Removing Organic Matter and Nutrients from Swine Wastewater after Anaerobic–Aerobic Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Servicio de Información Agroalimentaria y Pesquera (SIAP). Atlas Agroalimentario 2014; Primera Edición: México, D.F., México, 2014; p. 193. Available online: https://www.gob.mx/siap/acciones-y-programas/atlas-2014?idiom=es (accessed on 18 July 2017). (In Spanish)
- Bobadilla Soto, E.E.; Espinoza Ortega, A.; Martínez, C.; Castañeda, F.E. Dinámica de la producción porcina en México de 1980 a 2008. Rev. Mex. Cienc. Pecu. 2010, 1, 251–268. (In Spanish) [Google Scholar]
- FIRCO-SAGARPA. Diagnóstico General de la Situación Actual de los Sistemas de Biodigestión en México. México, D.F., 2009; p. 32. Available online: http://www.ecotec.unam.mx/Ecotec//wpcontent/uploads/Diagnostico-Nacional-de-los-Sistemas-de-Biodigestion.pdf (accessed on 18 July 2017). (In Spanish and English).
- Simsek, H.; Kasi, M.; Wadhawan, T.; Bye, C.; Blonigen, M. Fate of dissolved organic nitrogen in two stage trickling filter process. Water Res. 2012, 46, 5115–5126. [Google Scholar] [CrossRef] [PubMed]
- Mehrdadi, N.; Nabi Bidhendi, G.R.; Shokouhi, M. Determination of dairy wastewater treatability by bio-trickling filter packed with lava rocks—Case study PEGAH dairy factory. Water Sci. Technol. 2012, 65, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Van den Akker, B.; Holmes, M.; Short, M.D.; Cromar, N.J.; Fallowfield, H.J. Application of high rate nitrifying trickling filters to remove low concentrations of ammonia from reclaimed municipal wastewater. Water Sci. Technol. 2010, 61, 2425–2432. [Google Scholar] [CrossRef] [PubMed]
- Habte, H.L.; Eckstadt, H. Performance of a trickling filter for nitrogen and phosphorous removal with synthetic brewery wastewater in trickling filter biofilm. Int. J. Appl. Microbiol. Biotechnol. Res. 2014, 2, 30–42. [Google Scholar]
- Norsker, N.H.; Nielsen, P.H.; Hvitved-Jacobsen, T. Influence of oxygen on biofilm growth and potential sulfate reduction in gravity sewer biofilm. Water Sci. Technol. 1995, 31, 159–167. [Google Scholar]
- Szogi, A.; Humenik, F.; Rice, J.; Hunt, P. Swine wastewater treatment by media filtration. J. Environ. Sci. Health 1997, 832, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Morton, A.; Auvermann, B. Comparison of plastic trickling filter media for the treatment of swine lagoon effluent. In Proceedings of the 2001 ASAE Annual International Meeting, Sacramento, CA, USA, 29 July–1 August 2001; Paper Number: 01-2286. Available online: http://amarillo.tamu.edu/files/2011/01/comparisonof_21.pdf (accessed on 29 August 2017).
