The Impact of Para Rubber Expansion on Streamflow and Other Water Balance Components of the Nam Loei River Basin, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Evaluation of Evapotranspiation (ET) at the Basin Scale
2.3. Description of SWAT Model
2.4. Application of SWAT
2.4.1. Data Input Needs and Sources
2.4.2. Model Set Up
2.4.3. Sensitivity Analysis and SWAT Calibration and Validation
2.5. Development of Para Rubber Land Use Scenarios
2.6. Optimal Environmental Conditions for Para Rubber Production
2.7. Para Rubber Crop Parameters
2.8. Land Use Change Scenarios
3. Results
3.1. Sensitivity Analysis
3.2. Model Calibration and Validation
3.3. Overall Water Balance Results for the Land Use Scenarios
3.4. Seasonal ET and Water Yield Responses
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ziegler, A.D.; Fox, J.M.; Xu, J. The Rubber Juggernaut. Science 2009, 324, 1024–1025. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.; Castella, J.C. Expansion of rubber (Heveabrasiliensis) in mainland southeast Asia: What are the prospects forsmallholders? J. Peasant Stud. 2013, 40, 155–170. [Google Scholar] [CrossRef]
- Ahrends, A.; Hollingsworth, P.M.; Ziegler, A.D.; Fox, J.M.; Chen, H.; Su, Y.; Xu, J. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob. Environ. Chang. 2015, 34, 48–58. [Google Scholar] [CrossRef]
- Mongkolsawat, C.; Putklang, W. An Approach for Estimating Area of Rubber Plantation: Integrating Satellite and Physical Data over the Northeast Thailand. 2010. Available online: http://a-a-r-s.org/aars/proceeding/ACRS2010/Papers/Oral%20Presentation/TS36-1.pdf (accessed on 22 August 2016).
- Rantala, L. Rubber Plantation Performance in the Northeast and East of Thailand in Relation to Environmental Conditions. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2006. [Google Scholar]
- Suwanwerakamtorn, R.; Putklang, W.; Khamdaeng, P.; Wannaros, P. An Application of THEOS Data to Rubber Plantation Areas in Mukdahan Province, Northeast Thailand. 2012. Available online: http://gecnet.kku.ac.th/research/i_proceed/2555/2_ip2012.pdf (accessed on 4 June 2013).
- Office of Agricultural Economics. Agricultural Statistics of Thailand 2009; Center for Agricultural Information, Office of Agricultural Economics: Bangkok, Thailand, 2009; pp. 78–81, No. 401.
- Office of Agricultural Economics. Agricultural Statistics of Thailand 2010; Center for Agricultural Information, Office of Agricultural Economics: Bangkok, Thailand, 2010; pp. 78–81, No. 416.
- Office of Economic and Social Development of Northeastern. Para Rubber Situation and Adaptation of Farmers in the Northeastern; The Office of the National Economic and Social Development: Khon Kean, Thailand, 2015; p. 47.
- Prakhonsri, P. The Fires in the Northeast and Management. Technical Conference of Management of Natural Disasters in the Northeast and the Self-Reliance of Local Sustainable. 2011, pp. 42–47. Available online: http://www.tndl.org/kku/pdf/fire-prasit.pdf (accessed on 22 August 2016).
