Characteristics of Nitrate Removal from Aqueous Solution by Modified Steel Slag
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Materials
2.2. Characterization, Test Methods and Equipment
2.3. Toxicity Leaching Test
2.4. Batch Experiments
2.5. Regeneration
3. Results and Discussion
3.1. Characteristics of Adsorbents
3.2. Toxicity Analysis
3.3. Adsorption Characteristics of MSS
3.3.1. Effect of Adsorbent Dosage
3.3.2. Effect of pH
3.4. Mechanisms of Nitrate Removal
3.4.1. Adsorption Kinetic Model
3.4.2. Isothermal Adsorption Model
3.4.3. Removal Mechanism
3.5. Regeneration
4. Conclusions
- (1)
- The safety and ion release experiments showed that the MSS as a wastewater adsorbent did not produce toxic pollution, providing a certain degree of safety.
- (2)
- The surface area of MSS and its nitrate adsorption capacity were significantly enhanced to 3.34 times and 1.9 times higher than that of OSS, respectively. When the initial concentration of nitrate was 300 mg/L, the adsorption capacity of MSS was 6.165 mg/g, reaching a relatively higher level.
- (3)
- The adsorption of nitrate was in accordance with a pseudo-second-order kinetics model and a Freundlich isothermal model, which was mainly attributed to monolayer chemical adsorption. In addition, the increase in the specific surface area, the formation of active substances and the change in surface electrical properties can effectively improve the ability of MSS to remove nitrate.
- (4)
- The MSS still had some ability to remove nitrate after several reuses and removal efficiency was stable at 20% from the second regeneration experiments. Some other methods, such as combining steel slag with agricultural wastes or cationic surfactants for modification, could be used in the modified experiments to improve the adsorption capacity of steel slag. In addition, MSS for the treatment of actual wastewater needs to be further studied in the follow-up experiments.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jin, Z.; Pan, Z.; Jin, M.; Li, F.; Wan, Y.; Gu, B. Determination of nitrate contamination sources using isotopic and chemical indicators in an agricultural region in China. Agric. Ecosyst. Environ. 2012, 155, 78–86. [Google Scholar] [CrossRef]
- Feleke, S. A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide. Water Res. 2002, 36, 3092–3102. [Google Scholar] [CrossRef]
- Hajhamad, L.; Almasri, M.N. Assessment of nitrate contamination of groundwater using lumped-parameter models. Environ. Modell. Softw. 2009, 24, 1073–1087. [Google Scholar] [CrossRef]
- Keränen, A.; Leiviskä, T.; Hormi, O.; Tanskanen, J. Removal of nitrate by modified pine sawdust: Effects of temperature and co-existing anions. J. Environ. Manag. 2015, 147, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Sandor, J.; Kiss, I.; Farkas, O.; Ember, I. Association between gastric cancer mortality and nitrate content of drinking water: Ecological study on small area inequalities. Eur. J. Epidemiol. 2001, 17, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Wiesmann, U.; Choi, I.S.; Dombrowski, E.M. Fundamentals of Biological Wastewater Treatment. J. Egypt. Med. Assoc. 2007, 46, 1031–1040. [Google Scholar]
- Yang, L.; Xu, P.; Yang, M.; Bai, H. The characteristics of steel slag and the effect of its application as a soil additive on the removal of nitrate from aqueous solution. Environ. Sci. Pollut. R. 2017, 24, 4882–4893. [Google Scholar]
- Oztürk, N.; Bektaş, T.E. Nitrate removal from aqueous solution by adsorption onto various materials. J. Hazard. Mater. 2004, 112, 155. [Google Scholar] [CrossRef] [PubMed]
