Potential Impact of Climate Change on Suspended Sediment Yield in NW Spain: A Case Study on the Corbeira Catchment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Model and Input Data
2.3. Climate Scenario Description
2.4. Projected Changes in Temperature and Precipitation in the Study Area
2.5. Characteristics of the Baseline Scenario
3. Results and Discussion
3.1. Effects of Changes in Temperature, Rainfall or CO2 Concentration in Suspended Sediment Yield
3.2. Effects of Simultaneous Changes in Climate Parameters in Suspended Sediment Yield
4. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Poff, N.L.; Allan, J.D.; Mark, B.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C.; Julie, C. The natural flow regime: A paradigm for river conservation and restoration. Bioscience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Dunne, T.; Leopold, L.B. Water in Environmental Planning; Freeman W.H.: San Francisco, CA, USA, 1978; p. 818. [Google Scholar]
- Valero-Garcés, B.L.; Navas, A.; Machín, J.; Walling, D. Sediment sources and siltation in mountain reservoirs: A case study from the Central Spanish Pyrenees. Geomorphology 1999, 28, 23–41. [Google Scholar] [CrossRef]
- Bilotta, G.S.; Krueger, T.; Brazier, R.E.; Butler, P.; Freer, J.; Hawkins, J.M.B.; Haygarth, P.M.; Macleod, C.J.A.; Quinton, J.N. Assessing catchment-scale erosion and yields of suspended solids from improved temperate grassland. J. Environ. Monit. 2010, 12, 731–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehner, B.; Doll, P.; Alcamo, J.; Henrichs, T.; Kaspar, F. Estimating the impact of global change on flood and drought risks in Europe: A continental integrated analysis. Clim. Chang. 2006, 75, 273–299. [Google Scholar] [CrossRef]
- Kundzewics, Z.; Mata, L.; Arnell, N.; Döll, P.; Jimenez, B.; Miller, K.; Oki, T.; Sen, Z.; Shiklomanov, I. The implications of projected climate change for freshwater resources and their management. Hydrol. Sci. J. 2008, 53, 3–10. [Google Scholar] [CrossRef]
- Kovats, S.; Valentini, R. Chapter 23: Europe. In IPCC WGII AR5, IPCC Working Group II; Technical Support Unit: Stanford, CA, USA, 2014. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Rodrigo, F.S. Changes in the probability of extreme daily precipitation observed from 1951 to 2002 in the Iberian Peninsula. Int. J. Climatol. 2010, 30, 1512–1525. [Google Scholar] [CrossRef]
- Barranco, L.M.; Alvarez-Rodriguez, J.; Olivera, F.; Potenciano, A.; Quintas, L.; Estrada, F. Assessment of the expected runoff change in Spain using climate simulations. J. Hydrol. Eng. 2014, 19, 1481–1490. [Google Scholar] [CrossRef]
- Nunes, J.P.; Seixas, J.; Pacheco, N.R. Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds. Hydrol. Process. 2008, 22, 3115–3134. [Google Scholar] [CrossRef]
- Estrela, T.; Pérez-Martin, M.A.; Vargas, E. Impacts of climate change on water resources in Spain. Hydrol. Sci. J. 2012, 57, 1154–1167. [Google Scholar] [CrossRef]
- Zabaleta, A.; Meaurio, M.; Ruiz, E.; Antigüedad, I. Simulation climate change impact on runoff and sediment yield in a small watershed in the Basque Country, northern Spain. J. Environ. Qual. 2014, 43, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Arias, R.; Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Nunes, J.P.; Keizer, J.J.; Taboada-Castro, M.T. Water resources response to changes in temperature, rainfall and CO2 concentration: A first approach in NW Spain. Water 2014, 6, 3049–3067. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Peña-Haro, S.; García-Prats, A.; Mocholi-Almudever, A.F.; Henriquez-Dole, L.; Macian-Sorribes, H.; Lopez-Nicolas, A. Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the Mancha Oriental system (Spain). Hydrol. Earth Syst. Sci. 2015, 19, 1677–1693. [Google Scholar] [CrossRef]
- Serpa, D.; Nunes, J.P.; Santos, J.; Sampaio, E.; Jacinto, R.; Veiga, S.; Lima, J.C.; Moreire, M.; Corte-Real, J.; Keizer, J.J.; et al. Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Sci. Total Environ. 2015, 538, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Bussi, G.; Francés, F.; Horel, E.; López-Tarazón, J.A.; Batalla, R.J. Modelling the impact of climate change on sediment yield in a highly erodible Mediterranean catchment. J. Soils Sediments 2014, 14, 1921–1937. [Google Scholar] [CrossRef]