- Chakarn, S.; Soontorn, K.; Niwat, A.; Jitti, P. Growths and carbon stocks of Para rubber plantations on Phonpisai soil series in northeastern Thailand. Rubber Thai J. 2012, 1, 1–18. [Google Scholar]
- Bowen, G.D.; Nambiar, E.K.S. Nutrition of Plantation Forests; Academic Press: London, UK, 1989; p. 505. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications and future directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Williams, J.R.; Arnold, J.G.; Kiniry, J.R.; Gassman, P.W.; Green, C.H. History of model development at Temple, Texas. Hydrol. Sci. J. 2008, 53, 948–960. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; van Liew, M.W.; et al. SWAT: Model use, calibration and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT model special section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gassman, P.W.; Wang, Y. IJABE SWAT Special Issue: Innovative modeling solutions for water resource problems. Int. J. Agric. Biol. Eng. 2015, 8, 1–8. [Google Scholar]
- Bressiani, D.A.; Gassman, P.W.; Fernandes, J.G.; Garbossa, L.H.P.; Srinivasan, R.; Bonumá, N.B.; Mendiondo, E.M. A review of soil and water assessment tool (SWAT) applications in Brazil: Challenges and prospects. Int. J. Agric. Biol. Eng. 2015, 8, 9–35. [Google Scholar]
- Krysanova, V.; White, M. Advances in water resources assessment with SWAT: An overview. Hydrol. Sci. J. 2015, 60, 771–783. [Google Scholar] [CrossRef]
- Babel, M.S.; Shrestha, B.; Perret, S.R. Hydrological impact of biofuel production: A case study of the KhlongPhlo Watershed in Thailand. Agric. Water Manag. 2011, 101, 8–26. [Google Scholar] [CrossRef]
- Glavan, M.; Pintar, M.; Volk, M. Land use change in a 200-year period and its effect on blue and green water flow in two Slovenian Mediterranean catchments: Lessons for the future. Hydrol. Process. 2012, 27, 3964–3980. [Google Scholar] [CrossRef]
- Jha, M.; Schilling, K.E.; Gassman, P.W.; Wolter, C.F. Targeting land-use change for nitrate-nitrogen load reductions in an agricultural watershed. J. Soil Water Conserv. 2010, 65, 342–352. [Google Scholar] [CrossRef]
- Kim, Y.; Band, L.E.; Song, C. The influence of forest regrowth on the stream discharge in the North Carolina Piedmont watersheds. J. Am. Water Resour. Assoc. 2013. [Google Scholar] [CrossRef]
- Liu, W.; Cai, T.; Fu, G.; Zhang, A.; Liu, C.; Yu, H. The streamflow trend in Tangwang river basin in northeast China and its difference response to climate and land use change in sub-basins. Environ. Earth Sci. 2012, 69, 1–12. [Google Scholar] [CrossRef]
- Ma, X.; Xu, J.; van Noordwijk, M. Sensitivity of streamflow from a Himalayan catchment to plausible changes in land cover and climate. Hydrol. Process. 2010, 24, 1379–1390. [Google Scholar] [CrossRef]
- Memarian, H.; Tajbakhsh, M.; Balasundram, S.K. Application of SWAT for impact assessment of land use/cover change and best management practices: A review. Int. J. Adv. Earth Environ. Sci. 2013, 1, 35–40. [Google Scholar]
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Duan, Z.; Ling, L. Impacts of land-use and climate variability on hydrological components in the Johor River basin, Malaysia. Hydrol. Sci. J. 2015, 60, 873–889. [Google Scholar] [CrossRef]
- Celine, G.; James, E.J. Assessing the implications of extension of rubber plantation on the hydrology of humid tropical river basin. Int. J. Environ. Res. 2015, 9, 841–852. [Google Scholar]
- Tao, C.; Chen, X.; Lu, J.; Philip, W.G.; Sauvage, S. Assessing impacts of different land use scenarios on water budget of Fuhe River, China using SWAT model. Int. J. Agric. Biol. Eng. 2015, 8, 95–109. [Google Scholar]
- Wangpimool, W.; Pongput, K. Integrated Hydrologic and Hydrodynamic Model for Flood Risk Assessment in Nam Loei Basin, Thailand. Available online: http://eitwre2011.fiet.kmutt.ac.th/theme_en/6HE_E.pdf (accessed on 1 March 2012).
- TMD. Weather Data Service. Thai Meteorological Department, Ministry of Information and Communication Technology. 2015. Available online: http://www.tmd.go.th/province_stat.php?StationNumber=48353 (accessed on 25 August 2016). [Google Scholar]
- Office of Soil Survey and Land Use Planning. Land Use Planing for Loei Province; Land Development Department, Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2002.
- Rubber Research Institute of Thailand. Para Rubber Situation in Northeastern. 2012. Available online: http://www.rubberthai.com/about/strategy.php (accessed on 8 May 2013).