- Samatya, S.; Kabay, N.; Yüksel, Ü.; Arda, M.; Yüksel, M. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React. Funct. Polym. 2006, 66, 1206–1214. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, N.; Feng, C.; Hu, W.; Liu, H. Kinetic and isotherm studies of nitrate adsorption on granular Fe-Zr-chitosan complex and electrochemical reduction of nitrate from the spent regenerant solution. RSC Adv. 2016, 6, 61944–61954. [Google Scholar] [CrossRef]
- Nur, T.; Shim, W.G.; Loganathan, P.; Vigneswaran, S.; Kandasamy, J. Nitrate removal using Purolite A520E ion exchange resin: Batch and fixed-bed column adsorption modelling. Int. J. Environ. Sci. Technol. 2015, 12, 1311–1320. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, X.L.; Huang, S.T.; Geng, B.Y.; Chang, C.H.; Sung, I. Adsorption of nitrate ions onto activated carbon prepared from rice husk by NaOH activation. Desalin. Water Treat. 2014, 52, 4935–4941. [Google Scholar] [CrossRef]
- Pollard, S.J.T.; Fowler, G.D.; Sollars, C.J.; Perry, R. Low-cost adsorbents for waste and wastewater treatment: A review. Sci. Total Environ. 1992, 116, 31–52. [Google Scholar] [CrossRef]
- Fan, S.S. The Comprehensive Application of Slag in Wastewater Treatment. J. Anhui Agric. Sci. 2010, 38, 18282–18283. [Google Scholar]
- Barca, C.; Gérente, C.; Meyer, D.; Chazarenc, F.; Andrès, Y. Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water Res. 2012, 46, 2376–2384. [Google Scholar] [CrossRef] [PubMed]
- Claveau-Mallet, D.; Wallace, S.; Comeau, Y. Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters. Water Res. 2013, 47, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Jha, V.K.; Kameshima, Y.; Nakajima, A.; Okada, K. Hazardous ions uptake behavior of thermally activated steel-making slag. J. Hazard. Mater. 2004, 114, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Abbas, N.; Deeba, F.; Irfan, M.; Khan, R.A. Treatability Study of Arsenic, Fluoride and Nitrate from Drinking Water by Adsorption Process. J. Chem. Soc. Pak. 2014, 37. [Google Scholar]
- Duan, J.; Fang, H.; Lin, J.; Lin, J.; Huang, Z. Simultaneous removal of NH4+ and PO43− at low concentrations from aqueous solution by modified converter slag. Water Environ. Res. 2013, 85, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Su, B. Removal characteristics of Cd(II) from acidic aqueous solution by modified steel-making slag. Chem. Eng. J. 2014, 246, 160–167. [Google Scholar] [CrossRef]
- Hao, W.J. Studies on Removal Efficiency of Nitrogen and Phosphorus from Eutrophic Seawater with “Solidified Slag Concrete-Macroalgae” System. Master’s Thesis, Ocean University of China, Qingdao, China, May 2014. [Google Scholar]
- Bhatnagar, A.; Kumar, E.; Sillanpää, M. Nitrate removal from water by nano-alumina: Characterization and sorption studies. Chem. Eng. J. 2010, 163, 317–323. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, N.; Feng, C.; Hu, W.W. Nitrate adsorption from aqueous solution using granular chitosan-Fe3+ complex. Appl. Surf. Sci. 2015, 347, 1–9. [Google Scholar] [CrossRef]
- Mishra, P.C.; Patel, R.K. Use of agricultural waste for the removal of nitrate-nitrogen from aqueous medium. J. Environ. Manag. 2009, 90, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Teutli-Sequeira, A.; Solache-Ríos, M.; Balderas-Hernández, P. Modification Effects of Hematite with Aluminum Hydroxide on the Removal of Fluoride Ions from Water. Water Air Soil Pollut. 2012, 223, 319–327. [Google Scholar] [CrossRef]
- Wu, C.D.; Zhang, J.Y.; Wang, L.; He, M.H. Removal of aniline and phenol from water using raw and aluminum hydroxide-modified diatomite. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2013, 67, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wu, S.; Zhou, M. Adsorption characterization of Cu(II) from aqueous solution onto basic oxygen furnace slag. Chem. Eng. J. 2013, 231, 355–364. [Google Scholar] [CrossRef]
