Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks
Abstract
:1. Introduction
2. Background and Related Works
3. The Proposed Leakage Detection Algorithm
Algorithm 1: Proposed leakage detection algorithm |
1: Start { |
2: Load network parameters |
3: Read network parameters and initialise |
4: for node i= 1 to , (: The number of nodes in the network) |
5: for pipe j= 1 to b, (b: The number of pipes in the network) |
Run hydraulic analysis and compute leakage vector |
if (or relatively low) |
Print “No leaking node” |
else |
i: Print “Leaking node ID” |
ii: Search for pipes connected to this node |
iii: Compute the pipe leakage vector |
if (or relatively low) |
Print “No leaking pipe” |
else |
Print “Leaking pipe ID” |
Tag leaking pipe as critical pipes and report critical pipe ID |
Display “Pressure control recommended along the critical pipe with ID...” |
end if |
end if |
6: end for j |
7: end for i |
8: Stop } |
3.1. WDN Topology and Model Formulation
3.2. WDN Hydraulic Model Solution
3.3. Integrating a Leakage Model
4. Numerical Examples
4.1. Numerical Example 1
4.2. Numerical Example 2
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McKenzie, R.S.; Siqalaba, Z.; Wegelin, W. The State of Non-Revenue Water in South Africa; Report No. TT522/12; Water Research Commission: Lynnwood Manor, Pretoria, South Africa, 2012. [Google Scholar]
- Beuken, R.; Lavooij, C.; Bosch, A.; Schaap, P. Low leakage in the Netherlands confirrmed. In Proceedings of the Water Distribution Systems Analysis Symposium 2008 (WDSA 2008), Kruger National Park, South Africa, 17–20 August 2008; pp. 1–8. [Google Scholar]
- Lambert, A. International Report: Water Losses Management and Techniques, Water Science and Technology: Water Supply; IWA Publishing: London, UK, 2002; Volume 2, pp. 1–20. [Google Scholar]
- Mamlook, R.; Al-Jayyousi, O. Fuzzy sets analysis for leak detection in infrastructure systems: A proposed methodology. Clean Technol. Environ. Policy 2003, 6, 26–31. [Google Scholar] [CrossRef]
- Colombo, A.F.; Karney, B.W. Energy and costs of leaky pipes: Toward comprehensive picture. J. Water Resour. Plan. Manag. 2002, 128, 441–450. [Google Scholar] [CrossRef]
- Abu-Mahfouz, A.M.; Hamam, Y.; Page, P.R.; Djouani, K.; Kurien, A. Real-time dynamic hydraulic model for potable water loss reduction. Procedia Eng. 2016, 154, 99–106. [Google Scholar] [CrossRef]
- Xu, Y.; Li, W.; Ding, X. A stochastic multi-objective chance-constrained programming model for water supply management in xiaoqing river watershed. Water 2017, 9, 378. [Google Scholar]
- Ostfeld, O.; Uber, J.G.; Salomons, E.; Berry, J.W.; Hart, W.E.; Phillips, C.A.; Watson, J.P.; Dorini, G.; Jonkergouw, P.; Kapelan, Z.; et al. The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms. J. Water Resour. Plan. Manag. 2008, 134, 556–568. [Google Scholar] [CrossRef]
- Puust, R.; Kapelan, Z.; Savic, D.; Koppel, T. A review of methods for leakage management in pipe networks. Urban Water J. 2010, 7, 25–45. [Google Scholar] [CrossRef]
- Wu, Z.; Farley, M.; Turtle, D.; Kapelan, Z.; Boxall, J.; Mounce, S.; Dahasahasra, S.; Mulay, M.; Kleiner, Y. Water Loss Reduction, 1st ed.; Bentley Institute Press: Exton, PA, USA, 2011. [Google Scholar]
- Gupta, R.; Nair, A.G.R.; Ormsbee, L. Leakage as pressure-driven demand in design of water distribution networks. J. Water Resour. Plan. Manag. 2016, 142, 04016005. [Google Scholar] [CrossRef]
- Ribeiro, R.; Sousa, J.; Marques, A.S.; Simoes, N.E. Locating leaks with trustrank algorithm support. Water 2015, 7, 1378–1401. [Google Scholar] [CrossRef]
- Wiggert, D.C. Unsteady flows in lines with distributed leakage. J. Hydraul. Div. 1968, 95, 143–162. [Google Scholar]
- Rossman, L.A. Epanet 2 User’s Manual, US Environmental Protection Agency; Water Supply and Water Resources Division, National Risk Management Research Laboratory: Cincinnati, OH, USA, 2000; Volume 45268.
