Mg2+-Based Method for the Pertuso Spring Discharge Evaluation
Abstract
:1. Introduction
2. Geological and Hydrogeological Setting
3. Materials and Methods
4. Results
4.1. Hydrogeochemical Results
4.2. Discharge Experimental and Model Results
5. Discussion
- -
- the concentration difference between the two inflows must be significant;
- -
- the concentration difference between the two inflows also must be greater than the uncertainty in the concentration data.
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cozma, A.I.; Baciu, C.; Moldovan, M.; Pop, I.C. Using natural tracers to track the groundwater flow in a mining area. Procedia Environ. Sci. 2016, 32, 211–220. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Ma, T.; Li, L. Variation of karst springs discharge in recent five decades as an indicator of global climate change: A case study at Shanxi, northern China. Sci. China Ser. D Earth Sci. 2005, 48, 2001–2010. [Google Scholar] [CrossRef]
- Sappa, G.; Luciani, G. Groundwater management in Dar Es Salam Coastal Aquifer (Tanzania) under a difficult sustainable development. WSEAS Trans. Environ. Dev. 2014, 10, 465–477. [Google Scholar]
- Sappa, G.; Ferranti, F.; Ergul, S.; Ioanni, G. Evaluation of the groundwater active recharge trend in the coastal plain of Dar Es Salaam (Tanzania). J. Chem. Pharm. Res. 2013, 5, 548–552. [Google Scholar]
- Foster, S.; Hirata, R.; Andreo, B. The aquifer pollution vulnerability concept: Aid or impediment in promoting groundwater protection? Hydrogeol. J. 2013, 21, 1389–1392. [Google Scholar] [CrossRef]
- Bakalowicz, M. Karst groundwater: A challenge for new resources. Hydrogeol. J. 2005, 13, 148–160. [Google Scholar] [CrossRef]
- Cowie, R.; Williams, M.W.; Wireman, M.; Runkel, R.L. Use of natural and applied tracers to guide targeted remediation efforts in an acid mine drainage system, Colorado Rockies, USA. Water 2014, 6, 745–777. [Google Scholar] [CrossRef]
- Pitty, A.F. The estimation of discharge from a karst rising by natural salt dilution. J. Hydrol. 1966, 4, 63–69. [Google Scholar] [CrossRef]
- White, W.B. Conceptual models for carbonate aquifers. Ground Water 1969, 7, 15–22. [Google Scholar] [CrossRef]
- Quinlan, J.F.; Ewers, R.O. Subsurface drainage in the Mammoth Cave area. In Karst Hydrology Concepts from the Mammoth Cave Area: New York, Van Nostrand Reinhold; White, W.B., White, E.L., Eds.; Springer: New York, NY, USA, 1989; pp. 65–104. [Google Scholar]
- White, W.B. Karst hydrology: Recent developments and open questions. Eng. Geol. 2002, 65, 85–105. [Google Scholar] [CrossRef]
- Sappa, G.; Ferranti, F.; de Filippi, F.M. Preliminary validation of an indirect method for discharge evaluation of Pertuso Spring (Central Italy). WSEAS Trans. Environ. Dev. 2016, 12, 214–225. [Google Scholar]
- Lauber, U.; Goldscheider, N. Use of artificial and natural tracers to assess groundwater transit-time distribution and flow systems in a high-alpine karst system (Wetterstein Mountains, Germany). Hydrogeol. J. 2014, 22, 1807–1824. [Google Scholar] [CrossRef]
- Ergul, S.; Ferranti, F.; Sappa, G. Arsenic in the aquifer systems of Viterbo Region, Central Italy: Distribution and Geochemistry. Rend. Online Soc. Geol. Ital. Soc. Geol. Ital. Roma 2013, 24, 116–118. [Google Scholar]
- Alvarado, J.A.C.; Purtschert, R.; Barbecot, F.; Chabault, C.; Ruedi, J.; Schneider, V.; Aeschbach-Hertig, W.; Kipfer, R.; Loosli, H.H. Constraining the age distribution of highly mixed groundwater using 39Ar: A multiple environmental tracer (3H/3He, 85Kr, 39Ar and 14C) study in the semiconfined Fontainebleau Sands Aquifer (France). Water Resour. Res. 2007, 43, 1–16. [Google Scholar]
