Robust Adaptation Research in High Mountains: Integrating the Scientific, Social, and Ecological Dimensions of Glacio-Hydrological Change
Abstract
:1. Introduction
2. Scientific, Social, and Ecological Context
3. Existing Mountain-Focused Adaptation Research
4. Principles for Robust Mountain-Focused Adaptation Research
- Effective—Adaptation achieves its goals.
- Efficient—Benefits of adaptation outweigh the cost of implementation.
- Equitable—Distributional consequences of adaptation benefit the most vulnerable.
- Legitimate—Inclusive decision-making processes underpin adaptation.
- Sustainable—Attentive to social and ecological needs now and into the future.
4.1. Principle 1—Attention to Watershed-Specific Conditions
4.2. Principle 2—Attention to the Human Dimensions of Hydrological Change
4.3. Principle 3—Attention to Socio-Ecological Dynamics
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stepp, J.R.; Castaneda, H.; Cervone, S. Mountains and biocultural diversity. Mt. Res. Dev. 2005, 25, 223–227. [Google Scholar] [CrossRef]
- Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R.; Clague, J.; Vuille, M.; Buytaert, W.; Cayan, D.; Greenwood, G. Toward mountains without permanent snow and ice. Earth Future 2017, 5, 418–435. [Google Scholar] [CrossRef]
- Roe, G.H.; Baker, M.B.; Herla, F. Centennial glacier retreat as categorical evidence of regional climate change. Nat. Geosci. 2017, 10, 95–99. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK, 2013. [Google Scholar]
- Carey, M.; Molden, O.C.; Rasmussen, M.B.; Jackson, M.; Nolin, A.W.; Mark, B.G. Impacts of glacier recession and declining meltwater on mountain societies. Ann. Am. Assoc. Geogr. 2017, 107, 350–359. [Google Scholar] [CrossRef]
- McDowell, G.; Stephenson, E.; Ford, J. Adaptation to climate change in glaciated mountain regions. Clim. Chang. 2014, 126, 77–91. [Google Scholar] [CrossRef]
- Palomo, I. Climate change impacts on ecosystem services in high mountain areas: A literature review. Mt. Res. Dev. 2017, 37, 179–187. [Google Scholar] [CrossRef]
- Korner, C.; Ohsawa, M. Mountain Systems; Island Press: Washington, DC, USA, 2005; pp. 681–716. [Google Scholar]
- Sphen, M.; Korner, C. A global assessment of mountain biodiversity and its function. In Global Change and Mountain Regions: An Overview of Current Knowledge; Huber, U.M., Bugmann, H.K., Reasoner, M.A., Eds.; Springer: Dordecht, The Netherlands, 2006; pp. 393–400. [Google Scholar]
- Bury, J.; Mark, B.G.; Carey, M.; Young, K.R.; McKenzie, J.M.; Baraer, M.; French, A.; Polk, M.H. New geographies of water and climate change in Peru: Coupled natural and social transformations in the Santa River watershed. Ann. Assoc. Am. Geogr. 2013, 103, 363–374. [Google Scholar] [CrossRef]
- Carey, M.; McDowell, G.; Huggel, C.; Jackson, J.; Portocarrero, C.; Reynolds, J.M.; Vicuna, L. Integrated approaches to adaptation and disaster risk reduction in dynamic socio-cryospheric systems. In Snow and Ice-Related Hazards, Risks and Disasters; Haeberli, W., Whitemand, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 219–261. [Google Scholar]
- Byers, A.C.; McKinney, D.C.; Thakali, S.; Somos-Valenzuela, M. This changing world: Promoting science-based, community-driven approaches to climate change adaptation in glaciated mountain ranges: Himap. Geography 2014, 99, 143. [Google Scholar]