- May, J. Pressure dependent leakage. In World Water and Environmental Engineering; WEF Publishing Inc.: London, UK, 1994. [Google Scholar]
- Greyvenstein, B.; Van Zyl, J.E. An experimental investigation into the pressure leakage relationship of some failed water pipes. J. Water Supply 2007, 56, 117–124. [Google Scholar] [CrossRef]
- Van Zyl, J.E.; Cassa, A. Modelling elastically deforming leaks in water distribution Pipes. J. Hydraul. Eng. 2013, 140, 182–189. [Google Scholar] [CrossRef]
- Cassa, A.; Van Zyl, J.E. Predicting the head-leakage slope of cracks in pipes subject to elastic deformations. J. Water Supply 2013, 62, 214–223. [Google Scholar] [CrossRef]
- Van Zyl, J.E. Theoretical modelling of pressure and leakage in water distribution systems. Procedia Eng. 2014, 89, 273–277. [Google Scholar] [CrossRef]
- Muranho, J.; Ferreira, A.; Sousa, J.; Gomes, A.; Marques, A.S. Pressure-dependent demand and leakage modelling with an EPANET extension WaterNetGen. Procedia Eng. 2014, 89, 632–639. [Google Scholar] [CrossRef]
- Schwaller, J.; Van Zyl, J.E.; Kabaasha, A. Characterising the pressure-leakage response of pipe networks using the FAVAD equation. Water Sci. Technol. 2015, 15, 1373–1382. [Google Scholar] [CrossRef]
- Ssozi, E.; Reddy, B.; Van Zyl, J.E. Numerical investigation of the influence of viscoelastic deformation on the pressure-leakage behaviour of plastic pipes. J. Hydraul. Eng. 2015, 142, 04015057. [Google Scholar] [CrossRef]
- Adedeji, K.B.; Hamam, Y.; Abe, B.T.; Abu-Mahfouz, A.M. Burst leakage—Pressure dependency in water piping networks: Its impact on leak openings. In Proceedings of the IEEE Africon Conference, Cape Town, South Africa, 18–20 September 2017; pp. 1550–1555. [Google Scholar]
- Van Zyl, J.E.; Lambert, A.; Collins, R. Realistic modelling of leakage and intrusion flows through leak openings in pipes. J. Hydraul. Eng. 2017, 143, 04017030. [Google Scholar] [CrossRef]
- Todini, E. A More Realistic Approach to the Extended Period Simulation of Water Distribution Networks. In Advances in Water Supply Management; Swets and Zeitlinger Publishers: Lisse, The Netherlands, 2003. [Google Scholar]
- Covelli, C.; Cozzolino, L.; Cimorelli, L.; Della Morte, R.; Pianese, D. A model to simulate leakage through joints in water distribution systems. Water Sci. Technol. 2015, 15, 852–863. [Google Scholar] [CrossRef]
- Aksela, K.; Aksela, M.; Vahala, R. Leakage detection in a real distribution network using a SOM. Urban Water J. 2009, 6, 279–289. [Google Scholar] [CrossRef]
- Farley, B.; Mounce, S.; Boxall, J. Field testing of an optimal sensor placement methodology for event detection in an urban water distribution network. Urban Water J. 2010, 7, 345–356. [Google Scholar] [CrossRef]
