provide theoretical and technical support for the efficient adsorption treatment of Sb-contaminated wastewater.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Johnson, C.A.; Moench, H.; Wersin, P.; Kugler, P.; Wenger, C. Solubility of antimony and other elements in samples taken from shooting ranges. Environ. Qual. 2005, 34, 248–254. [Google Scholar]
- He, M.C.; Wan, H.Y. Distribution, speciation, toxicity and bioavailability of antimony in the environment. Prog. Chem. 2004, 16, 131–135. [Google Scholar]
- Ning, Z.P.; Xiao, T.F. Supergene geochemical behavior and environmental risk of antimony. Earth Environ. 2004, 35, 176–182. [Google Scholar]
- Wu, F.C.; Zheng, J.; Pan, X.L.; Li, W.; Deng, Q.; Mo, C.; Zhu, J.; Liu, B.; Shao, S.; Guo, J. Prospect on Biogeochemical cycle and Environmental effect of antimony. Adv. Earth Sci. 2008, 23, 350–356. [Google Scholar]
- He, M.C.; Wang, X.Q.; Wu, F.C.; Fu, Z. Antimony pollution in China. Sci. Total Environ. 2012, 421, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Indika, H.; Meththika, V.; Jochen, B. Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environ. Pollut. 2017, 223, 545–559. [Google Scholar]
- Li, Z.B. Water Quality Analysis and Treatment Technology Research of Acid Mine Drainage from Banpo Antimony Mine in Guizhou Province. Master’s Thesis, Guizhou Normal University, Guiyang, China, 2014; pp. 1–72. [Google Scholar]
- Zhu, J.; Wu, F.C.; Deng, Q.J.; Shao, S.X.; Mo, C.L.; Pan, X.L.; Li, W.; Zhang, R.Y. Environmental characteristics of water near the Xikuangshan antimony mine, Hunan Province. Acta Sci. Circumstantiae 2009, 29, 655–661. [Google Scholar]
- Li, M.S.; Li, J.; Wang, G.J. Research advances in microbial of antimony. J. Huazhong Agric. Univ. 2013, 45, 15–19. [Google Scholar]
- Antimony Threatens Drinking Water Safety in Guangxi Province. Available online: http://www.most.gov.cn/kjbgz/201202/t20120221_92589.htm (accessed on 22 February 2012).
- Du, X.; Liang, H.; Qu, F.S.; Huang, Y.; Ye, T.; Li, G. An approach for thallium and antimony combined pollution removal in drinking water using potassium permanganate composites and polymeric ferric sulfate. J. Harbin Inst. Technol. 2013, 45, 33–37. [Google Scholar]
- Amarasiriwardena, D.; Fengchang, W. Antimony: Emerging toxic contaminant in the environment. Microchem. J. 2008, 97, 1–3. [Google Scholar] [CrossRef]
- Chen, Q.P.; Xu, S.Q.; Sun, H.R.; Chen, Q.; Xu, S.; Sun, H.; Ren, H.; Xu, S.L.; Zhang, Y.X. Speciation distribution and ecological risk assessment of antimony and arsenic in soils of the antimony mining area. Earth Environ. 2014, 43, 773–778. [Google Scholar]
- He, M.C.; Yun, Y. The speciation and bioavailability of antimony in the soils near antimony mine area. Environ. Chem. 2003, 14, 126–130. [Google Scholar]
- Wang, X.L.; Wei, Z.Y.; Feng, R.W.; Tu, S.X. The accumulation and transformation of antimony characteristics in Pteris cretica and Brassica Juncea. Acta Sci. Circumstantiae 2014, 12, 720–727. [Google Scholar]