- Garzón-Zúñiga, M.A.; Lessard, P.; Aubry, G.; Buelns, G. Aeration effect on the efficiency of swine manure treatment in a trickling filter packed with organic materials. Water Sci. Technol. 2007, 55, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Duda, R.; Alves de Oliveira, R. Treatment of swine wastewater in UASB reactor and anaerobic filter in series followed of trickling filter. Eng. Sanit. Ambient. 2011, 16, 91–100. [Google Scholar] [CrossRef]
- Naz, I.; Sarojb, D.; Mumtaza, S.; Alia, N.; Ahmeda, S. Assessment of biological trickling filter systems with various packing materials for improved wastewater treatment. Environ. Technol. 2014, 35, 1–11. [Google Scholar]
- Sánchez Guillén, J.; Jayawardana, L.; Lopez Vazquez, C.; de Oliveira Cruz, L.; Brdjanovic, D.; van Lier, J. Autotrophic nitrogen removal over nitrite in a sponge-bed trickling filter. Bioresour. Technol. 2015, 187, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Ahson Aslam, M.; Khan, Z.; Sultan, M.; Niaz, Y.; Mahmood, M.; Shoaib, M.; Shakoor, A.; Ahmad, M. Performance Evaluation of Trickling Filter based Wastewater Treatment System utilizing Cotton Sticks as Filter Media. Pol. J. Environ. Stud. 2017, 10, 1–17. [Google Scholar] [CrossRef]
- Daigger, G.T.; Boltz, J.P. Trickling filter and trickling filter-suspended growth process design and operation: A state-of-the-art review. Water Environ. Res. 2011, 83, 388–404. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.L.; Zhong, H.Y.; Liu, J.L.; Liu, Y. Integrated coagulation-trickling filter–ultrafiltration processes for domestic wastewater treatment and reclamation. Water Sci. Technol. 2012, 65, 1599–1605. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Díaz, E.; Salcedo Pérez, E.; Rodríguez Macias, R.; González Eguiarte, D.; Mena Munguía, S. Reúso del tezontle: Efecto en sus características físicas y en la producción de tomate (Lycopersicon esculentum Mill). Terra Latinoam. 2013, 31, 275–284. (In Spanish) [Google Scholar]
- Ojodeagua Arredondo, J.; Castellanos Ramos, J.; Muñoz Ramos, J.; Alcántar González, G.; Tijerina Chávez, L.; Vargas Tapia, P.; Enríquez Reyes, S. Eficiencia de suelo y tezontle en sistemas de producción de tomate en invernadero. Rev. Fitotec. Mex. 2008, 31, 367–374. (In Spanish) [Google Scholar]
- Trejo-Téllez, L.; Ramírez-Martínez, M.; Gómez-Merino, F.; García-Albarado, J.; Baca-Castillo, G.; Tejeda-Sartorius, O. Evaluación física y química de tezontle y su uso en la producción de tulipán. Rev. Mex. Cienc. Agríc. 2013, 4, 863–876, (In Spanish and English). [Google Scholar]
- NOM-001-SEMARNAT-1996. Norma Oficial Mexicana que Establece los Límites Máximos Permisibles de Contaminantes en las Descargas de Aguas Residuales en Aguas y Bienes Nacionales. Available online: http://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/agenda/DOFsr/DO2470.pdf (accessed on 18 July 2017). (In Spanish)
- George, T.; Metcalf, E. Wastewater Engineering: Treatment, Disposal and Reuse, 3rd ed.; Tchobanoglous, G., Burton, F.L., Eds.; McGraw-Hill, Inc.: New York, NY, USA, 1991. [Google Scholar]
- Wriedt, G.; Van der Velde, M.; Aloe, A.; Bouraoui, F. Water Requirements for Irrigation in the European Union. JCR Scientific and Technical Reports 2008. p. 64. Available online: http://www.enorasis.eu/uploads/files/Water%20Governance/5.JRC46748_Report_Irrigation_EUR_23453_EN.pdf (accessed on 29 August 2017).
- World Health Organization (WHO). A Compendium of Standards for Wastewater Reuse in the Eastern Mediterranean Region. WHO-EM/CEH/142/E. p. 19. Available online: http://applications.emro.who.int/dsaf/dsa1184.pdf (accessed on 29 August 2017).