- Perez, R.; Puig, V.; Pascual, J.; Peralta, A.; Landeros, E.; Jordanas, L. Pressure sensor distribution for leak detection in Barcelona water distribution network. Water Sci. Technol. 2009, 9, 715–721. [Google Scholar] [CrossRef]
- Mounce, S.R.; Khan, A.; Wood, A.S.; Day, A.J.; Widdop, P.D.; Machell, J. Sensor fusion of hydraulic data for burst detection and location in a treated water distribution system. Inf. Fusion 2003, 4, 217–229. [Google Scholar] [CrossRef]
- Mounce, S.R.; Machell, J. Burst detection using hydraulic data from water distribution systems with artificial neural networks. Urban Water J. 2006, 3, 21–31. [Google Scholar] [CrossRef]
- Islam, M.S.; Sadiq, R.; Rodriguez, M.J.; Francisque, A.; Najjaran, H.; Hoorfar, M. Leakage detection and location in water distribution systems using a fuzzy-based Methodology. Urban Water J. 2011, 8, 351–365. [Google Scholar] [CrossRef]
- Perez, R.; Sanz, G.; Puig, V.; Quevedo, J.; Escofet, M.A.C.; Nejjari, F.; Meseguer, J.; Cembrano, G.; Tur, J.M.M.; Sarrate, R. Leak localization in water networks: A model-based methodology using pressure sensors applied to a real network in Barcelona. IEEE Control Syst. 2014, 34, 24–36. [Google Scholar] [CrossRef]
- Giustolisi, O.; Berardi, L.; Laucelli, D.; Savic, D.; Walski, T.; Brunone, B. Battle of background leakage assessment for water networks (BBLAWN) at WDSA conference 2014. Procedia Eng. 2014, 89, 4–12. [Google Scholar] [CrossRef]
- Price, E.; Ostfeld, A. Battle of background leakage assessment for water networks using successive linear programing. Procedia Eng. 2014, 89, 45–52. [Google Scholar] [CrossRef]
- Vassiljev, A.; Koppel, T.; Puust, R. Background leakage assessment for BBLAWN. Procedia Eng. 2014, 89, 111–117. [Google Scholar] [CrossRef]
- Tolson, B.; Khedr, A. Battle of background leakage assessment for water networks (BBLAWN): An incremental savings approach. Procedia Eng. 2014, 89, 69–77. [Google Scholar] [CrossRef]
- Shafiee, M.E.; Berglund, A.; Berglund, E.Z.; Brill, E.D., Jr.; Mahinthakumar, G. Parallel evolutionary algorithm for designing water distribution networks to minimize background leakage. J. Water Resour. Plan. Manag. 2015, 142, C4015007. [Google Scholar] [CrossRef]
- Eck, B.J.; Arandia, E.; Naoum-Sawaya, J.; Wirth, F.R. Decomposition approach for background leakage assessment: BBLAWN instance. J. Water Resour. Plan. Manag. 2015, 142, C4015009. [Google Scholar] [CrossRef]
- Iglesias-Rey, P.; Martinez-Solano, F.; Melia, D.M.; Martinez-Solano, P. BBLAWN: A combined use of best management practices and an optimization model based on a pseudo-genetic algorithm. Procedia Eng. 2014, 89, 29–36. [Google Scholar] [CrossRef]
- Laucelli, D.; Meniconi, S. Water distribution network analysis accounting for different background leakage models. Procedia Eng. 2015, 119, 680–689. [Google Scholar] [CrossRef]