- Jha, V.K.; Kameshima, Y.; Nakajima, A.; Okada, K. Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution. J. Hazard. Mater. 2008, 156, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B. Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Adv. Colloid Interface Sci. 2004, 110, 19–48. [Google Scholar] [CrossRef] [PubMed]
- Marzouk, I.; Hannachi, C.; Dammak, L.; Hamrouni, B. Removal of chromium by adsorption on activated alumina. Desalin. Water Treat. 2011, 26, 279–286. [Google Scholar] [CrossRef]
- National Environmental Protection Agency. Water Quality-Determination of Nitrate-Nitrogen—Ultraviolet Spectrophotometry; HJ/T 346-2007; National Environmental Protection Agency: Beijing, China, 2007. (In Chinese)
- Mann, R.A.; Bavor, H.J. Phosphorus Removal in Constructed Wetlands Using Gravel and Industrial Waste Substrata. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. Control. 1993, 27, 107–113. [Google Scholar]
- Yan, J.; Moreno, L.; Neretnieks, I. The long-term acid neutralizing capacity of steel slag. Waste Manag. 2000, 20, 217–223. [Google Scholar] [CrossRef]
- National Environmental Protection Agency. Solid Waste-Extraction Procedure for Leaching Toxicity-Acetic Aid Buffer Solution Method; HJ/T 300-2007; National Environmental Protection Agency: Beijing, China, 2007. (In Chinese)
- Malarvizhi, T.S.; Santhi, T. Adsorption of Zn(II) ions from aqueous solution on lignite-fired fly ash. Desalin. Water Treat. 2013, 51, 6777–6788. (In Chinese) [Google Scholar] [CrossRef]
- National Environmental Protection Agency. Environmental Quality Standards for Surface Water; GB 3838-2002; National Environmental Protection Agency: Beijing, China, 2002. (In Chinese)
- Oh, C.; Rhee, S.; Oh, M.; Park, J. Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag. J. Hazard. Mater. 2012, 213–214, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Teimouri, A.; Nasab, S.G.; Vahdatpoor, N.; Habibollahi, S.; Salavati, H.; Chermahini, A.N. Chitosan /Zeolite Y/Nano ZrO2 nanocomposite as an adsorbent for the removal of nitrate from the aqueous solution. Int. J. Biol. Macromol. 2016, 93, 254. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Hirata, M.; Kimura, T. Hydrolysis of Al3+ from constrained molecular dynamics. J. Chem. Phys. 2006, 124, 74503. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.J.; Lin, J.W.; Zhan, Y.H.; Wang, H. Adsorption Characteristics of Nitrate and Phosphate from Aqueous Solution on Zirconium-Hexadecyltrimethylammonium Chloride Modified Activated Carbon. Huan Jing Ke Xue 2015, 36, 2185–2194. (In Chinese) [Google Scholar] [PubMed]
- Huo, L. Adsorption of nitrate on granular ferric hydroxide from simulated wastewater. Chin. J. Environ. Eng. 2012, 6, 3058–3062. [Google Scholar]
- Lagergren, S. Zur Theorie der Sogenannten Adsorption Gelöster Stoffe; Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1–39. (In Germany) [Google Scholar]
- Ho, Y.S.; Mckay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Ho, Y.S.; Chiu, W.T.; Hsu, C.S.; Huang, C.T. Sorption of lead ions from aqueous solution using tree fern as a sorbent. Hydrometallurgy 2004, 73, 55–61. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H.; Heller, W. The Adsorption of cis- and trans-Azobenzene. J. Am. Chem. Soc. 1939, 61, 2228–2230. [Google Scholar] [CrossRef]
- Carter, M.C.; Kilduff, J.E.; Weber, W.J. Site energy distribution analysis of preloaded adsorbents. Environ. Sci. Technol. 1995, 29, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Derylo-Marczewska, A.; Jaroniec, M.; Gelbin, D.; Seidel, A. Heterogeneity effects in single-solute adsorption from dilute solutions on solids. Chem. Scr. 1984, 24, 239–246. [Google Scholar]