- Kyle, J.H.; Breuer, P.L.; Bunney, K.G.; Pleysier, R.; May, P.M. Review of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, Te) and their deportment in gold processing Part II: Deportment in gold ore processing by cyanidation. Hydrometallurgy 2012, 111, 10–21. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Pan, X.L.; Mu, G.J. Antimony pollution in water and soil and its ecotoxicological effects on plants and microorganisms. Chin. J. Appl. Environ. Biol. 2010, 23, 891–894. [Google Scholar]
- Zhang, Y.P.; Zhang, T.; Chen, J.F.; Peng, R. Research progress on present situation and countermeasure of antimony pollution in water and soil environment. Ecol. Environ. Sci. 2011, 20, 1373–1378. [Google Scholar]
- Zhang, Y.; Han, Z.Y.; Pang, Z.H.; Peicong, W.Z.L. Emergency disposal of antimony ores wastewater pollution. Ind. Saf. Environ. Prot. 2013, 39, 16–18. [Google Scholar]
- Zhang, J.X.; Yang, B.; Wang, C.; Zhao, X. Removal of antimony contaminant in water by electrocoagulation. Chem. J. Environ. Eng. 2014, 8, 4244–4248. [Google Scholar]
- Zhang, Z.; Zhao, Y.B.; Liu, R.Y. An experimental study on using micro-electrolysis-neutralization sedimentation process to treat the acidic mine underground. Nonferr. Met. 2002, 2, 45–47. [Google Scholar]
- Wang, J.L.; Chen, C. Research advances in heavy metal removal by biosorption. Acta Sci. Circumstantia 2010, 30, 673–701. [Google Scholar]
- Wang, L.; Wan, C.L.; Lee, D.J.; Liu, X.; Zhang, Y.; Chen, X.F.; Tay, J.H. Biosorption of antimony(V) onto Fe(III)-treated aerobic granules. Bioresour. Technol. 2014, 158, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Wu, S. Behaviours of Biosorption and Desorption of Antimony by Naturally Occurring Cyanobacteria Microcystis. Master’s Thesis, Chinese Research Academy of Environmental Sciences, Beijing, China, 2012. [Google Scholar]
- Sun, F.H.; Wu, F.C.; Liao, H.Q.; Xing, B. Biosorption of antimony(V) by freshwater cyanobacteria Microcystis biomass: Chemical modification and biosorption mechanisms. Chem. Eng. J. 2011, 171, 1082–1090. [Google Scholar] [CrossRef]
- He, W.N.; Zhao, W.S. Study on the purification of antimony and bismuth in copper electrolyte by exchange adsorption. Nonferr. Met. 1998, 3, 26–28. [Google Scholar]
- Ozdemir, N.; Soylak, M.; Elci, L.; Dogan, M. Speciation analysis of inorganic Sb(III) and Sb(V) ions by using mini column filled with Amberlite XAD-8 resin. Anal. Chim. Acta 2004, 505, 37–41. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, F.C.; Pan, X.L.; Guo, J.; Wen, D. Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodrs. J. Environ. Sci. China 2011, 23, 1066–1071. [Google Scholar] [CrossRef]
- Komesli, O.T. Removal of heavy metals in wastewater by membrane bioreactor: Effects of flux and suction period. J. Chem. Soc. Pak. 2014, 36, 654–659. [Google Scholar]
- Kamberović, Ž.; Korać, M.; Anđić, Z.; Štulović, M.; Kovačević, T.; Vujović, A.; Ilić, I. Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony. Metall. Mater. Eng. 2012, 18, 321–331. [Google Scholar]