- Shrestha, B.; Babel, M.S.; Maskey, S.; van Griensven, A.; Uhlenbrook, S.; Green, A.; Akkharath, I. Impact of climate change on sediment yield in the Mekong River basin: A case study of the Nam Ou basin, Lao PDR. Hydrol. Earth Syst. Sci. 2013, 17, 1–20. [Google Scholar] [CrossRef]
- European Council Directive 75/440/CEE of the 16 June 1975 for Provision of Water to Provide Potable Water. Available online: http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:31975L0440 (accessed on 22 September 2016).
- Council Directive 2006/44/EC of the 6 September 2006 on the Quality of Fresh Waters Needing Protection or Improvement in Order to Support Fish Life. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:264:0020:0031:EN:PDF (accessed on 22 September 2016).
- Steegen, A.; Govers, G.; Takken, I.; Nachtergaele, J.; Poesen, J.; Merckx, R. Factors controlling sediment and phosphorus export from two Belgian agricultural catchments. J. Environ. Qual. 2001, 30, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T. Linking the field to the stream: Soil erosion and sediment yield in a rural catchment NW Spain. Catena 2013, 102, 74–81. [Google Scholar] [CrossRef]
- Asselman, N.E.M.; Middelkoop, H.; van Dijk, P.M. The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the River Rhine. Hydrol. Process. 2003, 17, 3225–3244. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Peckham, S.D.; Hilberman, R.; Mulder, T. Predicting the terrestrial flux of sediment to the global ocean: A planetary perspective. Sediment. Geol. 2003, 162, 5–24. [Google Scholar] [CrossRef]
- Taboada-Castro, M.M.; Rodríguez-Blanco, M.L.; Palleiro, L.; Taboada-Castro, M.T. Importancia de la cubierta vegetal en procesos de erosión por flujo concentrado en ambiente templado húmedo: Un estudio a escala de cuenca. In Proceedings of the IV Congreso de la Ciencia del Suelo: Suelo Funciones y Manejo, Granada, Spain, 21–24 September 2010; pp. 565–574.
- Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T. Phosphorus transport into a stream draining from a mixed land use catchment in Galicia (NW Spain): Significance of runoff events. J. Hydrol. 2013, 481, 12–21. [Google Scholar] [CrossRef]
- Palleiro, L.; Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T. Hydroclimatic control of sediment and metal export from a rural catchment in northwestern Spain. Hydrol. Earth Syst. Sci. 2014, 18, 3663–3673. [Google Scholar] [CrossRef]
- Soto-Varela, F.; Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T. Metals discharged during different flow conditions from a mixed agricultural-forest catchment (NW Spain). Hydrol. Process. 2015, 29, 1644–1655. [Google Scholar] [CrossRef]
- Álvarez, V.; Taboada, J.J.; Lorenzo, M.N. Cambio climático en Galicia en el siglo XXI: Tendencias y variabilidad en temperaturas y precipitaciones (Climate change in Galicia by the XXI century: Tendencies and variability in temperatures and precipitation). Revista Avances Ciencias Terra (ACT) 2011, 2, 65–85. [Google Scholar]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, S.; Gallant, A.L. Predicting impacts of increased CO2 and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA. Sci. Total Environ. 2012, 430, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Glavan, M.; Ceglar, A.; Pintar, M. Assessing the impacts of climate change on water quality and quality modelling in small Slovenian Mediterranean catchment—Lesson for policy and decision makers. Hydrol. Process. 2015, 29, 3124–3144. [Google Scholar] [CrossRef]
- Rodríguez-Blanco, M.L.; Arias, R.; Taboada-Castro, M.M.; Nunes, J.P.; Keizer, J.J.; Taboada-Castro, M.T. Sediment yield at catchment scale using the SWAT Model. Soil Sci. 2016, 181, 326–334. [Google Scholar] [CrossRef]
- Instituto Tecnológico Geominero de España (IGME). Mapa Geológico de España, 1:50,000. Hoja 45. Betanzos; Servicio de Publicaciones del Ministerio de Industria y Energía: Madrid, Spain, 1981.