- Huggel, C.; Scheel, M.; Albrecht, F.; Andres, N.; Calanca, P.; Jurt, C.; Khabarov, N.; Mira-Salama, D.; Rohrer, M.; Salzmann, N. A framework for the science contribution in climate adaptation: Experiences from science-policy processes in the Andes. Environ. Sci. Policy 2015, 47, 80–94. [Google Scholar] [CrossRef]
- Muccione, V.; Salzmann, N.; Huggel, C. Scientific knowledge and knowledge needs in climate adaptation policy: A case study of diverse mountain regions. Mt. Res. Dev. 2016, 36, 364–375. [Google Scholar] [CrossRef]
- Mills-Novoa, M.; Borgias, S.L.; Crootof, A.; Thapa, B.; de Grenade, R.; Scott, C.A. Bringing the hydrosocial cycle into climate change adaptation planning: Lessons from two Andean mountain water towers. Ann. Am. Assoc. Geogr. 2017, 107, 393–402. [Google Scholar] [CrossRef]
- Carey, M.; Huggel, C.; Bury, J.; Portocarrero, C.; Haeberli, W. An integrated socio-environmental framework for glacier hazard management and climate change adaptation: Lessons from Lake 513, Cordillera Blanca, Peru. Clim. Chang. 2012, 112, 733–767. [Google Scholar] [CrossRef]
- Jansson, P.; Hock, R.; Schneider, T. The concept of glacier storage: A review. J. Hydrol. 2003, 282, 116–129. [Google Scholar] [CrossRef]
- Kaser, G.; Großhauser, M.; Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. USA 2010, 107, 20223–20227. [Google Scholar] [CrossRef] [PubMed]
- Marzeion, B.; Cogley, J.G.; Richter, K.; Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 2014, 345, 919–921. [Google Scholar] [CrossRef] [PubMed]
- Moyer, A.N.; Moore, R.; Koppes, M.N. Streamflow response to the rapid retreat of a lake-calving glacier. Hydrol. Process. 2016, 30, 3650–3665. [Google Scholar] [CrossRef]
- Kohler, T.; Wehrli, A.; Jurek, M. Mountains and Climate Change—A Global Concern; Swiss Agency for Development and Cooperation: Bern, Switzerland, 2014; p. 136. Available online: http://www.fao.org/fileadmin/user_upload/mountain_partnership/docs/E_LOW_Fullversion_Mountain_CC.pdf (accessed on 26 September 2017).
- Mark, B.G.; Mckenzie, J.M. Tracing increasing tropical Andean glacier melt with stable isotopes in water. Environ. Sci. Technol. 2007, 41, 6955–6960. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). Mapping the Vulnerability of Mountain Peoples to Food Insecurity; FAO: Rome, Italy, 2015; p. 68. [Google Scholar]
- Gardner, J.; Rhoades, R.; Stadel, C. People in mountains. In Mountain Geography: Physical and Human Dimensions; Price, M.F., Byers, A.C., Friend, D.A., Kohler, T., Price, L.W., Eds.; University of California Press: Berkeley, CA, USA, 2013; pp. 267–300. [Google Scholar]
- Cunha, S.; Price, L.W. Agricultural settlement and land use in mountains. In Mountain Geography: Physical and Human Dimensions; Price, M.F., Byers, A.C., Friend, D.A., Kohler, T., Price, L.W., Eds.; University of California Press: Berkeley, CA, USA, 2013; pp. 301–331. [Google Scholar]
- La Frenierre, J.; Mark, B.G. A review of methods for estimating the contribution of glacial meltwater to total watershed discharge. Prog. Phys. Geogr. 2014, 38, 173–200. [Google Scholar] [CrossRef]
- Ariza, C.; Maselli, D.; Kohler, T. Mountains: Our Life, Our Future; Swiss Agency for Development and Cooperation and Centre for Development and Environment: Bern, Switzerland, 2013; p. 90. [Google Scholar]