- Kalderis, D.; Tsolaki, E.; Antoniou, C.; Diamadopoulos, E. Characterization and treatment of wastewater produced during the hydro-metallurgical extraction of germanium from fly ash. Desalination 2008, 230, 162–174. [Google Scholar] [CrossRef]
- Li, S.S. The Adsorption Study of Antimony on Iron Modified Sepiolite. Master’s Thesis, Xiangtan University, Xiangtan, China, 2009; pp. 1–50. [Google Scholar]
- Zeng, C. Removal of Antimony(III) by Adsorption of Modified Carbon Nanotubes. Master’s Thesis, Zhejiang University, Hangzhou, China, 2013; pp. 1–72. [Google Scholar]
- Zhang, H. Removal of Antimony(V) by Adsorption of Iron-Modified Attapulgite Adsorbent. Master’s Thesis, Guizhou University, Guiyang, China, 2015; pp. 1–53. [Google Scholar]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 2015, 151, 326–342. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, H.; Liu, R.; Zhao, X.; Qu, J. The mechanism of antimony(III) removal and its reactions on the surfaces of Fe-Mn binary oxide. J. Colloid Interface Sci. 2011, 363, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liu, R.P.; Qu, J.H.; Peng, R.M. The adsorption behavioursof Fe-Mn binary oxide towards Sb(V). Acta Sci. Circumstantiae 2012, 32, 270–275. [Google Scholar]
- Li, X.H.; Dou, X.M.; Li, J.Q. Antimony(V) removal from water by iron-zirconium bimetal oxide: Performance and mechanism. J. Environ. Sci. 2012, 24, 1197–1203. [Google Scholar] [CrossRef]
- Han, L.; Lu, S.S.; Gu, S.Y. Study of absorption of Sb(V) onto Fe(OH)3. J. Guizhou Univ. Nat. Sci. 2013, 30, 132–135. [Google Scholar]
- Xi, J.H.; He, M.C.; Wang, H.P.; Zhang, G. Adsorption of antimony(III) on goethite in the presence of competitive anions. J. Geochem. Explor. 2013, 132, 201–208. [Google Scholar] [CrossRef]
- Watkins, R.; Weiss, D.; Dubbin, W.; Peel, K.; Coles, B.; Arnold, T. Investigations into the kinetics and thermodynamics of Sb(III) adsorption on goethite (alpha-FeOOH). J. Colloid Interface Sci. 2006, 303, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.W.; Li, X.Y.; Li, W.H.; Sun, Y.L. Effects of pH and complexingagents on Sb(V) adsorption onto binessite and ferrihydrite surface. Environ. Sci. 2017, 38, 180–187. [Google Scholar]
- Kolbe, F.; Weiss, H.; Morgenstern, P.; Wennrich, R.; Lorenz, W.; Schurk, K.; Stanjek, H.; Daus, B. Sorption of aqueous antimony and arsenic species akaganeite. J. Colloid Interface Sci. 2011, 357, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Ambe, S. Adsorption-kinetics of antimony(V) ions onto alpha-Fe2O3 surfaces from an aqueous-solution. Langmuir 1987, 3, 489–493. [Google Scholar] [CrossRef]
- Guo, X.J.; Wu, Z.J.; He, M.C.; Meng, X.; Jin, X.; Qiu, N.; Zhang, J. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface. J. Hazard. Mater. 2014, 276, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Chen, L. Investigation of deeply removal of antimony(V) from water by Fe-Zr binary metal oxides. Environ. Sci. Technol. 2015, 28, 21–23. [Google Scholar]