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T. Rainfall runoff response and event-based runoff coefficients in a humid area (northwest Spain). Hydrol. Sci. J. 2012, 57, 445–459. [Google Scholar] [CrossRef]
- Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T. Sources and sediment yield from a rural catchment in humid temperate environment, northwest Spain. Earth Surf. Process. Landf. 2010, 35, 272–277. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Res. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Srinivasan, R.; Williams, J.R. Soil and Water Assessment Tool User’s Manual; Texas Water Resources Institute: Collegue Station, TX, USA, 2002; p. 506. [Google Scholar]
- Green, C.H.; van Griensven, A. Autocalibration in hydrologic modeling: Using SWAT2005 in small-scale watersheds. Environ. Model. Softw. 2008, 23, 422–434. [Google Scholar] [CrossRef]
- Lee, K.S.; Chung, E.S. Hydrological effects of climate change, groundwater withdrawal, and land use in a small Korean watershed. Hydrol. Process. 2007, 21, 3046–3056. [Google Scholar] [CrossRef]
- Ferrant, S.; Oehler, F.; Durand, P.; Ruiz, L.; Salmon-Monviola, J.; Justes, E.; Dugast, P.; Probst, A.; Probst, J.L.; Sanchez-Perez, J.M. Understanding nitrogen transfer dynamics in a small agricultural catchment: Comparison of a distributed (TNT2) and a semi distributed (SWAT) modeling approaches. J. Hydrol. 2011, 406, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Zheng, F.; Yin, R. SWAT-based runoff and sediment simulation in a small watershed, the loessial hilly-gullied region of China: Capabilities and challenges. Int. J. Sediment Res. 2012, 27, 226–234. [Google Scholar] [CrossRef]
- Roth, V.; Lemann, T. Comparing CFSR and conventional weather data for discharge and soil loss modelling with SWAT in small catchments in the Ethiopian Highlands. Hydrol. Earth Syst. Sci. 2016, 20, 921–934. [Google Scholar] [CrossRef]
- Williams, J.R. Sediment routing for agricultural watersheds. J. Am. Water Resour. Assoc. 1975, 11, 965–974. [Google Scholar] [CrossRef]
- Arnold, J.G.; Williams, J.R. SWRRB—A watershed scale model for soil and water resources management. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Highlands Ranch, CO, USA, 1995; pp. 847–908. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses. A Guide to Conservation Planning; Agriculture Handbook No. 537; U.S. Department of Agriculture, Science and Education Administration, U.S. Govermnet Printing Office: Washington, DC, USA, 1978.