- Troldborg, L.; Jensen, K.H.; Engesgaard, P.; Refsgaard, J.C.; Hinsby, K. Using environmental tracers in modeling flow in a complex shallow aquifer system. J. Hydrol. Eng. 2008, 13, 1037–1084. [Google Scholar] [CrossRef]
- Lavastre, V.; La Salle, C.; Michelot, J.; Giannesini, S.; Benedetti, L.; Lancelot, J.; Lavielle, B.; Massault, M.; Thomas, B.; Gilabert, E.; et al. Establishing constraints on groundwater ages with 36Cl, 14C, 3H, and noble gases: A case study in the eastern Paris Basin, France. Appl. Geochem. 2010, 25, 123–142. [Google Scholar] [CrossRef]
- Caschetto, M.; Barbieri, M.; Galassi, D.M.P.; Mastrorillo, L.; Rusi, S.; Stoch, F.; Di Cioccio, A.; Petitta, M. Human alteration of groundwater-surface water interactions (Sagittario River, Central Italy): Implication for flow regime, contaminant fate and invertebrate response. Environ. Earth Sci. 2014, 71, 1791–1807. [Google Scholar] [CrossRef]
- Kincaid-Vice, T.R. Groundwater tracing in the Woodville karst plain—Part I: An overview of groundwater tracing. DIR Quest J. Glob. Underw. Explor. 2003, 4, 31–37. [Google Scholar]
- Aquilanti, L.; Clementi, F.; Nanni, T.; Palpacelli, S.; Tazioli, A.; Vivalda, P. DNA and fluorescein tracer tests to study the recharge, groundwater flowpath and hydraulic contact of aquifers in the Umbria-Marche limestone ridge (Central Apennines, Italy). Environ. Earth Sci. 2016, 75, 626. [Google Scholar] [CrossRef]
- Cervi, F.; Corsini, A.; Doveri, M.; Mussi, M.; Ronchetti, F.; Tazioli, A. Characterizing the recharge of fractured aquifers: A case study in a flysch rock mass of the northern Apennines (Italy). In Engineering Geology for Society and Territory; Lollino, G., Arattano, M., Rinaldi, M., Giustolisi, O., Marechal, J.C., Grant, G.E., Eds.; Springer: Cham, Switzerland, 2014; Volume 3, pp. 563–567. [Google Scholar]
- Sappa, G.; Ergul, S.; Ferranti, F. Geochemical modeling and multivariate statistical evaluation of trace elements in arsenic contaminated groundwater systems of Viterbo Area, (Central Italy). Springerplus 2014, 3, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Cook, P.G.; Favreau, G.; Dighton, J.C.; Tickell, S. Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. J. Hydrol. 2003, 277, 74–88. [Google Scholar] [CrossRef]
- Davis, S.D.; Thompson, G.M.; Bentley, H.W.; Stiles, G. Ground-water tracers—A short review. Groundwater 1980, 18, 14–23. [Google Scholar] [CrossRef]
- Sappa, G.; Ferranti, F.; de Filippi, F.M. A proposal of conceptual model for the Pertuso Spring discharge evaluation in the Upper Valley of Aniene River. Acque Sotter. 2016, 5, 3. [Google Scholar] [CrossRef]
- Stauffer, R.E. Use of solute tracers released by weathering to estimate groundwater inflow to Seepage Lakes. Environ. Sci. Technol. 1985, 19, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.S.; White, W.B. Dissolution kinetics of dolomite: Effects of lithology and fluid flow velocity. Geochim. Cosmochim. Acta 1985, 49, 2017–2026. [Google Scholar] [CrossRef]
- Bencala, K.E.; McKnight, D.M.; Zellweger, G.W. Evaluation of natural tracers in an acidic and metal-rich stream. Water Resour. Res. 1987, 23, 827–836. [Google Scholar] [CrossRef]
- Schemel, L.E.; Cox, M.H.; Runkel, R.L.; Kimball, B.A. Multiple injected and natural conservative tracers quantify mixing in a stream confluence affected by acid mine drainage near Silverton, Colorado. Hydrol. Process. 2006, 20, 2727–2743. [Google Scholar] [CrossRef]