- Hu, X.X. Study on the Performance and Mechanism of the Removal of Antimony from Mine Wastewater by a New Type of Fe-Cu Binary Oxide. Master’s Thesis, Hunan University of Science and Technology, Xiangtan, China, 2016; pp. 1–73. [Google Scholar]
- Shan, C.; Ma, Z.; Tong, M. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles. J. Hazard. Mater. 2014, 268, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.W.; Chen, J.H.; Chen, J.Q. Removal of antimony from water by supported iron-zircon bimetal oxide polymeric anion exchange resin. Ion Exch. Adsorpt. 2016, 32, 244–252. [Google Scholar]
- Xu, G.M.; Shi, Z.; Deng, J. Removal of antimony from water by iron-oxide coated sand. Environ. Sci. 2006, 25, 481–484. [Google Scholar]
- Kumar, B.B.; Moue, J.; Kawakita, H.; Ohto, K.; Inoue, K. Effective removal and recovery of antimony using metal-loaded saponified orange waste. J. Hazard. Mater. 2009, 172, 721–728. [Google Scholar]
- Wang, X.H. Study on Removal of Sb(III) in Aqueous Solution by FeCl3-Modified Activated Carbon. Master’s Thesis, Zhejiang University, Hangzhou, China, 2012; pp. 1–70. [Google Scholar]
- Bhakhar, N. Antimony Removal by Iron-Oxide Coated Olivine and Water Treatment Residual. Master’s Thesis, Royal Institute of Technology-KTH, Stockholm, Sweden, 2006. [Google Scholar]
- Yang, X.Z. Study on Adsorption of Antimony(III) from Aqueous Solution Using Graphene Oxide and It’s Magnetite Composites. Master’s Thesis, Hunan University, Changsha, China, 2015; pp. 1–115. [Google Scholar]
- Miao, Y.Y. Removal of Aqueous Sb(V) by Adsorbents Loaded with Nano Hydrated Ferric Oxides. Master’s Thesis, Nanjing University, Nanjing, China, 2013; pp. 1–51. [Google Scholar]
- Chmielewská, E.; Tylus, W.; Drabik, M.; Majzlan, J.; Kravčak, J.; Williams, C.; Čaplovičová, M.; Čaplovič, L. Structure investigation of nano-FeO(OH) modified clinoptilolite tuff for antimony removal. Microporous Mesoporous Mater. 2017, 248, 222–233. [Google Scholar] [CrossRef]
- Wan, C.; Wang, L.; Lee, D.; Zhang, Q.; Li, J.; Liu, X. Fungi aerobic granules and use of Fe(III)-treated granules for biosorption of antimony(V). J. Taiwan Inst. Chem. Eng. 2014, 45, 2610–2614. [Google Scholar] [CrossRef]
- Verbinnen, B.; Block, C.; Lievens, P.; Van Brecht, A.; Vandecasteele, C. Simultaneous removal of molybdenum, antimony and selenium oxyanions from wastewater by adsorption on supported magnetite. Waste Biomass Valorization 2013, 4, 635–645. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Mo, C.; Wei, W.H.; Zhu, Y.; Huang, X.; Huang, B. Absorption of Sb(III) from aqueous solution by the porous biomorph-genetic composition of Fe2O3/Fe3O4/C prepared with bamboo template. Ind. Saf. Environ. Prot. 2016, 42, 51–53. [Google Scholar]
- Wei, W.H.; Zhu, Z.Q.; Zhu, Y.N.; Hui, Q.; Meina, L. Adsorption of Sb(III) from aqueous solution by the porous biomorph-genetic composite of Fe2O3-Fe3O4/C prepared with eucalyptus wood template. Technol. Water Treat. 2013, 39, 69–72. [Google Scholar]
- Zhao, X.Q. Antimony Removal from Water by Fe and Al-Based Adsorbents Performance and Mechanism. Master’s Thesis, Beijing Forestry University, Beijing, China, 2014; pp. 1–71. [Google Scholar]