- Dingman, S.L. Physical Hydrology; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 2015. [Google Scholar]
- Neitsch, S.L.; Arnold, G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool, Theoretical Documentation, Texas. 2009. Available online: http://twri.tamu.edu/reports/2011/tr406.pdf (accessed on 3 July 2010).
- Fisher, J.B.; Malhi, Y.; Bonal, D.; da Rocha, H.R.; de Araújo, A.C.; Gamo, M.; Goulden, M.L.; Hirano, T.; Huete, A.R.; Kondo, H.; et al. The land-atmosphere water flux in the tropics. Glob. Chang. Biol. 2009, 15, 2694–2714. [Google Scholar] [CrossRef]
- Guardiola-Claramonte, M.; Troch, P.A.; Ziegler, A.D.; Giambelluca, T.W.; Durcik, M.; Vogler, J.B.; Nullet, M.A. Hydrologic effects of the expansion of rubber (Heveabrasiliensis) in a tropical catchment. Ecohydrology 2010, 3, 306–314. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and the Environment. In The State and Movement of Water in Living Organisms; Cambridge University Press: Swansea, UK, 1965; pp. 205–234. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Soil and Water Assessment Tool (SWAT). Software: ArcSWAT. 2016. Available online: http://swat.tamu.edu/software/arcswat/ (accessed on 25 August 2016).
- Royal Thai Survey Department (RTSD). Digital Elevation Map for Loei Province 1:50,000 WGS 84, 2000. Royal Thai Survey Department, Royal Thai Armed Force Headquarters. 2000. Available online: http://www.rtsd.mi.th/MapInformationServiceSystem/ (accessed on 25 August 2016).
- Land Development Department (LDD). Land Use Map for Loei. Province; Office of Soil Survey and Land Use Planning, Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2002.
- Land Development Department (LDD). Soil Map for Loei. Province; Office of Soil Survey and Land Use Planning, Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 1995.
- Pongput, K.; Wangpimool, W.; Chaturabul, T.; Ketjinda, K. Development of Software to Decision Support System for Planning, Management and Development of Water Resources in the Basin; Kasetsart University Research and Development Institute (KU-RDI): Bangkok, Thailand, 2013. [Google Scholar]
- Royal Irrigation Department (RID). Hydrological Data Service. Royal Irrigation Department, Ministry of Agriculture and Cooperatives. Available online: http://hydro-3.com/ (accessed on 25 August 2016).
- Van Griensven, A.; Meixner, T.; Grunwald, S.; Bishop, T.; Diluzio, M.; Srinivasan, R. A Global Sensitivity Analysis Tool for the Parameters of Multi-Variable Catchment Models. J. Hydrol. 2006, 324, 10–23. [Google Scholar] [CrossRef]
- Veith, T.L.; van Liew, M.W.; Bosch, D.D.; Arnold, J.G. Parameter sensitivity and uncertainty in SWAT: A comparison across five USDA-ARS Watersheds. Trans. ASABE 2010, 53, 1477–1486. [Google Scholar] [CrossRef]
- White, K.L.; Chaubey, I. Sensitivity analysis, calibration and validations for a multisite and multivariable SWAT model. J. Am. Water Resour. Assoc. 2005, 41, 1077–1089. [Google Scholar] [CrossRef]
- Licciardello, F.; Rossi, C.G.; Srinivasan, R.; Zimbone, S.M.; Barbagallo, S. Hydrologic evaluation of a Mediterranean watershed using the SWAT model with multiple PET estimation methods. Trans. ASABE 2011, 54, 1615–1625. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT Calibration and Uncertainty Programs. Eawag: Swiss Federal Institute of Aquatic Science and Technology. 2014. Available online: http://swat.tamu.edu/software/swat-cup/ (accessed on 5 December 2014).
- Ritter, A.; Muñoz-Carpena, R. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. J. Hydrol. 2013, 480, 33–45. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Binger, R.L.; Harmel, R.D.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Boyle, D.P.; Gupta, H.V.; Sorooshian, S. Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resour. Res. 2000, 36, 3663–3674. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Land Development Department (LDD). Technical Report of Para Rubber Tree; Research and Development of Soil and Water Conservation Crop Areas Group, Bureau of Land Research and Management: Bangkok, Thailand, 2005.