- Luo, Y.; He, C.S.; Sophocleous, M.; Yin, Z.F.; Ren, H.R.; Zhu, O.Y. Assessment of crop growth and soil water modules in SWAT 2000 using extensive field experiment data in an irrigation district of the Yellow River Basin. J. Hydrol. 2008, 352, 139–156. [Google Scholar] [CrossRef]
- Srinivasan, R.; Zhang, X.; Arnold, J. SWAT ungauaged: Hydrological budget and crop yield predictions in the Upper Mississippi River Basin. Trans. ASABE 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- Khanal, S.; Parajuli, P.B. Sensitivity analysis and evaluation of forest biomass production potential using SWAT Model. JSBS 2014, 4, 136–147. [Google Scholar] [CrossRef]
- Monteith, J.L. Climate and the efficiency of crop production in Britian. Philos. Trans. Res. Soc. 1977, 281, 277–329. [Google Scholar] [CrossRef]
- Stockle, C.O.; Williams, J.R.; Rosenberg, N.J.; Jones, C.A. A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I. Modification of the EPIC model for climate change analysis. Agric. Syst. 1992, 38, 225–238. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. Climate change: The scientific basis. In Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001. [Google Scholar]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Le Bissonnaise, Y.; Nichols, M.H.; Nunes, J.P.; Renschlerg, C.S.; et al. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Hillel, D. Climate Change and the Global Harvest: Potential Impacts of the Greenhouse Effect on Agriculture; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Sharpley, A.N.; William, J.R. EPIC_Erosion Productivity Impact Calculator, 1. Model Documentation; Technical Bulletin No. 1768; U.S. Departament of Agriculture, Agricultural Research Service: Washington, DC, USA, 1990.
- Ficklin, D.L.; Luo, Y.; Luedeling, E.; Zhang, M. Climate change sensitivity assessment of a highly agricultural watershed using SWAT model. J. Hydrol. 2009, 374, 16–29. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, G.H.; Wang, D.; Zhang, X. Uncertainty assessment of climate change impacts on the hydrology of small prairie wetlands. J. Hydrol. 2011, 396, 94–103. [Google Scholar] [CrossRef]
- Pruski, F.F.; Nearing, M.A. Runoff and soil-loss responses to changes in precipitation: A computer simulation study. J. Soil Water Conserv. 2002, 57, 7–16. [Google Scholar]
- Lago, A.; Lage, A.; Cruz, R.; Perez, V. Estudo das variacions de temperatura e precipitacions en Galicia nos últimos 30 ano no contexto do cambio global (Study of variations in temperature and rainfall in Galicia in the last 30 years in the context of global change). Revista Real Academia Galega Ciencias 2006, 25, 85–100. [Google Scholar]
- Luo, Y.; Ficklin, D.L.; Liu, Z.; Zhang, M. Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Sci. Total Environ. 2013, 450–451, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Butcher, J.B.; Johnson, T.E.; Nover, D.; Sarkar, S. Incorporating the effects of increased atmospheric CO2 in watershed model projections of climate change impacts. J. Hydrol. 2014, 513, 322–334. [Google Scholar] [CrossRef]
- Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T. Temporal changes in suspended sediment transport in an Atlantic catchment, NW Spain. Geomorphology 2010, 123, 181–188. [Google Scholar] [CrossRef]