- Zhu, L.J. Mechanisms of Removing Chromium or Antimonite Using Zero-Valent Iron. Master’s Thesis, Shandong University, Jinan, China, 2015; pp. 1–63. [Google Scholar]
- Zhang, D.Y.; Pan, X.L.; Song, Y.X. Removal of antimony from water by zero-valent iron. Earth Environ. 2009, 37, 315–318. [Google Scholar]
- Li, L.L.; Xu, S.H.; Zhang, H.; Zhou, S.W. Pentavalent antimony adsorption behaviours in two types of soils typical to south China. Acta Pedol. Sin. 2014, 51, 278–285. [Google Scholar]
- Filella, M.; Belzile, N.; Chen, Y.W. Antimony in the environment: A review focused on natural waters II. Relevant solution chemistry. Earth-Sci. Rev. 2002, 59, 265–285. [Google Scholar] [CrossRef]
- Liu, F.; Liu, R.P.; Liu, H.J.; Qu, J.H. The adsorptive behaviours of Fe-Mn binary oxides towards antimony and cadmium. Acta Sci. Circumstantiae 2013, 33, 3189–3196. [Google Scholar]
- Mittal, V.K.; Bera, S.; Narasimhan, S.V.; Velmurugan, S. Adsorption behaviour of antimony(III) oxyanions on magnetite surface in aqueous acid environment. Appl. Surf. Sci. 2013, 266, 272–279. [Google Scholar] [CrossRef]
- Xie, Z.M.; Chen, Z.; Liu, T.G.; Dai, Y.Z. Study on the influential factors on the removal of antimony by ion modified sepiolite and its regeneration conditions. Ind. Water Treat. 2009, 29, 35–38. [Google Scholar]
- Miao, Y.; Han, F.; Pan, B.; Niu, Y.; Nie, G.; Lv, L. Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger. J. Environ. Sci. 2014, 26, 307–314. [Google Scholar] [CrossRef]
- Ghosh, A.; Saez, A.E.; Ela, W. Effect of pH, competitive anions and NOM on the leaching of arsenic from solid residuals. Sci. Total Environ. 2006, 363, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Qu, J.; Liu, H.; Liu, R.; Wu, R. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Res. 2007, 41, 1921–1928. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Shi, Z.; Xu, G.M. Adsorption of antimony on IOCS: Kinetics and mechanisms. Ind. Water Wastewater 2009, 40, 19–23. [Google Scholar]
- Zhang, L.; Wei, J.Y.; Zhao, X.; Li, F.Z.; Jiang, F. Preparation, characterization and Sr(II) adsorption performance of self-doped antimony oxide. Acta Phys.-Chim. Sin. 2014, 30, 1923–1931. [Google Scholar]
- Xia, D.Y.; Zeng, D.Y. Studies of sorption of radioactive technetium on antimony-containing minerals. J. Nucl. Radiochem. 1993, 15, 99–103. [Google Scholar]
- Xu, W. Arsenic Desorption and Antimony Adsorption Behaviours on FMBO Surface. Ph.D. Thesis, Chinese Academy of Sciences, Beijing, China, May 2011. [Google Scholar]
- Xi, J.H.; He, M.C.; Lin, C.Y.; Zhang, P.; Hu, L.J. Adsorption of antimony(III) on montmorillonite, kaolinite and goethite: Effect of pH and ionic strength. Environ. Sci. 2009, 28, 54–57. [Google Scholar]
- Arai, Y.; Sparks, D.L.; Davis, J.A. Arsenate adsorption mechanisms at the allophane-water interface. Environ. Sci. Technol. 2005, 39, 2537–2544. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Weng, Y.; Xiao, Y.B.; Qian, S.H. Pre-concentration of trace Sb in water with nanometer-size TiO2 and its determination by GFAAS. J. Anal. Sci. 2004, 20, 376–378. [Google Scholar]