- U.S. Department of Agriculture, Natural Resource Conservation Service (USDA-NRCS). National Engineering Handbook; Part 630 Hydrology, Section 4, Chapter 7; USDA-NRCS: Washington, DC, USA, 2009. Available online: http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/water/?cid=stelprdb1043063 (accessed on 6 September 2016).
- Yen, B.C.; Chow, V.T. Local Design Storms; U.S. Department of Transportation, Federal Highway Administration: Washington, DC, USA, 1983; Volume 1–3, No. FHWA-RD-82-063 to 065.
- Rattanapinanchai, A.; Sangkhasila, K. Daily Water Consumtions and Crop Coefficients of Para Rubber Plantation. Proceeding of the 7th National Kasetsart University Kham Pheang Sean Conference. 2010. Available online: http://researchconference.kps.ku.ac.th/article_7/pdf/o_plant15.pdf (accessed on 6 September 2016).
- Fox, J.; Castella, J.C.; Ziegler, A.D. Swidden, rubber and carbon: Can REDD+ work for people and the environment in Montane Mainland Southeast Asia? Glob. Environ. Chang. 2014, 29, 318–326. [Google Scholar] [CrossRef]
- Vongkhamheng, C.; Zhou, J.H.; Beckline, M.; Phimmachanh, S. Socioeconomic and Ecological Impact Analysis of Rubber Cultivation in Southeast Asia. Open Access Lib. J. 2016, 3. [Google Scholar] [CrossRef]
- Guardiola-Claramonte, M.; Troch, P.A.; Ziegler, A.D.; Giambelluca, T.W.; Vogler, J.B.; Nullet, M.A. Local hydrologic effects of introducing non-native vegetation in a tropical catchment. Ecohydrology 2010, 1, 13–22. [Google Scholar] [CrossRef]
Data Type | Scale | Source a | |
---|---|---|---|
1. Spatial Data | |||
1.1 | Administrative Data | ||
– Administrative boundaries | 1:50,000 | DWR | |
– River layouts | 1:50,000 | DWR | |
– Catchment’s boundaries | 1:50,000 | DWR | |
– Drainage network | 1:50,000 | DWR | |
1.2 | Physical Data | ||
– Digital Elevation Model | 1:50,000 | RTSD | |
– Land use/Land Cover | 1:50,000 | LDD | |
– Soils | 1:50,000 | LDD | |
2. Time Series Data | |||
2.1 | Weather Data | ||
– Rainfall | 14 stations | DWR, RID, TMD | |
– Temperature | 1 station | TMD | |
– Solar radiation | 1 station | TMD | |
– Wind speed | 1 station | TMD | |
– Relative humidity | 1 station | TMD | |
– Evaporation | 1 station | TMD | |
2.2 | Hydrological Data | ||
– River flow | 2 stations | RID |
No. | Parameter Code | Description | Minimum | Maximum | Simulated Value |
---|---|---|---|---|---|
1 | BIO_E | Biomass/Energy Ratio | 1 | 90 | 5.6 |
2 | HVSTI | Harvest index | 0.01 | 1.25 | 0.9 |
3 | BLAI | Maximum leaf area index | 0.5 | 10 | 2.6 |
4 | CHTMX | Maximum canopy height | 0.1 | 20 | 3.5 |
5 | RDMX | Maximum root depth | 0 | 3 | 2 |
6 | T_OPT | Optimal temp for plant growth | 11 | 38 | 20 |
7 | T_BASE | Minimum temperature required for plant growth | 0 | 18 | 7 |
8 | USLE_C | Minimum value of USLE C factor applicable to the land cover/plant | 0.001 | 0.5 | 0.001 |
9 | GSI | Maximum stomata conductance (in drought condition) | 0 | 5 | 0.75 |