- McKenzie, J.M.; Gordon, R.P.; Baraër, M.; Lautz, L.K.; Chavez, D.; Aubry-Wake, C. Hydrogeology in Glaciated High-Elevation Andean Watersheds-Results from the Cordillera Blanca, Peru. In Proceedings of the 2014 GSA Annual Meeting, Vancouver, BC, Canada, 19–22 October 2014. [Google Scholar]
- Spehn, E.M.; Rudmann-Maurer, K.; Korner, C.; Maselli, D. Mountain Biodiversity and Global Change; FAO: Basel, Switzerland, 2010; p. 59. [Google Scholar]
- Nagy, L.; Grabherr, G. The Biology of Alpine Habitats; Oxford University Press: Oxford, UK, 2009; p. 336. [Google Scholar]
- Bundi, U. Features of alpine waters and management concerns. In Alpine Waters; Bundi, U., Ed.; Springer: Heidelberg, Germany, 2010; pp. 1–14. [Google Scholar]
- Robinson, C.T.; Kawecka, B.; Fureder, L.; Peter, A. Biodiversity of flora and fauna in alpine waters. In Alpine Waters; Bundi, U., Ed.; Springer: Heidelberg, Germany, 2010; Volume 6. [Google Scholar]
- Milner, A.M.; Khamis, K.; Battin, T.J.; Brittain, J.E.; Barrand, N.E.; Füreder, L.; Cauvy-Fraunié, S.; Gíslason, G.M.; Jacobsen, D.; Hannah, D.M. Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. USA 2017, 114, 9770–9778. [Google Scholar] [CrossRef] [PubMed]
- O’Neel, S.; Hood, E.; Bidlack, A.L.; Fleming, S.W.; Arimitsu, M.L.; Arendt, A.; Burgess, E.; Sergeant, C.J.; Beaudreau, A.H.; Timm, K. Icefield-to-ocean linkages across the northern pacific coastal temperate rainforest ecosystem. BioScience 2015, 65, 499–512. [Google Scholar] [CrossRef]
- Jacobsen, D.; Milner, A.M.; Brown, L.E.; Dangles, O. Biodiversity under threat in glacier-fed river systems. Nat. Clim. Chang. 2012, 2, 361–364. [Google Scholar] [CrossRef]
- Smit, B.; Burton, I.; Klein, R.J.; Street, R. The science of adaptation: A framework for assessment. Mitig. Adapt. Strat. Glob. Chang. 1999, 4, 199–213. [Google Scholar] [CrossRef]
- Smit, B.; Wandel, J. Adaptation, adaptive capacity and vulnerability. Glob. Environ. Chang. 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Engle, N.L. Adaptive capacity and its assessment. Glob. Environ. Chang. 2011, 21, 647–656. [Google Scholar] [CrossRef]
- Kelly, P.M.; Adger, W.N. Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Clim. Chang. 2000, 47, 325–352. [Google Scholar] [CrossRef]
- Turner, W.R.; Bradley, B.A.; Estes, L.D.; Hole, D.G.; Oppenheimer, M.; Wilcove, D.S. Climate change: Helping nature survive the human response. Conserv. Lett. 2010, 3, 304–312. [Google Scholar] [CrossRef]
- Barnett, J.; O’Neill, S. Maladaptation. Glob. Environ. Chang. 2010, 20, 211–213. [Google Scholar] [CrossRef]
- McDowell, G.; James, F.; Stephenson, E. Adaptation, adaptation science, and the status of adaptation in mountain regions. In Climate Change Adaptation Strategies: An Upstream—Downstream Lens; Salzmann, N., Huggel, C., Nussbaumer, S., Ziervogel, G., Eds.; Springer: Cham, Switzerland, 2016; pp. 17–38. [Google Scholar]
- Llosa, J.; Pajares, E.; Toro, O. Cambio climático, crisis del agua y adaptación en las montañas andinas. In Reflexión, Denuncia y Propuesta Desde Los Andes; Centro de Estudios y Promoción del Desarrollo–Desco, y RAP-Red Ambiental Peruana: Lima, Perú, 2009; Available online: http://www.descosur.org.pe/wp-content/uploads/2014/12/cambioclimatico.pdf (accessed on 26 September 2017).