- Wang, L.; Xing, R.; Liu, S.; Qin, Y.; Li, K.; Yu, H.; Li, R.; Li, P. Studies on adsorption behavior of Pb(II) onto a thiourea-modified chitosan resin with Pb(II) as template. Carbohydr. Polym. 2010, 81, 305–310. [Google Scholar] [CrossRef]
- Ayben, K.; Bilgin, B. Thermodynamic and kinetic investigation of uranium adsorption on amberlite IR-118H resin. Appl. Radiat. Isot. 2003, 58, 155–160. [Google Scholar]
- Tang, H.X.; Qian, Y.; Wen, X.H. The Characteristics and Controling Technical Principle of Water Particles and Refractory Organics in Water (Volume 1): Water Particles; China Environmental Science Press: Beijing, China, 2000. [Google Scholar]
- Lin, S. Research on the Mechanism of Sequestration of Antimonite in Aqueous Solution by Zerovalent Iron Under Weak Magnetic Field. Master’s Thesis, Shangdong University, Jinan, China, 2016; pp. 1–48. [Google Scholar]
- Wang, X.S.; Li, Z.Z.; Tao, S.R. Removal of chromium(VI) from aqueous solution using walnut hull. J. Environ. Manag. 2008, 90, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.X.; Dai, Y.Z.; Wu, A.M. Biosorption study of Cr(VI) from aqueous solutions by rice bran and wheat bran. Technol. Water Treat. 2007, 33, 53–56. [Google Scholar]
- Ayla, O.; Dursun, O. Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: Determination of biosorption heats. J. Hazard. Mater. B 2003, 100, 219–229. [Google Scholar]
- Yuan, Y.C.; Chen, B.N.; Wang, R.X. Study on preparation and properties of chitosan resin crosslinked by formaldehyde and epichlorohydrin. Polym. Mater. Sci. Eng. 2004, 20, 53–58. [Google Scholar]
- Mccomb, K.A.; Craw, D.; Mcquillan, A.J. ATR-IR spectroscopic study of antimonate adsorption to iron oxide. Langmuir 2007, 23, 12125–12130. [Google Scholar] [CrossRef] [PubMed]
- Meththika, V.; Anushka, U.R.; Dou, X.M.; Bolan, N.S.; Yang, J.E.; Ok, Y.S. Surfacecomplexationmodelling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils. J. Colloid Interface Sci. 2013, 406, 217–224. [Google Scholar]
- Gaur, A.; Shrivastava, B.D. Speciation using X-ray adsorption fine structure (XAFS). Rev. J. Chem. 2015, 5, 361–398. [Google Scholar] [CrossRef]
- O’Day, P.A.; Rehr, J.J.; Zabinsky, S.I.; Brown, G.J. Extended X-ray absorption fine structure (EXAFS) analysis of disorder and multiple-scattering in complex crystalline solids. J. Am. Chem. Soc. 1994, 116, 2938–2949. [Google Scholar] [CrossRef]
- Scheinost, A.C.; Rossberg, A.; Vantelon, D.; Xifra, I.; Kretzschmar, R.; Leuz, A.-K.; Funke, H.; AnnetteJohnson, C. Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochim. Cosmochim. Acta 2006, 70, 3299–3312. [Google Scholar] [CrossRef]
- Qi, P.F.; Pichler, T. Sequential and simultaneous adsorption of Sb(III) and Sb(V) on ferrihydrite: Implications for oxidation and competition. Chemosphere 2016, 145, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; He, M.C.; Lin, C.Y. Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite. Chem. Erde-Geochem. 2012, 72, 41–47. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Jia, Y.F.; Xu, L.Y.; Zhao, S. Adsorption and heterogeneous oxidation of As(III) on ferrihydrite. Water Res. 2011, 45, 6496–6504. [Google Scholar] [CrossRef] [PubMed]