10 | RSDCO_PL | Plant residue decomposition coefficient | 0.01 | 0.099 | 0.05 |
11 | ALAI_MIN | Minimum leaf area index for plant during dormant period | 0 | 0.99 | 0 |
12 | D_LAI | Fraction of growing season when leaf area starts declining | 0.15 | 1 | 0.99 |
13 | MAT_YRS | Number of years required for tree species to reach full development | 0 | 100 | 10 |
14 | BMX_TREES | Maximum biomass for a forest | 0 | 5000 | |
15 | EXT_COEF | Light extinction coefficient | 0 | 2 | 0.65 |
Additional Key Parameters Influenced by Para Rubber Vegetation | |||||
16 | CN2 | SCS runoff curve number for moisture condition II | 25 | 98 | 66 |
17 | OV_N | Manning’s “n” value for overland flow | 0.01 | 30 | 0.11 |
Item | Land Use Categories | LU–CODE | % of LU–2002 | % of LU–2009 | % Diff: 2002 vs. 2009 | % of LU–2015 | % Diff: 2009 vs. 2015 |
---|---|---|---|---|---|---|---|
1 | Paddy field | PDDY | 12.28 | 11.86 | −0.42 | 10.02 | −1.84 |
2 | Range–Brush | RNGB | - | 0.19 | 0.19 | 0.19 | - |
3 | Field crop | FCRP | 4.75 | 5.87 | 1.12 | 6.14 | 0.27 |
4 | Corn | CORN | 23.38 | 13.33 | −10.05 | 9.76 | −3.57 |
5 | Rubber Trees | RUBR | 0.38 | 11.84 | 11.46 | 21.53 | 9.69 |
6 | Sugarcane | SUGC | 5.93 | 5.07 | −0.86 | 3.14 | −1.93 |
7 | Agricultural Land | AGRR | 5.89 | 7.27 | 1.38 | 8.71 | 1.44 |
8 | Plantations | PLAN | 1.04 | 1.06 | 0.02 | 1.06 | 0 |
9 | Olives | OLIV | - | 0.02 | 0.02 | 0.02 | 0 |
10 | Orchard | ORCD | 8.54 | 5.89 | −2.65 | 4.12 | −1.77 |
11 | Pasture | PAST | - | 0.23 | 0.23 | 0.23 | 0 |
12 | Water | WATR | 0.4 | 0.65 | 0.25 | 0.65 | 0 |
13 | Disturbed forest land | DTFR | 19.08 | 9.33 | −9.75 | 6.34 | −2.99 |
14 | Forest–Evergreen | FRSE | - | 7.30 | 7.30 | 7.3 | 0 |
15 | Forest–Deciduous | FRSD | 12.47 | 14.57 | 2.10 | 14.57 | 0 |
16 | Planted forest | PNFR | 0.23 | 0.23 | - | 0.23 | 0 |
17 | Miscellaneous land | MISC | 1.68 | 2.04 | 0.36 | 1.98 | −0.06 |
18 | Residential | URBN | 3.95 | 3.25 | −0.70 | 4.01 | 0.76 |
Total | 100.00 | 100.00 | 100.00 |
Name | Description | Process | Min. | Max. | Rank of Sensitivity Analysis | Optimum Value | |
---|---|---|---|---|---|---|---|
Kh.28A | Kh.58A | ||||||
GW_DELAY | Groundwater delay. | GW | 0 | 500 | 8 | 0.1 | 1 |
ALPHA_BF | Base flow alpha factor (days). | GW | 0 | 1 | 1 | 0.995 | 0.6 |
GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur. | GW | 0 | 5000 | 3 | 1200 | 445 |
GW_REVAP | Groundwater “revap” coefficient. | GW | 0.02 | 0.2 | 6 | 0.2 | 0.2 |
REVAPMN | Threshold depth of water in the shallow aquifer for “revap” to occur. | GW | 0 | 1000 | - | 65 | 100 |
RCHRG_DP | Groundwater recharge to deep aquifer (fraction). | GW | 0 | 1 | - | 0.001 | 0.1 |
LT_TIME | Lateral flow travel time. | HRU | 0 | 180 | - | 1 | 35 |
SLSOIL | Slope length for lateral subsurface flow. | HRU | 0 | 150 | - | 0.5 | 5 |
CANMX | Maximum canopy storage. | HRU | 0 | 100 | - | 12 | 20 |
ESCO | Soil evaporation compensation factor. | HRU | 0 | 1 | 2 | 0.7 | 0.6 |