- Berardi, L.; Laucelli, D.; Ugarelli, R.; Giustolisi, O. Hydraulic system modelling: Background leakage model calibration in Oppegård municipality. Procedia Eng. 2015, 119, 633–642. [Google Scholar] [CrossRef] [Green Version]
- Creaco, E.; Alvisi, S.; Franchini, M. A multi-step approach for optimal design and management of the C-town pipe network model. Procedia Eng. 2014, 89, 37–44. [Google Scholar] [CrossRef]
- Yoo, D.G.; Kang, D.; Jun, H.; Kim, J.H. Rehabilitation priority determination of water pipes based on hydraulic importance. Water 2014, 6, 3864–3887. [Google Scholar] [CrossRef]
- Giustolisi, O.; Berardi, L.; Laucelli, D.; Savic, D.; Kapelan, Z. Operational and tactical management of water and energy resources in pressurized systems: Competition at WDSA 2014. J. Water Resour. Plan. Manag. 2015, 142, C4015002. [Google Scholar] [CrossRef]
- Saldarriaga, J.; Paez, D.; Bohorquez, J.; Paez, N.; Paris, J.P.; Rincon, D.; Salcedo, C.; Vallejo, D. Rehabilitation and leakage reduction on C-town using hydraulic criteria. J. Water Resour. Plan. Manag. 2015, 142, C4015013. [Google Scholar] [CrossRef]
- Tolson, B.A.; Maier, H.R.; Simpson, A.R.; Lence, B.J. Genetic algorithms for reliability-based optimization of water distribution systems. J. Water Resour. Plan. Manag. 2004, 130, 63–72. [Google Scholar] [CrossRef]
- Yoo, D.G.; Jung, D.; Kang, D.; Kim, J.H. Seismic-reliability-based optimal layout of a water distribution network. Water 2016, 8, 50. [Google Scholar] [CrossRef]
- Campbell, E.; Izquierdo, J.; Montalvo, I.; Perez-Garcia, R. A novel water supply network sectorization methodology based on a complete economic analysis, including uncertainties. Water 2016, 8, 179. [Google Scholar] [CrossRef]
- Hindi, K.S.; Hamam, Y. Locating pressure control elements for leakage minimization in water supply networks: An optimization model. Eng. Optim. 1991, 17, 281–291. [Google Scholar] [CrossRef]
- Hindi, K.S.; Hamam, Y. Pressure control for leakage minimization in water supply networks part 1: Single period models. Int. J. Syst. Sci. 1991, 22, 1573–1585. [Google Scholar] [CrossRef]
- Hindi, K.S.; Hamam, Y. Pressure control for leakage minimization in water supply networks: Part 2. multi-period models. Int. J. Syst. Sci. 1991, 22, 1587–1598. [Google Scholar] [CrossRef]
- Hindi, K.S.; Hamam, Y. An optimisation model for setting pressure controllers to minimise leakage in pipe networks. In Optimization-Based Computer-Aided Modelling and Design; Springer: Berlin, Germany, 1992; pp. 116–125. [Google Scholar]
- Hamam, Y.; Hindi, K.S. Optimised on-line leakage minimisation in water piping networks using neural nets. In Proceedings of the IFIP Working Conference, Dagschul, Germany, 28 September–1 October 1992; pp. 57–64. [Google Scholar]
- Araujo, L.; Ramos, H.; Coelho, S. Pressure control for leakage minimisation in water distribution systems management. Water Resour. Manag. 2006, 20, 133–149. [Google Scholar] [CrossRef]