- Hayes, K.F.; Papelis, C.; Leckie, J.O. Modelling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. J. Colloid Interface Sci. 1988, 125, 717–726. [Google Scholar] [CrossRef]
- Khemarath, O. Multi-Metal Equilibrium Sorption and Transport Modelling for Copper, Chromium, and Arsenic in An Iron Oxide-Coated Sand, Synthetic Groundwater System. Master’s Thesis, The University of Oregon State, Corvallis, OH, USA, 2002. [Google Scholar]
- Paul, R.G.; Matthew, E.; Donald, L.S.; Goldberg, S.; Ainsworth, C.C. Arsenate and chromate retention mechanisms on goethite 2 kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol. 1997, 31, 321–326. [Google Scholar]
- Guo, X.J.; Wu, Z.J.; He, M.C. Removal of antimony(V) and antimony(III) from drinking water by coagulation-flocculation-sedimentation (CFS). Water Res. 2009, 43, 4327–4335. [Google Scholar] [CrossRef] [PubMed]
Adsorbent | Initial Concentration Range (mg/L) | Sb Oxidation State | pH | T (K) | Adsorbent Dose (g/L) | Contact Time (h) | Qm (mg/g) | Removal Rate (%) | Reference |
---|---|---|---|---|---|---|---|---|---|
Iron oxides | |||||||||
Ferric hydroxide | 24–244 | Sb(III) | 3 | 293 | 0.2 | 24 | 101 | - | [36] |
Ferric hydroxide | 60.88 | Sb(V) | 5 | 293 | 0.2 | 24 | 99.84 | - | [37] |
Ferric hydroxide | 0–25 | Sb(V) | 4 | 298 | 0.2 | 24 | 18.5 | - | [38] |
Fe(OH)3 | 0.02–1.8 | Sb(V) | 6–7 | - | 0.5 | 24 | - | >90 | [39] |
Goethite | 0.05–15 | Sb(V) | 7 | 298 | 1 | 24 | 18.3 | 99 | [40] |
Goethite | 4.79–47.93 | Sb(III) | 3.9 | 298 | 0.697 | 24 | 69.8 | - | [41] |
Ferrihydrite | 0.121–24.35 | Sb(V) | 5 | 298 | 0.5 | 12 | 27.9 | 93.3 | [42] |
Akaganeite | 1–1000 | Sb(V) | 2.2 | - | 2 | - | 450.4 | - | [43] |
Alpha-Fe2O3 | 19.48 | Sb(V) | 4 | 303 | 0.75 | - | 7 | - | [44] |
Hydrous ferric oxide | 12.2 | Sb(V) | 4 | 293 | 0.4 | 24 | 114 | - | [45] |
γ-FeOOH | 6.09 | Sb(V) | 4 | 293 | 0.4 | 24 | 34.09 | - | [45] |
β-FeOOH | 6.09 | Sb(V) | 4 | 293 | 0.4 | 24 | 29.22 | - | [45] |
6.09 | Sb(III) | 9 | 293 | 0.4 | 24 | 34.09 | - | [45] | |
α-FeOOH | 6.09 | Sb(V) | 4 | 293 | 0.4 | 24 | 24.47 | - | [45] |
6.09 | Sb(III) | 9 | 293 | 0.4 | 24 | 53.45 | - | [45] | |
Binary metal Iron oxides | |||||||||
Iron-zirconium bimetal oxide | 0–25 | Sb(V) | 7 | 298 | 0.2 | 3 | 60.4 | - | [38] |
Iron-zirconium bimetal oxide | 20 | Sb(V) | 2–5 | 298 | 0.5 | 2 | 35.7 | - | [46] |
Fe-Mn binary oxide | 60.88 | Sb(V) | 5 | - | 0.2 | 24 | 127.84 | - | [37] |
Fe-Mn binary oxide | 24.35–243.5 | Sb(III) | 3 | 293 | 0.2 | 5 | 214.28 | - | [36] |
Fe-Cu binary oxide | 40 | Sb(III) | 2–10 | 298 | 0.04 | 24 | 111.27 | 88.31 | [47] |
40 | Sb(V) | 5 | 298 | 0.04 | 24 | 104.95 | 85.46 | [47] | |
Fe-loaded composite adsorbents | |||||||||
Hematite modified magnetic nanoparticles | 0.11 | Sb(III) | 4.1 | 298 | 0.1 | 2 | 36.7 | >95.5 | [48] |