- Sviensson, O. Case Study: Influence of Climate Change on Iceland Hydropower; International Hydropower Association/World Bank Group: London, UK, 2015. [Google Scholar]
- Ford, J.D.; McDowell, G.; Jones, J. The state of climate change adaptation in the arctic. Environ. Res. Lett. 2014, 9, 104005. [Google Scholar] [CrossRef]
- Olazabal, M.; Galarraga, I.; Ford, J.; Lesnikowski, A.; de Murieta, E.S. Towards Successful Adaptation: A Checklist for the Development of Climate Change Adaptation Plans; Basque Centre for Climate Change: Lejona, Spain, 2017. [Google Scholar]
- Adger, W.N.; Arnell, W.N.; Tompkins, L.E. Successful adaptation to climate change across scales. Glob. Environ. Chang. 2005, 15, 77–86. [Google Scholar] [CrossRef]
- Eriksen, S.; Brown, K. Sustainable adaptation to climate change. Clim. Dev. 2011, 3, 3–6. [Google Scholar] [CrossRef]
- Moser, S.C.; Boykoff, M.T. Climate change and adaptation success: The scope of the challenge. In Successful Adaptation to Climate Change: Linking Science and Policy in a Rapidly Changing World; Moser, S.C., Boykoff, M.T., Eds.; Routledge: New York, NY, USA, 2013; pp. 1–33. [Google Scholar]
- Casassa, G.; Lopez, P.; Pouyaud, B.; Escobar, F. Detection of changes in glacial run-off in alpine basins: Examples from North America, the Alps, central Asia and the Andes. Hydrol. Process. 2009, 23, 31–41. [Google Scholar] [CrossRef]
- Koppes, M.; Rupper, S.; Asay, M.; Winter-Billington, A. Sensitivity of glacier runoff projections to baseline climate data in the Indus river basin. Front. Earth Sci. 2015, 3, 59. [Google Scholar] [CrossRef]
- Lutz, A.; Immerzeel, W.; Shrestha, A.; Bierkens, M. Consistent increase in high Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587. [Google Scholar] [CrossRef]
- Mark, B.G.; Bury, J.; McKenzie, J.M.; French, A.; Baraer, M. Climate change and tropical Andean glacier recession: Evaluating hydrologic changes and livelihood vulnerability in the Cordillera Blanca, Peru. Ann. Assoc. Am. Geogr. 2010, 100, 794–805. [Google Scholar] [CrossRef]
- Naz, B.S.; Frans, C.; Clarke, G.; Burns, P.; Lettenmaier, D. Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model. Hydrol. Earth Syst. Sci. 2014, 18, 787–802. [Google Scholar] [CrossRef] [Green Version]
- Salzmann, N.; Huggel, C.; Rohrer, M.; Stoffel, M. Data and knowledge gaps in glacier, snow and related runoff research—A climate change adaptation perspective. J. Hydrol. 2014, 518, 225–234. [Google Scholar] [CrossRef]
- Ford, J.D.; Smit, B. A framework for assessing the vulnerability of communities in the Canadian Arctic to risks associated with climate change. Arctic 2004, 57, 389–400. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- McDowell, G.; Ford, J.D.; Lehner, B.; Berrang-Ford, L.; Sherpa, A. Climate-related hydrological change and human vulnerability in remote mountain regions: A case study from Khumbu, Nepal. Reg. Environ. Chang. 2013, 13, 299–310. [Google Scholar] [CrossRef]
- Macchi, M.; Gurung, A.M.; Hoermann, B. Community perceptions and responses to climate variability and change in the Himalayas. Clim. Dev. 2015, 7, 414–425. [Google Scholar] [CrossRef]
- Ribot, J. Vulnerability does not fall from the sky: Toward multiscale, pro-poor climate policy. In Social Dimensions of Climate Change: Equity and Vulnerability in a Warming World; Mearns, R., Norton, A., Eds.; World Bank: Washington, DC, USA, 2010; pp. 47–74. [Google Scholar]
- European Environment Agency (EEA). Regional Climate Change and Adaptation—The Alps Facing the Challenge of Changing Water Resources; European Environment Agency: Copenhagen, Denmark, 2009. [Google Scholar]
- Xu, J.; Grumbine, R.E.; Shrestha, A.; Eriksson, M.; Yang, X.; Wang, Y.; Wilkes, A. The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 2009, 23, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Berkes, F.; Folke, C.; Colding, J. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Gunderson, L.H.; Holling, C.S. Panarchy: Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [PubMed]