- Alexander, E.B. Rates of soil formation—Implications for soil-loss tolerance. Soil Sci. 1988, 145, 37–45. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus actual soil erosion rates in Europe. Earth Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Mukundan, R.; Pradhanang, S.M.; Pierson, D.C.; Anandhi, A.; Zion, M.S.; Matonse, A.H.; Lounsbury, D.G.; Steenhuis, T.S. Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA. Geomorphology 2013, 183, 110–119. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Lu, X.X.; Zhou, Y. Sediment flux sensitivity to climate change: A case study in the Longchuanjiang catchment of the upper Yangtze River, China. Glob. Planet. Chang. 2008, 60, 429–442. [Google Scholar] [CrossRef]
- Mullan, D.; Favis-Mortlock, D.; Fealy, R. Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agric. For. Meteorol. 2012, 156, 18–30. [Google Scholar] [CrossRef]
- Kim, J.G.; Park, Y.S.; Yoo, D.; Kim, N.; Engel, B.A.; Kim, S.; Kim, K.S.; Lim, J. Development of a SWAT patch for better estimation of sediment yield in steep sloping watershed. J. Am. Water Resour. Assoc. 2009, 45, 963–972. [Google Scholar] [CrossRef]
- Vega, J.A.; Fernández, C.; Jiménez, E.; Ruiz, A.D. Evidencias de cambio climático en Galicia a través das tendencias dos indices de perigo de incendios forestais. In Evidencias e Impactos do Cambio Climático en Galicia; Xunta de Galicia: Santiago de Compostela, Spain, 2009; pp. 173–194. [Google Scholar]
- Vega, J.A.; Fernández, C.; Jiménez, E.; Ruiz, A.D. Impacto dun escenario de cambio climático sobre o perigo de incendios en Galicia. In Evidencias e Impactos do Cambio Climático en GALICIA; Xunta de Galicia: Santiago de Compostela, Spain, 2009; pp. 583–607. [Google Scholar]
- Vega, J.A.; Bará, S.; Villamuera, M.A.; Alonso, M. Erosión Después de un Incendio Forestal; Departmento Forestal de Zonas Húmedas: Pontevedra, Spain, 1982. [Google Scholar]
- Tu, J. Combined impact of climate and land use changes on streamflow and water quality in eastern Massachusetts, USA. J. Hydrol. 2009, 379, 268–283. [Google Scholar] [CrossRef]
- Hadjikakou, M.; Whitehead, P.G.; Jin, L.; Futter, M.; Hadjincolaou, P.; Shahgedanova, M. Modelling nitrogen in the Yeşilirmak River catchment in Northern Turkey: Impacts of future climate and environmental change and implications for nutrient management. Sci. Total Environ. 2011, 409, 2404–2418. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, M.; Knightes, C.; Cooter, E.; Dennis, R. Evaluating relative sensitivity of SWAT-simulated nitrogen discharge to projected climate and land cover changes for two watersheds in North Carolina, USA. Hydrol. Process. 2016, 30, 1403–1418. [Google Scholar] [CrossRef]
Scenario | Modified Parameter | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Temperature (°C) (mean 2031–2060) | 1.0 | 0.9 | 0.7 | 0.9 | 1.1 | 1.0 | 1.3 | 1.5 | 1.4 | 1.2 | 1.0 | 1.4 |
2 | Temperature (°C) (maximum 2031–2060) | 1.6 | 1.5 | 2 | 1.7 | 1.9 | 2.1 | 2.5 | 2.7 | 2.4 | 2.8 | 1.6 | 2.3 |
3 | Temperature (°C) (mean 2069–2098) | 1.8 | 1.6 | 1.6 | 1.7 | 2.2 | 2.5 | 2.6 | 3.0 | 2.7 | 2.5 | 2.2 | 2.2 |
4 | Temperature (°C) (maximum 2069–2098) | 2.7 | 3.2 | 3.2 | 2.9 | 3.8 | 4.7 | 4.5 | 4.9 | 5.5 | 5.0 | 3.7 | 2.9 |