CH_N2 | Manning’s “n” value for the main channel. | RTE | −0.01 | 0.3 | 7 | 0.2 | 0.146 |
CH_K2 | Effective hydraulic conductivity in main channel alluvium. | RTE | −0.01 | 500 | 5 | 5 | 7.5 |
ALPHA_BNK | Baseflow alpha factor for bank storage. | RTE | 0 | 1 | - | 0.5 | 0.239 |
CH_N1 | Manning coefficient for the tributary channels. | SUB | 0.01 | 30 | 10 | 0.145 | 2 |
CH_K1 | Effective hydraulic conductivity in tributary channel alluvium (mm·h−1). | SUB | 0 | 300 | - | 30 | 100 |
CN2 | SCS runoff curve number for moisture condition 2. | MGT | 35 | 98 | 4 | 76 | 68 |
SOL_AWC | Available water capacity of the soil layer (mm·mm−1 soil). | SOL | 0 | 1 | 9 | 0.198 | 0.244 |
SOL_BD | Moist bulk density. | SOL | 0.9 | 2.5 | - | 1.255 | 1.051 |
SOL_K | Saturated hydraulic conductivity. | SOL | 0 | 2000 | - | 103.8 | 65.2 |
Station | Calibration (1994–2004) | Validation (2005–2009) | ||
---|---|---|---|---|
RMSE | NSE | RMSE | NSE | |
Kh.28A | 0.75 | 0.69 | 0.72 | 0.64 |
Kh.58A | 0.82 | 0.71 | 0.79 | 0.68 |
Water Balance Component | 2002 Land Use Scenario (mm) | 2009 Land Use Scenario (mm) | 2015 Land Use Scenario (mm) |
---|---|---|---|
Precipitation | 1217.8 | 1217.9 | 1217.9 |
Surface runoff | 230.8 | 212.7 | 193.8 |
Lateral subsurface flow | 49.2 | 51.6 | 47.4 |
Groundwater (shallow aquifer ) flow | 317.3 | 316.7 | 321.3 |
Evapotranspiration (ET) | 590.8 | 607.4 | 595.7 |
Transmission losses | 1.1 | 1.1 | 1.2 |
Total water yield a | 596.1 | 579.9 | 561.4 |
Season | Baseline (2002) | Para Rubber Expansion Scenarios | ||||
---|---|---|---|---|---|---|
2009 | 2015 | |||||
ET (mm) | WYLD (mm) | ET (mm) | WYLD (mm) | ET (mm) | WYLD (mm) | |
Wet Season | 290.4 | 463.5 | 298.9 | 448.7 | 269.9 | 434.2 |
Dry Season | 300.4 | 130.3 | 308.5 | 128.9 | 325.8 | 130.4 |
Annual (total) | 590.8 | 593.8 | 607.4 | 577.6 | 595.7 | 564.6 |
Percentage in each season and overall percentage change | ||||||
Wet season (%) | 49.2 | 78.1 | 49.2 | 77.7 | 45.3 | 76.9 |
Dry season (%) | 50.8 | 21.9 | 50.8 | 22.3 | 54.7 | 23.1 |
Annual (%) | 2.8 | −2.7 | −1.9 | −2.2 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wangpimool, W.; Pongput, K.; Tangtham, N.; Prachansri, S.; Gassman, P.W. The Impact of Para Rubber Expansion on Streamflow and Other Water Balance Components of the Nam Loei River Basin, Thailand. Water 2017, 9, 1. https://doi.org/10.3390/w9010001
Wangpimool W, Pongput K, Tangtham N, Prachansri S, Gassman PW. The Impact of Para Rubber Expansion on Streamflow and Other Water Balance Components of the Nam Loei River Basin, Thailand. Water. 2017; 9(1):1. https://doi.org/10.3390/w9010001
Chicago/Turabian StyleWangpimool, Winai, Kobkiat Pongput, Nipon Tangtham, Saowanee Prachansri, and Philip W. Gassman. 2017. "The Impact of Para Rubber Expansion on Streamflow and Other Water Balance Components of the Nam Loei River Basin, Thailand" Water 9, no. 1: 1. https://doi.org/10.3390/w9010001