- Islam, M.; Mishra, P.C.; Patel, R. Physicochemical characterization of hydroxyapatite and its application towards removal of nitrate from water. J. Environ. Manag. 2010, 91, 1883. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Mallavarapu, M.; Naidu, R. Adsorption of the herbicide 2,4-D on organo-palygorskite. Appl. Clay Sci. 2010, 49, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Halajnia, A.; Oustan, S.; Najafi, N.; Khataee, A.R.; Lakzian, A. Adsorption-desorption characteristics of nitrate, phosphate and sulfate on Mg–Al layered double hydroxide. Appl. Clay Sci. 2013, 80, 305–312. [Google Scholar] [CrossRef]
- Milmile, S.N.; Pande, J.V.; Karmakar, S.; Chakrabarti, T.; Bansiwal, A.; Biniwale, R.B. Equilibrium isotherm and kinetic modeling of the adsorption of nitrates by anion exchange Indion NSSR resin. Desalination 2011, 276, 38–44. [Google Scholar] [CrossRef]
- Lu, S.; Chen, J.; Li, F. Investigation on the Key Factors and the Solution for pH Value Decrease in Carbon Filter in O3-BAC Process. Chin. J. Chem. Eng. 2013, 21, 914–919. [Google Scholar] [CrossRef]
Modification Conditions | 3:2:0.15 | 3:2:0.30 | 3:2:0.45 | 3:2:0.60 | 3:2:0.75 |
---|---|---|---|---|---|
600 °C | MSS1 | MSS2 | MSS3 | MSS4 | MSS5 |
700 °C | MSS6 | MSS7 | MSS8 | MSS9 | MSS10 |
800 °C | MSS11 | MSS12 | MSS13 | MSS14 | MSS15 |
900 °C | MSS16 | MSS17 | MSS18 | MSS19 | MSS20 |
Samples | SBET a m2/g | VT b cm³/g | Vmeso c cm³/g | Vmicro d cm³/g |
---|---|---|---|---|
OSS | 2.854 | 0.01253 | 0.01122 | 0.00125 |
MSS | 9.531 | 0.02494 | 0.02184 | 0.00283 |
Samples | CaO | Fe2O3 | SiO2 | MgO | P2O5 | MnO | Al2O3 | TiO2 | Total |
---|---|---|---|---|---|---|---|---|---|
OSS | 40.86 | 28.79 | 14.05 | 6.70 | 3.13 | 2.98 | 1.66 | 0.73 | 98.90 |
MSS | 33.73 | 24.66 | 10.47 | 4.82 | 2.48 | 2.20 | 20.01 | 0.51 | 98.88 |
Samples | Cu | Zn | Pb | Cd | Cr | V | As |
---|---|---|---|---|---|---|---|
OSS | ≤0.002 | ≤0.002 | ≤0.03 | ≤0.002 | ≤0.003 | ≤0.003 | ≤0.03 |
MSS | ≤0.002 | ≤0.002 | ≤0.03 | ≤0.002 | ≤0.003 | ≤0.003 | ≤0.03 |
Class III value | 1.0 | 1.0 | 0.05 | 0.005 | 0.05 | 0.05 | 0.05 |
Adsorbent | Pseudo-First-Order | Pseudo-Second-Order | qe,exp | ||||
---|---|---|---|---|---|---|---|
qe,cal | K1 | R2 | qe,cal | K2 | R2 | ||
OSS | 0.3094 | 0.0251 | 0.7030 | 0.2468 | 0.1963 | 0.9955 | 0.3665 |
MSS | 1.675 | 0.0299 | 0.9301 | 0.7041 | 0.0194 | 0.9652 | 0.6988 |
Adsorbate | Langmuir Constant | Freundlich Constant | ||||
---|---|---|---|---|---|---|
qm (mg/g) | KL (L/mg) | R2 | KF ((mg/g) (L/mg)1/n) | 1/n | R2 | |
NO3− | 16.393 | 0.0024 | 0.6265 | 0.080 | 0.7894 | 0.9833 |
Adsorbent | Experimental Conditions | Amount Adsorbed | References |
---|---|---|---|
hydroxyapatite | pH: 6.0 Concentration range: 100 mg/L Temperature: 50 °C | 21 mg/g | [49] |
halloysite | pH: 5.4 Concentration: 100 mg/L Room Temperature | 0.54 mg/g | [50] |
activated carbon | pH: n.a Concentration range: 0–25 mg/L Temperature: 15 °C | 1.22 mg/g | [24] |
granular chitosan-Fe3+ complex | pH: n.a Concentration range: 20–200 mg/L Temperature: 15 °C | 8.35 mg/g | [23] |
nano-alumina | pH: 4.4 Concentration range: 1–100 mg/L Temperature: 25 °C | 4.0 mg/g | [22] |
Modified steel slag | pH: 6.0 Concentration range: 20–300 mg/L Temperature: 25 °C | 6.165 mg/g | Present study |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Yang, M.; Xu, P.; Zhao, X.; Bai, H.; Li, H. Characteristics of Nitrate Removal from Aqueous Solution by Modified Steel Slag. Water 2017, 9, 757. https://doi.org/10.3390/w9100757
Yang L, Yang M, Xu P, Zhao X, Bai H, Li H. Characteristics of Nitrate Removal from Aqueous Solution by Modified Steel Slag. Water. 2017; 9(10):757. https://doi.org/10.3390/w9100757
Chicago/Turabian StyleYang, Liyun, Maomao Yang, Ping Xu, Xiancong Zhao, Hao Bai, and Hong Li. 2017. "Characteristics of Nitrate Removal from Aqueous Solution by Modified Steel Slag" Water 9, no. 10: 757. https://doi.org/10.3390/w9100757