- Berkes, F.; Colding, J.; Folke, C. Navigating Social-Ecological Systems: Building Resilience for Complexity and Change; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Folke, C. Resilience: The emergence of a perspective for social-ecological systems analyses. Glob. Environ. Chang. 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Poff, N.L.; Zimmerman, J.K. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 2010, 55, 194–205. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Viviroli, D.; Weingartner, R. The hydrological significance of mountains: From regional to global scale. Hydrol. Earth Syst. Sci. Discuss. 2004, 8, 1017–1030. [Google Scholar] [CrossRef] [Green Version]
- Carey, M.; Baraer, M.; Mark, B.G.; French, A.; Bury, J.; Young, K.R.; McKenzie, J.M. Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru). J. Hydrol. 2014, 518, 60–70. [Google Scholar] [CrossRef]
- Gleeson, E.H.; von Dach, S.W.; Flint, C.G.; Greenwood, G.B.; Price, M.F.; Balsiger, J.; Nolin, A.; Vanacker, V. Mountains of our future earth: Defining priorities for mountain research—A synthesis from the 2015 Perth III conference. Mt. Res. Dev. 2016, 36, 537–548. [Google Scholar] [CrossRef]
- Mountain Sentinels. Mountain Sentinels Research Themes. Available online: https://mountainsentinels.org/mountain-research/ (accessed on 24 September 2017).
- Feola, G. Societal transformation in response to global environmental change: A review of emerging concepts. Ambio 2015, 44, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Kates, R.W.; Travis, W.R.; Wilbanks, T.J. Transformational adaptation when incremental adaptations to climate change are insufficient. Proc. Natl. Acad. Sci. USA 2012, 109, 7156–7161. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K. Global environmental change II: From adaptation to deliberate transformation. Prog. Hum. Geogr. 2012, 36, 667–676. [Google Scholar] [CrossRef]
Principle | Main Relationship to Criteria of Success | Example | Illustrative Studies |
---|---|---|---|
Attention to watershed-specific conditions | Effectiveness Efficiency Sustainability | Assessment of watershed-specific glacio-hydrological dynamics enhances understanding of current climate stimuli and trajectories of hydrological change, supporting evidence-based adaptation planning. | Naz et al. [54] Immerzeel et al. [70] Viviroli et al. [71] |
Attention to the human dimensions of hydrological change | Effectiveness Efficiency Equitability Legitimacy | Inclusion of local perspectives in adaptation research supports the identification of vulnerability hotspots as well as appreciation for the diverse concerns, preferences, and aspirations of climate-affected communities. | Mark et al. [53] McDowell et al. [58] Macchi et al. [59] |
Attention to socio-ecological dynamics | Effectiveness Sustainability | Evaluation of socio-ecological system dynamics helps identify critical social and ecological interdependencies as well as adaptation options that attend to both human well-being and biodiversity conservation. | Presently undeveloped in the mountain-focused adaptation literature. Cognate work includes: Bury et al. [10] Carey et al. [16] Xu et al. [62] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McDowell, G.; Koppes, M. Robust Adaptation Research in High Mountains: Integrating the Scientific, Social, and Ecological Dimensions of Glacio-Hydrological Change. Water 2017, 9, 739. https://doi.org/10.3390/w9100739
McDowell G, Koppes M. Robust Adaptation Research in High Mountains: Integrating the Scientific, Social, and Ecological Dimensions of Glacio-Hydrological Change. Water. 2017; 9(10):739. https://doi.org/10.3390/w9100739
Chicago/Turabian StyleMcDowell, Graham, and Michele Koppes. 2017. "Robust Adaptation Research in High Mountains: Integrating the Scientific, Social, and Ecological Dimensions of Glacio-Hydrological Change" Water 9, no. 10: 739. https://doi.org/10.3390/w9100739