- Roshani, E.; Filion, Y. WDS leakage management through pressure control and pipes rehabilitation using an optimization approach. Procedia Eng. 2014, 89, 21–28. [Google Scholar] [CrossRef]
- Page, P.R.; Abu-Mahfouz, A.M.; Yoyo, S. Real-time adjustment of pressure to demand in water distribution systems: Parameter-less p-controller algorithm. Procedia Eng. 2016, 154, 391–397. [Google Scholar] [CrossRef]
- Covelli, C.; Cozzolino, L.; Cimorelli, L.; Della Morte, R.; Pianese, D. Optimal location and setting of PRVs in WDS for leakage minimization. Water Resour. Manag. 2016, 30, 1803–1817. [Google Scholar] [CrossRef]
- Covelli, C.; Cimorelli, L.; Cozzolino, L.; Della Morte, R.; Pianese, D. Reduction in water losses in water distribution systems using pressure reduction valves. Water Sci. Technol. 2016, 16, 1033–1045. [Google Scholar] [CrossRef]
- Page, P.R.; Abu-Mahfouz, A.M.; Yoyo, S. Parameter-less remote real-time control for the adjustment of pressure in water distribution systems. J. Water Resour. Plan. Manag. 2017, 48. [Google Scholar] [CrossRef]
- Page, P.R.; Abu-Mahfouz, A.M.; Mothetha, M. Pressure management of water distribution systems via the remote real-time control of variable speed pumps. J. Water Resour. Plan. Manag. 2017, 48. [Google Scholar] [CrossRef]
- Adedeji, K.B.; Hamam, Y.; Abe, B.T.; Abu-Mahfouz, A.M. Pressure management strategies for water loss reduction in large-scale water piping networks: A review. In Advances in Hydroinformatics-SimHydro 2017; Springer: Berlin, Germany, 2017; pp. 1–9, in press. [Google Scholar]
- Basha, H.; Kassab, B. Analysis of water distribution systems using perturbation Method. Appl. Math. Model. 1996, 20, 291–297. [Google Scholar] [CrossRef]
- Hamam, Y.; Brameller, A. Hybrid method for the solution of piping networks. Proc. Inst. Electr. Eng. 1971, 118, 1607–1612. [Google Scholar] [CrossRef]
- Todini, E.; Pilati, S. A gradient algorithm for the analysis of pipe networks. In Computer Applications in Water Supply: Volume 1, Systems Analysis and Simulation; Research Studies Press Ltd.: Baldock, UK, 1988; pp. 1–20. [Google Scholar]
- Piller, O.; Bremond, B.; Poulton, M. Least action principles appropriate to pressure driven models of pipe networks. In Proceedings of the World Water and Environmental Resources Congress, Philadelphia, PA, USA, 23–26 June 2003; pp. 1–15. [Google Scholar]
- Giustolisi, O.; Laucelli, D.; Berardi, L.; Savic, D. Computationally efficient modelling method for large scale water network analysis. J. Hydraul. Eng. 2012, 138, 313–326. [Google Scholar] [CrossRef]
- Germanopoulos, G. A technical note in the inclusion of pressure dependent demand and leakage terms in water supply network models. Civ. Eng. Syst. 1985, 2, 171–179. [Google Scholar] [CrossRef]