- Montanari, A.; Staniscia, B. An overview of territorial resources and their users in the Rome and Chieti-Pescara Areas. In Sustainability in the Coastal Urban Environment: Thematic Profiles of Resources and Their Users; Khan, A.Z., Quynh, L.X., Corijn, E., Canters, F., Eds.; Sapienza Università Editrice: Rome, Italy, 2012; Volume 3, pp. 61–109. [Google Scholar]
- Sappa, G.; Ferranti, F.; de Filippi, F.M. Environmental tracer approach to discharge evaluation of Pertuso Spring (Italy). In Recent Advances on Energy and Environment, Proceedings of the 10th International Conference on Energy & Environment, Budapest, Hungary, 12–14 December 2015; Bulucea, A., Ed.; World Scientific and Engineering Academy and Society (WSEAS): Budapest, Hungary, 2015; pp. 54–62. [Google Scholar]
- Ventriglia, U. Idrogeologia II parte. In Idrogeologia Della Provincia di Roma, IV, Regione Orientale; Amministrazione Provinciale di Roma, Assessorato LL.PP, Viabilità e Trasporti: Roma, Italy, 1990. [Google Scholar]
- Bono, P.; Percopo, C. Flow dynamics and erosion rate of a representative Karst Basin (Upper Aniene River, Central Italy). Environ. Geol. 1996, 27, 210–218. [Google Scholar] [CrossRef]
- De Felice, A.M.; Dragoni, W.; Giglio, G. Methods of Hydrological Basin Comparison; Report No. 120; Institute of Hydrology: Roorkee, India, 1992. [Google Scholar]
- Accordi, G.; Carbone, F. Carta Delle Litofacies del Lazio-Abruzzo ed Aree Limitrofe; Consiglio Nazionale Delle Ricerche: Roma, Italy, 1988. [Google Scholar]
- Bosellini, A. La Storia Geologica Delle Dolomiti; Dolomiti: Trento, Italy, 1989. [Google Scholar]
- Damiani, A.V. Studi sulla piattaforma carbonatica laziale-abruzzese. Nota I. Considerazioni e problematiche sull’assetto tettonico e sulla paleogeologia dei Monti Simbruini. Studies on the Lazio-Abruzzi carbonate platform. Note XI. Considerations and problems on tectonic and paleogeologic Simbruini Mts. In Memorie Descrittive Carta Geologica d’Italia; Istituto Superiore per la Protezione e la Ricerca Ambientale: Rome, Italy, 1990; Volume 38, pp. 177–206. [Google Scholar]
- Sappa, G.; Ferranti, F. An integrated approach to the Environmental Monitoring Plan of the Pertuso Spring (Upper Valley of Aniene River). Ital. J. Groundw. 2014, 3, 47–55. [Google Scholar]
- Sappa, G.; Ergul, S.; Ferranti, F. Vulnerability assessment of Mazzoccolo Spring Aquifer (Central Italy), combined with geo-chemical and isotope modeling. Eng. Geol. Soc. Territ. 2015, 5, 1387–1392. [Google Scholar]
- Sappa, G.; Ergul, S.; Ferranti, F.; Sweya, L.N.; Luciani, G. Effects of seasonal change and seawater intrusion on water quality for drinking and irrigation purposes, in coastal aquifers of Dar es Salaam, Tanzania. J. Afr. Earth Sci. 2015, 105, 64–84. [Google Scholar] [CrossRef]
- Acea Ato 2 S.p.A. Studio Idrogeologico—Proposta di Aree di Salvaguardia Della Sorgente del Pertuso “Hydrogeological Study—Proposal for Protected Areas of Pertuso Spring”. Unpublished work. 2005. [Google Scholar]
- United States Environmental Protection Agency (US EPA) Region 6. Standard Operating Procedure for Stream Flow Measurement; US EPA: Washington, DC, USA, 2003.
- British, European and International Standards. BS EN ISO 748:2007 Hydrometry—Measurement of Liquid Flow in Open Channels Using Current-Meters or Floats; International Organization for Standardization (ISO): Geneva, Switzerland, 2007. [Google Scholar]