5 | Rainfall (mm) (mean 2031–2060) | −1.2 | 1.0 | −5.2 | −12.7 | −10.6 | −11.4 | −9.8 | −11.8 | −6.8 | −8.2 | −8.7 | 17.8 |
6 | Rainfall (mm) (maximum 2031–2060) | −26.0 | −28.3 | −12.9 | −30.4 | −15.5 | −24.1 | −17.2 | −23.9 | −30.7 | −46.4 | −37.9 | 54.7 |
7 | Rainfall (mm) (mean 2069–2098) | −3.5 | −1.0 | −5.2 | −17.6 | −31.8 | −21.0 | −14.5 | −16.4 | −19.1 | −27.4 | −8.7 | −8.9 |
8 | Rainfall (mm) (maximum 2069–2098) | 36.6 | 17.2 | −22.4 | −26.5 | −37.5 | −30.2 | −20.6 | −28.5 | −28.0 | −56.1 | −56.8 | −29.6 |
9 | CO2 concentration (ppm) | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 |
10 | CO2 concentration (ppm) | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 |
11 | Temperature (°C) (mean 2031–2060) | 1.0 | 0.9 | 0.7 | 0.9 | 1.1 | 1.0 | 1.3 | 1.5 | 1.4 | 1.2 | 1.0 | 1.4 |
Rainfall (mm) (mean 2031–2060) | −1.2 | 1.0 | −5.2 | −12.7 | −10.6 | −11.4 | −9.8 | −11.8 | −6.8 | −8.2 | −8.7 | 17.8 | |
CO2 concentration (ppm) | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | |
12 | Temperature (°C) (maximum 2031–2060) | 1.6 | 1.5 | 2 | 1.7 | 1.9 | 2.1 | 2.5 | 2.7 | 2.4 | 2.8 | 1.6 | 2.3 |
Rainfall (mm) (maximum 2031–2060) | −26.0 | −28.3 | −12.9 | −30.4 | −15.5 | −24.1 | −17.2 | −23.9 | −30.7 | −46.4 | −37.9 | 54.7 | |
CO2 concentration (ppm) | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | |
13 | Temperature (°C) (mean 2069–2098) | 1.8 | 1.6 | 1.6 | 1.7 | 2.2 | 2.5 | 2.6 | 3.0 | 2.7 | 2.5 | 2.2 | 2.2 |
Rainfall (mm) (mean 2069–2098) | −3.5 | −1.0 | −5.2 | −17.6 | −31.8 | −21.0 | −14.5 | −16.4 | −19.1 | −27.4 | −8.7 | −8.9 | |
CO2 concentration (ppm) | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | |
14 | Temperature (°C) (maximum 2069–2098) | 2.7 | 3.2 | 3.2 | 2.9 | 3.8 | 4.7 | 4.5 | 4.9 | 5.5 | 5.0 | 3.7 | 2.9 |
Rainfall (mm) (maximum 2069–2098) | 36.6 | 17.2 | −22.4 | −26.5 | −37.5 | −30.2 | −20.6 | −28.5 | −28.0 | −56.1 | −56.8 | −29.6 | |
CO2 concentration (ppm) | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 660 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Blanco, M.L.; Arias, R.; Taboada-Castro, M.M.; Nunes, J.P.; Keizer, J.J.; Taboada-Castro, M.T. Potential Impact of Climate Change on Suspended Sediment Yield in NW Spain: A Case Study on the Corbeira Catchment. Water 2016, 8, 444. https://doi.org/10.3390/w8100444
Rodríguez-Blanco ML, Arias R, Taboada-Castro MM, Nunes JP, Keizer JJ, Taboada-Castro MT. Potential Impact of Climate Change on Suspended Sediment Yield in NW Spain: A Case Study on the Corbeira Catchment. Water. 2016; 8(10):444. https://doi.org/10.3390/w8100444
Chicago/Turabian StyleRodríguez-Blanco, M. Luz, Ricardo Arias, M. Mercedes Taboada-Castro, Joao Pedro Nunes, Jan Jacob Keizer, and M. Teresa Taboada-Castro. 2016. "Potential Impact of Climate Change on Suspended Sediment Yield in NW Spain: A Case Study on the Corbeira Catchment" Water 8, no. 10: 444. https://doi.org/10.3390/w8100444
APA StyleRodríguez-Blanco, M. L., Arias, R., Taboada-Castro, M. M., Nunes, J. P., Keizer, J. J., & Taboada-Castro, M. T. (2016). Potential Impact of Climate Change on Suspended Sediment Yield in NW Spain: A Case Study on the Corbeira Catchment. Water, 8(10), 444. https://doi.org/10.3390/w8100444