- Piller, O.; Van Zyl, J. Pressure-driven analysis of network sections supplied via high-lying nodes. In Proceedings of the Computing and Control in the Water Industry, Integrating Water Systems, Sheffield, UK, 1–3 September 2009. [Google Scholar]
- Todini, E. Towards realistic extended period simulations (EPS) in looped pipe network. In Proceedings of the Water Distribution Systems Analysis Symposium, Kruger National Park, South Africa, 17–20 August 2008; pp. 1–16. [Google Scholar]
- Kumar, S.M.; Narasimhan, S.; Bhallamudi, S.M. State estimation in water distribution networks using graph-theoretic reduction strategy. J. Water Resour. Plan. Manag. 2008, 134, 395–403. [Google Scholar] [CrossRef]
- Elhay, S.; Piller, O.; Deuerlein, J.; Simpson, A.R. A robust, rapidly convergent method that solves the water distribution equations for pressure-dependent models. J. Water Resour. Plan. Manag. 2015, 142, 1–26. [Google Scholar] [CrossRef]
Pipe ID | Start Node | End Node | Length (m) | Diameter (mm) | Chw |
---|---|---|---|---|---|
1 | 1 | 2 | 500 | 150 | 110 |
2 | 2 | 3 | 1500 | 150 | 110 |
3 | 2 | 4 | 500 | 80 | 110 |
4 | 4 | 5 | 1000 | 80 | 110 |
5 | 3 | 5 | 500 | 80 | 110 |
6 | 3 | 6 | 1000 | 100 | 110 |
7 | 6 | 7 | 1000 | 100 | 110 |
8 | 7 | 8 | 1500 | 100 | 110 |
9 | 7 | 9 | 800 | 80 | 110 |
10 | 8 | 9 | 500 | 80 | 110 |
Node ID | Elevation (m) | Demand (L/s) |
---|---|---|
1 | 30 | 0.0 |
2 | 0 | 1.0 |
3 | 0 | 2.0 |
4 | 0 | 1.5 |
5 | 0 | 1.5 |
6 | 20 | 0.5 |
7 | 0 | 2.0 |
8 | 0 | 2.0 |
9 | 0 | 2.0 |
Pipe ID | Start Node | End Node | Length (m) | Diameter (mm) | Chw | Pipe ID | Start Node | End Node | Length (m) | Diameter (mm) | Chw |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 55 | 300 | 120 | 37 | 25 | 29 | 35 | 80 | 120 |
2 | 2 | 3 | 100 | 300 | 120 | 38 | 26 | 30 | 34 | 80 | 120 |
3 | 3 | 4 | 30 | 250 | 120 | 39 | 15 | 31 | 85 | 100 | 120 |
4 | 4 | 5 | 35 | 200 | 120 | 40 | 31 | 32 | 330 | 80 | 120 |
5 | 5 | 6 | 245 | 200 | 120 | 41 | 32 | 33 | 165 | 80 | 120 |
6 | 6 | 7 | 30 | 80 | 120 | 42 | 34 | 33 | 180 | 80 | 120 |
7 | 7 | 8 | 25 | 80 | 120 | 43 | 31 | 35 | 100 | 80 | 120 |
8 | 8 | 9 | 32 | 80 | 120 | 44 | 34 | 35 | 120 | 80 | 120 |
9 | 9 | 10 | 26 | 80 | 120 | 45 | 36 | 34 | 70 | 80 | 120 |
10 | 10 | 11 | 33 | 80 | 120 | 46 | 6 | 37 | 130 | 80 | 120 |
11 | 11 | 12 | 25 | 80 | 120 | 47 | 37 | 36 | 125 | 80 | 120 |
12 | 12 | 13 | 68 | 80 | 120 | 48 | 38 | 36 | 27 | 80 | 120 |
13 | 13 | 14 | 300 | 80 | 120 | 49 | 38 | 39 | 127 | 80 | 120 |
14 | 6 | 15 | 55 | 150 | 120 | 50 | 39 | 40 | 80 | 80 | 120 |
15 | 15 | 16 | 33 | 80 | 120 | 51 | 41 | 39 | 260 | 80 | 120 |
16 | 16 | 17 | 60 | 80 | 120 | 52 | 41 | 42 | 200 | 150 | 120 |
17 | 17 | 18 | 72 | 80 | 120 | 53 | 43 | 41 | 270 | 150 | 120 |
18 | 15 | 19 | 44 | 100 | 120 | 54 | 43 | 44 | 105 | 100 | 120 |