- Tazioli, A. Experimental methods for river discharge measurements: Comparison among tracers and current meter. Hydrol. Sci. J. 2011, 56, 1314–1324. [Google Scholar] [CrossRef]
- Piper, M. A graphic procedure in the geochemical interpretation of water-analyses. Trans. Am. Geophys. Union 1944, 25, 914–923. [Google Scholar] [CrossRef]
- Edmunds, W.M.; Cook, J.M.; Darling, W.G.; Kinniburgh, D.G.; Miles, D.L.; Bath, A.H.; Morgan-Jones, M.; Andrews, J.N. Baseline geochemical conditions in the Chalk aquifer, Berkshire, UK: A basis for groundwater quality management. Appl. Geochem. 1987, 2, 251–274. [Google Scholar] [CrossRef]
Parameters | SW_01 | Pertuso Spring | SW_02 | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | |
Ca2+ (mg/L) | 53.4 | 57.8 | 55.3 | 48.9 | 53.3 | 51.2 | 51.3 | 55.6 | 53.0 |
Mg2+ (mg/L) | 23.6 | 25.2 | 24.6 | 8.3 | 10.4 | 9.5 | 12.0 | 14.7 | 12.9 |
Na+ (mg/L) | 2.3 | 2.6 | 2.4 | 1.8 | 2.1 | 1.9 | 0.4 | 2.2 | 1.7 |
K+ (mg/L) | 0.4 | 0.5 | 0.4 | 0.3 | 0.5 | 0.4 | 0.3 | 2.3 | 0.8 |
HCO3− (mg/L) | 0.4 | 302.6 | 292.0 | 206.0 | 238.0 | 221.8 | 218.4 | 235.5 | 226.3 |
SO42− (mg/L) | 2.9 | 3.2 | 3.0 | 2.3 | 2.5 | 2.4 | 2.5 | 2.7 | 2.6 |
Cl− (mg/L) | 3.8 | 4.5 | 4.2 | 3.2 | 3.7 | 3.4 | 3.3 | 4.2 | 3.7 |
NO3− (mg/L) | 0.8 | 5.7 | 1.9 | 0.9 | 1.2 | 1.0 | 0.9 | 1.1 | 1.0 |
T (°C) | 5.8 | 11.3 | 8.6 | 8.0 | 9.5 | 8.5 | 6.7 | 10.7 | 8.3 |
pH | 8.0 | 8.5 | 8.4 | 7.8 | 8.0 | 7.9 | 8.1 | 8.2 | 8.2 |
EC (μS/cm) | 356.0 | 399.0 | 386.8 | 283.0 | 291.0 | 287.7 | 294.0 | 317.0 | 311.2 |
Hardness (°F) | 23.1 | 24.8 | 23.9 | 16.1 | 17.4 | 16.7 | 17.9 | 19.3 | 18.6 |
Q (m3/s) | SW_01 | SW_02 |
---|---|---|
July 2014 | 0.540 | 2.450 |
November 2014 | 0.350 | 1.480 |
January 2015 | 0.410 | 1.920 |
May 2015 | 0.501 | 2.747 |
December 2015 | 0.278 | 0.931 |
May 2016 | 0.430 | 2.305 |
Date | n | n (%) |
---|---|---|
July 2014 | 0.780 | 78.0 |
November 2014 | 0.752 | 75.2 |
January 2015 | 0.794 | 79.4 |
May 2015 | 0.812 | 81.2 |
December 2015 | 0.709 | 70.9 |
May 2016 | 0.810 | 81.0 |
Date | SW_01 | Pertuso Spring | SW_02 | |||||
---|---|---|---|---|---|---|---|---|
Q * | Mg2+ | Q ** | QMg | Mg2+ | Q * | QMg | Mg2+ | |
(m3/s) | (meq/L) | (m3/s) | (m3/s) | (meq/L) | (m3/s) | (m3/s) | (meq/L) | |
July 2014 | 0.54 | 1.94 | 1.91 | 1.92 | 0.80 | 2.45 | 2.46 | 1.05 |
November 2014 | 0.35 | 1.93 | 1.13 | 1.06 | 0.68 | 1.48 | 1.41 | 0.99 |
January 2015 | 0.41 | 2.07 | 1.51 | 1.58 | 0.81 | 1.92 | 1.99 | 1.07 |
May 2015 | 0.50 | 2.02 | 2.23 | 2.16 | 0.77 | 2.75 | 2.66 | 1.00 |
December 2015 | 0.28 | 2.07 | 0.67 | 0.68 | 0.86 | 0.93 | 0.96 | 1.21 |
May 2016 | 0.43 | 2.07 | 1.87 | 1.84 | 0.78 | 2.30 | 2.29 | 1.03 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sappa, G.; Ferranti, F.; De Filippi, F.M.; Cardillo, G. Mg2+-Based Method for the Pertuso Spring Discharge Evaluation. Water 2017, 9, 67. https://doi.org/10.3390/w9010067
Sappa G, Ferranti F, De Filippi FM, Cardillo G. Mg2+-Based Method for the Pertuso Spring Discharge Evaluation. Water. 2017; 9(1):67. https://doi.org/10.3390/w9010067
Chicago/Turabian StyleSappa, Giuseppe, Flavia Ferranti, Francesco Maria De Filippi, and Giulia Cardillo. 2017. "Mg2+-Based Method for the Pertuso Spring Discharge Evaluation" Water 9, no. 1: 67. https://doi.org/10.3390/w9010067
APA StyleSappa, G., Ferranti, F., De Filippi, F. M., & Cardillo, G. (2017). Mg2+-Based Method for the Pertuso Spring Discharge Evaluation. Water, 9(1), 67. https://doi.org/10.3390/w9010067