Fe-Zr-D201 | 0–120 | Sb(V) | 2.8–4.3 | 298 | 0.25 | 8.33 | 73.75 | 98.9 | [49] |
Iron-oxide coated sand | 33.3 | Total Sb | 6 | 313 | 1.5 | 7 | 0.6 | >95 | [50] |
Fe(II)-loaded saponified orange waste | 5.5 | Sb(III) | 2.7 | 303 | 5 | 24 | 136.36 | 100 | [51] |
3.5 | Sb(V) | 2.7 | 303 | 5 | 24 | 144.88 | 96 | [51] | |
Zr(IV) and Fe(III) loaded orange waste | 15 | Sb(III) | 2.5 | 303 | 1.67 | 24 | 170.45 | 100 | [51] |
15 | Sb(V) | 2.5 | 303 | 1.67 | 24 | 227.67 | 100 | [51] | |
FeCl3-modifed sepiolite | 50 | Sb(III) | 6.8 | 308 | 2 | 1.5 | 21.63 | - | [32] |
FeCl3-modifed activated carbon | 1.5 | Sb(III) | 5–9 | 298 | 1 | - | >96 | [52] | |
Iron-oxide coated olivine | – | Sb(V) | 4–5 | 298 | 2.5 | - | - | 99 | [53] |
Fe2O3 modified carbon nanotubes (CNTs) | 1.5 | Sb(III) | 7 | 298 | 0.5 | 2 | 6.3 | 99.97 | [33] |
Graphene oxide and it’s magnetite composites | 0–150 | Sb(III) | 3–9 | 298 | 1.2 | 2 | 8.7 | >95 | [54] |
Polymeric anion exchanger D201 loaded with nano hydrated ferric oxide (HFO) | 5–80 | Sb(V) | 3 | 303 | 0.2 | 5 | 60.9 | 99 | [55] |
Calcite sands loaded with nano HFO | 5–80 | Sb(V) | 4 | 303 | 0.2 | 5 | 39.9 | 99 | [55] |
Iron-modified attapulgite Nano-FeO(OH) modified clinoptilolite tuff | 5–80 | Sb(V) | 6.8 | - | 0.1 | 15 | 31.79 | 78 | [34] |
– | Sb(III) | <2.7 | 296 | - | - | 7.17 | - | [56] | |
Fe(III)-treated bacteria aerobic granules | 20 | Sb(V) | 3.4 | 308 | 20 | 5 | 22.6 | >95 | [23] |
Fe(III)-treated fungi aerobic granules | 20 | Sb(V) | 3.4 | 318 | 20 | 5 | 19 | >95 | [57] |
Zeolite-supported magnet-ite | 5.1 | Sb(V) | 2–4 | 298 | 0.5 | 13 | 19 | 85 | [58] |
Fe2O3-Fe3O4/C prepared with bamboo template | 5–150 | Sb(III) | 7 | 298 | 2 | - | 4.782 | >90 | [59] |
Fe2O3-Fe3O4/C prepared with eucalyptus wood template | 50 | Sb(III) | 8 | 298 | 10 | - | 4.45 | >90 | [60] |
Zero-valent iron | |||||||||
Nanoscale zero-valent iron | 0–20 | Sb(III) | <5.0 | 298 | 2 | 48 | 6.99 | - | [61] |
0–20 | Sb(V) | <5.0 | 298 | 2 | 48 | 1.65 | - | [61] | |
Zero-valent iron (under the weak magnetic field) | 1–5 | Sb(III) | 5.0 | 298 | 0.1 | - | - | >90 | [62] |
Zero-valent iron | 5.0 | Sb(III) | 5.0 | 298 | 3 | - | - | 69.98 | [63] |
Ferric-Iron rich soil | |||||||||
Red soil | 2.44–180.19 | Sb(V) | 4.8 | 298 | 60 | >720 | 1.68 | - | [64] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, R.-J.; Jin, C.-S.; Ren, B.-Z.; Hou, B.-L.; Hursthouse, A.S. The Potential for the Treatment of Antimony-Containing Wastewater by Iron-Based Adsorbents. Water 2017, 9, 794. https://doi.org/10.3390/w9100794
Deng R-J, Jin C-S, Ren B-Z, Hou B-L, Hursthouse AS. The Potential for the Treatment of Antimony-Containing Wastewater by Iron-Based Adsorbents. Water. 2017; 9(10):794. https://doi.org/10.3390/w9100794
Chicago/Turabian StyleDeng, Ren-Jian, Chang-Sheng Jin, Bo-Zhi Ren, Bao-Lin Hou, and Andrew S. Hursthouse. 2017. "The Potential for the Treatment of Antimony-Containing Wastewater by Iron-Based Adsorbents" Water 9, no. 10: 794. https://doi.org/10.3390/w9100794