- Pérez-Castillo, A.G.; Rodríguez, A. Índice fisicoquímico de la calidad de agua para el manejo de lagunas tropicales de inundación. Rev. Biol. Trop. 2008, 56, 1905–1918. (In Spanish) [Google Scholar] [PubMed]
- Reyes-Lara, S.; Reyes-Mazzoco, R. Efecto de las cargas hidráulica y orgánica sobre la remoción másica de un empaque estructurado en un filtro percolador. Rev. Mex. Ing. Quim. 2009, 8, 101–109. (In Spanish) [Google Scholar]
- Braulio-Villalobos, M.A.; Sandoval-Silva, E.A.; Aréchiga-Viramontes, J.U. Operación y rediseño de una tecnología para el tratamiento de aguas residuales en Cuemanco. Rev. Mex. Ing. Quim. 2006, 5, 5–9. (In Spanish) [Google Scholar]
- Gilbert, Y.; Le Bihan, Y.; Aubry, G.; Veillette, M.; Duchaine, C. Microbiological and molecular characterization of denitrification in biofilters treating pig manure. Bioresour. Technol. 2008, 99, 4495–4502. [Google Scholar] [CrossRef] [PubMed]
- Buelna, G.; Dubé, R.; Turgeon, N. Pig manure treatment by organic bed biofiltration. Desalination 2008, 231, 297–304. [Google Scholar] [CrossRef]
- Beyenal, H.; Lewandowski, Z. Combined Effect of Substrate Concentration and Flow Velocity on Effective Diffusivity in Biofilms. Water Res. 2000, 34, 528–538. [Google Scholar] [CrossRef]
- Patel, A.; Nakhla, G.; Zhu, J. Detachment of multispecies biofilm in circulating fluidized bed reactor. Biotechnol. Bioeng. 2005, 92, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Chowdurry, N.; Nakhla, G.; Zhu, J. Load maximization of a liquid-solid circulating fluidized bed reactor for nitrogen removal from synthetic municipal wastewater. Chemosphere 2008, 71, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.; Quarmby, J.; Stephenson, T. The effects of media size on the performance of biological aerated filters. Water Res. 2001, 35, 2514–2522. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Feng, Y.; Qiu, L.; Han, W.; Guan, L. Effect of grain-slag media for the treatment of wastewater in a biological aerated filter. Bioresour. Technol. 2008, 99, 4120–4123. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, I.; Baransia, K.; Massalhaa, N.; Dawasa, A.; Saadic, I.; Nejidat, A. Efficient ammonia removal from wastewater by a microbial biofilm in tuff-based intermittent biofilters. Ecol. Eng. 2013, 53, 354–360. [Google Scholar] [CrossRef]
- Hort, C.; Gracy, S.; Platel, V.; Moynault, L. Evaluation of sewage sludge and yard waste compost as a biofilter media for the removal of ammonia and volatile organic sulfur compounds (VOSCs). Chem. Eng. J. 2009, 152, 44–53. [Google Scholar] [CrossRef]
- Ying-Xu, C.; Jun, Y.; Kai-Xiong, W. Long-term operation of biofilters for biological removal of ammonia. Chemosphere 2005, 58, 1023–1030. [Google Scholar]
- Katukiza, A.; Ronteltap, M.; Niwagaba, C.; Kansiime, F.; Lens, P. A two-step crushed lava rock filter unit for grey water treatment at household level in an urban slum. J. Environ. Manag. 2014, 133, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.; Bavor, H. Phosphorus removal in constructed wetlands using gravel and industrial waste substrata. Water Sci. Technol. 1993, 27, 107–113. [Google Scholar]
- Achak, M.; Mandi, L.; Ouazzani, N. Removal of organic pollutants and nutrients from olive mill wastewater by a sand filter. J. Environ. Manag. 2009, 90, 2771–2779. [Google Scholar] [CrossRef] [PubMed]
Support Material | Red Volcanic Rock |
---|---|
Packing depth (m) | 2.8 |
Inflow (L min−1) | 2.2 |
Hydraulic retention time (h) | 9 |
Hydraulic load (m−3 m−2 day−1) | 4033 |
Air flow rate (L min−1) | 10 |
Influent temperature (°C) | 20.84 ± 2.07 (Mean ± standard deviation) |
Influent COD concentration (mg L−1) | 2002–3074 |