19 | 19 | 20 | 32 | 80 | 120 | 55 | 44 | 38 | 25 | 80 | 120 |
20 | 20 | 21 | 60 | 80 | 120 | 56 | 2 | 43 | 140 | 200 | 120 |
21 | 21 | 22 | 70 | 80 | 120 | 57 | 4 | 45 | 230 | 150 | 120 |
22 | 16 | 20 | 43 | 80 | 120 | 58 | 45 | 46 | 240 | 150 | 120 |
23 | 17 | 21 | 40 | 80 | 120 | 59 | 4 | 5 | 35 | 130 | 120 |
24 | 22 | 18 | 40 | 80 | 120 | 60 | 5 | 6 | 245 | 130 | 120 |
25 | 19 | 23 | 37 | 100 | 120 | 61 | 6 | 7 | 30 | 80 | 120 |
26 | 23 | 24 | 30 | 80 | 120 | 62 | 7 | 8 | 25 | 80 | 120 |
27 | 24 | 25 | 55 | 80 | 120 | 63 | 8 | 9 | 32 | 80 | 120 |
28 | 25 | 26 | 70 | 80 | 120 | 64 | 9 | 10 | 26 | 80 | 120 |
29 | 20 | 24 | 38 | 80 | 120 | 65 | 10 | 11 | 33 | 80 | 120 |
30 | 21 | 25 | 37 | 80 | 120 | 66 | 11 | 12 | 25 | 80 | 120 |
31 | 22 | 26 | 36 | 80 | 120 | 67 | 12 | 13 | 68 | 80 | 120 |
32 | 23 | 27 | 38 | 100 | 120 | 68 | 13 | 14 | 57 | 80 | 120 |
33 | 28 | 27 | 30 | 80 | 120 | 69 | 32 | 33 | 165 | 80 | 120 |
34 | 28 | 29 | 52 | 80 | 120 | 70 | 4 | 5 | 35 | 150 | 120 |
35 | 29 | 30 | 70 | 80 | 120 | 71 | 5 | 6 | 245 | 150 | 120 |
36 | 24 | 28 | 36 | 80 | 120 |
Node ID | Elevation (m) | Demand (L/s) | Node ID | Elevation (m) | Demand (L/s) |
---|---|---|---|---|---|
1 | 14 | - | 24 | 0 | 1.26 |
2 | 0 | 1.33 | 25 | 0 | 1.07 |
3 | 0 | 3.73 | 26 | 0 | 0.632 |
4 | 0 | 3.85 | 27 | 0 | 2.97 |
5 | 0 | 3.16 | 28 | 0 | 0.315 |
6 | 0 | 1.07 | 29 | 0 | 0.442 |
7 | 0 | 1.89 | 30 | 0 | 0.378 |
8 | 0 | 1.33 | 31 | 0 | 4.55 |
9 | 0 | 2.15 | 32 | 0 | 1.26 |
10 | 0 | 2.78 | 33 | 0 | 2.40 |
11 | 0 | 1.77 | 34 | 0 | 0.820 |
12 | 0 | 1.33 | 35 | 0 | 1.33 |
13 | 0 | 1.20 | 36 | 0 | 1.01 |
14 | 0 | 2.53 | 37 | 0 | 0.883 |
15 | 0 | 2.84 | 38 | 0 | 0.568 |
16 | 0 | 1.26 | 39 | 0 | 1.64 |
17 | 0 | 1.01 | 40 | 0 | 0.632 |
18 | 0 | 0.82 | 41 | 0 | 12.4 |
19 | 0 | 0.505 | 42 | 0 | 2.08 |
20 | 0 | 0.758 | 43 | 0 | 4.93 |
21 | 0 | 0.632 | 44 | 0 | 0.190 |
22 | 0 | 0.378 | 45 | 0 | 6.19 |
23 | 0 | 0.883 | 46 | 0 | 3.66 |
Case Study | Network 1 | Network 2 |
---|---|---|
Number of pipes | 10 | 71 |
Number of nodes | 9 | 46 |
Number of iteration | 3 | 4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adedeji, K.B.; Hamam, Y.; Abe, B.T.; Abu-Mahfouz, A.M. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks. Water 2017, 9, 773. https://doi.org/10.3390/w9100773
Adedeji KB, Hamam Y, Abe BT, Abu-Mahfouz AM. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks. Water. 2017; 9(10):773. https://doi.org/10.3390/w9100773
Chicago/Turabian StyleAdedeji, Kazeem B., Yskandar Hamam, Bolanle T. Abe, and Adnan M. Abu-Mahfouz. 2017. "Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks" Water 9, no. 10: 773. https://doi.org/10.3390/w9100773
APA StyleAdedeji, K. B., Hamam, Y., Abe, B. T., & Abu-Mahfouz, A. M. (2017). Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks. Water, 9(10), 773. https://doi.org/10.3390/w9100773