Organic load (kg m−3 day−1 of COD) | 0.006342–0.009738 |
Influent total N concentration (mg L−1) | 138.75–151.33 |
Influent NH3-N concentration (mg L−1) | 65.70–71.22 |
Influent total P concentration (mg L−1) | 65.00–78.0 |
Influent EC concentration (mS cm−1) | 1.24–1.75 |
Influent pH (dimensionless) | 7.72–8.53 |
Influent DO concentration (mg L−1) | 0.1–0.4 |
Date | COD in the Influent (mg L−1) | COD in the Effluent (mg L−1) | Removal Efficiency (%) |
---|---|---|---|
2 June 2014 | 2100 | 198 | 90.6 |
7 June 2014 | 2002 | 200 | 90.0 |
12 June 2014 | 2678 | 183 | 93.2 |
17 June 2014 | 2560 | 163 | 93.6 |
22 June 2014 | 2484 | 165 | 93.4 |
27 June 2014 | 2522 | 140 | 94.4 |
2 July 2014 | 2410 | 140 | 94.2 |
7 July 2014 | 2216 | 162 | 92.7 |
12 July 2014 | 3054 | 117 | 96.2 |
17 July 2014 | 3006 | 196 | 93.5 |
22 July 2014 | 3010 | 201 | 93.3 |
27 July 2014 | 3074 | 203 | 93.4 |
Means | 2593 a | 172 b | 93 |
Date | Total-N in the Influent (mg L−1) | Total-N in the Effluent (mg L−1) | Removal Efficiency (%) |
---|---|---|---|
2 June 2014 | 145.22 | 78.00 | 46.3 |
7 June 2014 | 142.01 | 79.00 | 44.4 |
12 June 2014 | 138.75 | 69.00 | 50.3 |
17 June 2014 | 140.22 | 65.00 | 53.6 |
22 June 2014 | 151.33 | 88.00 | 41.8 |
27 June 2014 | 149.20 | 76.50 | 48.7 |
2 July 2014 | 147.10 | 82.30 | 44.1 |
7 July 2014 | 145.30 | 81.78 | 43.7 |
12 July 2014 | 146.77 | 68.02 | 53.7 |
17 July 2014 | 142.12 | 65.12 | 54.2 |
22 July 2014 | 142.20 | 71.02 | 50.1 |
27 July 2014 | 151.10 | 81.22 | 46.2 |
Means | 145 a | 75 b | 48 |
Date | NH3-N in the Influent (mg L−1) | NH3-N in the Effluent (mg L−1) | Removal Efficiency (%) |
---|---|---|---|
2 June 2014 | 66.32 | 4.50 | 93.2 |
7 June 2014 | 65.70 | 2.00 | 97.0 |
12 June 2014 | 72.80 | 5.10 | 93.0 |
17 June 2014 | 70.12 | 1.30 | 98.1 |
22 June 2014 | 71.00 | 4.00 | 94.4 |
27 June 2014 | 68.75 | 3.50 | 94.9 |
2 July 2014 | 69.00 | 1.25 | 98.2 |
7 July 2014 | 71.22 | 1.00 | 98.6 |
12 July 2014 | 68.50 | 2.30 | 96.6 |
17 July 2014 | 71.00 | 2.20 | 96.9 |
22 July 2014 | 69.25 | 1.00 | 98.6 |
27 July 2014 | 70.00 | 0.98 | 98.6 |
Means. | 69 a | 2.4 b | 98 |
Date | Total-P in the Influent (mg L−1) | Total-P in the Effluent (mg L−1) | Removal Efficiency (%) |
---|---|---|---|
2 June 2014 | 69.57 | 34.28 | 50.7 |
7 June 2014 | 69.53 | 39.13 | 43.7 |
12 June 2014 | 78.00 | 38.45 | 50.7 |
17 June 2014 | 67.90 | 26.90 | 60.4 |
22 June 2014 | 70.22 | 25.50 | 63.7 |
27 June 2014 | 68.90 | 29.50 | 57.2 |
2 July 2014 | 66.50 | 28.20 | 57.6 |
7 July 2014 | 65.00 | 21.00 | 67.7 |
12 July 2014 | 70.22 | 23.40 | 66.7 |
17 July 2014 | 69.45 | 28.90 | 58.4 |
22 July 2014 | 70.31 | 31.60 | 55.1 |
27 July 2014 | 71.70 | 26.50 | 63.0 |
Means | 70 a | 29 b | 58 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saucedo Terán, R.A.; De la Mora Orozco, C.; González Acuña, I.J.; Gómez Rosales, S.; Domínguez Araujo, G.; Rubio Arias, H.O. Removing Organic Matter and Nutrients from Swine Wastewater after Anaerobic–Aerobic Treatment. Water 2017, 9, 726. https://doi.org/10.3390/w9100726
Saucedo Terán RA, De la Mora Orozco C, González Acuña IJ, Gómez Rosales S, Domínguez Araujo G, Rubio Arias HO. Removing Organic Matter and Nutrients from Swine Wastewater after Anaerobic–Aerobic Treatment. Water. 2017; 9(10):726. https://doi.org/10.3390/w9100726
Chicago/Turabian StyleSaucedo Terán, Rubén Alfonso, Celia De la Mora Orozco, Irma Julieta González Acuña, Sergio Gómez Rosales, Gerardo Domínguez Araujo, and Héctor Osbaldo Rubio Arias. 2017. "Removing Organic Matter and Nutrients from Swine Wastewater after Anaerobic–Aerobic Treatment" Water 9, no. 10: 726. https://doi.org/10.3390/w9100726