Domestic Wastewater Depuration Using a Horizontal Subsurface Flow Constructed Wetland and Theoretical Surface Optimization: A Case Study under Dry Mediterranean Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Constructed Wetland and Pretreatment Design
2.2. Water Sampling and Monitoring
3. Results and Discussion
3.1. Water Influent and Effluent Characterization
3.2. Abatement of Organic Matter
3.3. Abatement of Total Suspended Solids (TSS)
3.4. Abatement of Nitrogenous Compounds
3.4.1. Abatement of Total Nitrogen
3.4.2. Abatement of Ammonium Nitrogen
3.4.3. Abatement of Nitrate Nitrogen
3.4.4. Abatement of Nitrite Nitrogen
3.5. Abatement of Total Phosphorus
4. Surface System Optimization
4.1. Surface Optimization Considering BOD5
4.2. Surface Optimization Considering TSS
4.3. Surface Optimization Considering Total Nitrogen (TN)
4.4. Surface Optimization Considering TP
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Instituto Geológico y Minero de España (IGME). Apoyo a la Caracterización Adicional de las Masas de Agua Subterránea en Riesgo de no Cumplir los Objetivos Medioambientales en 2015. Demarcación Hidrográfica del Júcar. Masa de Agua Subterránea 080.190 Bajo Vinalopó; IGME: Madrid, Spain, 2012; p. 73. (In Spanish) [Google Scholar]
- Boletín Oficial del Estado (BOE). Real Decreto 1514/2009, de 2 de Octubre, por el que se Regula la Protección de las Aguas Subterráneas contra la Contaminación y el Deterioro; BOE: Madrid, Spain, 2009; p. 15. (In Spanish) [Google Scholar]
- Boletín Oficial del Estado (BOE). Resolución de 30 de Junio de 2011, de la Secretaría de Estado de Medio Rural y Agua, por la que se Declaran las Zonas Sensibles en las Cuencas Intercomunitarias. BOE Número 180 13028; BOE: Madrid, Spain, 2011; p. 17. (In Spanish) [Google Scholar]
- Decreto 218/2009, de 4 de diciembre, del Consell, por el que se Designan, en el ámbito de la Comunitat Valenciana, Determinados Municipios como Zonas Vulnerables a la Contaminación de las Aguas por Nitratos Procedentes de Fuentes Agrarias; Decreto: Madrid, Spain, 2009. (In Spanish)
- Council Directive of 21 May 1991 Concerning Urban Wastewater Treatment (91/271/EEC); European Commission: Brussels, Belgium, 1991; pp. 40–52.
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Commission: Brussels, Belgium, 2000; pp. 1–73.
- Environmental Protection Agency (EPA). Constructed Wetlands Treatment of Municipal Wastewaters. EPA/625/r-99/010; Environmental Protection Agency: Cincinnati, OH, USA, 2000; p. 166.
- Vymazal, J.; Kröpfelová, L. Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow; Springer: Dordrecht, The Netherlands, 2008; p. 566. [Google Scholar]
- Vymazal, J. Constructed wetlands for wastewater treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef]
- Türker, O.C.; Vymazal, J.; Türe, C. Constructed wetlands for boron removal: A review. Ecol. Eng. 2014, 64, 350–359. [Google Scholar] [CrossRef]
- Abou-Elela, S.I.; Golinielli, G.; Abou-Taleb, E.M.; Hellal, M.S. Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecol. Eng. 2013, 61, 460–468. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.H. Comparison of free water and horizontal subsurface treatment wetlands. Ecol. Eng. 2009, 35, 159–174. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, X.; Zheng, Y.; Dzakpasu, M.; Zhao, Y.; Xiong, J. Functions of slags and gravels as substrates in large-scale demonstration constructed wetland systems for polluted river water treatment. Environ. Sci. Pollut. Res. 2015, 22, 12982–12991. [Google Scholar] [CrossRef] [PubMed]
- Langergraber, G.; Giraldi, D.; Mena, J.; Meyer, D.; Peña, M.; Toscano, A.; Brovelli, A.; Korkusuz, E.A. Recent developments in numerical modelling of subsurface flow constructed wetlands. Sci. Total Environ. 2009, 407, 3931–3943. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 1046. [Google Scholar]
- García, J.; Chiva, J.; Aguirre, P.; Álvarez, E.; Sierra, J.P.; Mujeriego, R. Hydraulic behaviour of horizontal subsurface flow constructed wetlands with different aspect ratio and granular medium size. Ecol. Eng. 2004, 23, 177–187. [Google Scholar] [CrossRef]
- Puigagut, J.; Villaseñor, J.; Salas, J.J.; Bécares, E.; García, J. Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: A comparative study. Ecol. Eng. 2007, 30, 312–319. [Google Scholar] [CrossRef]
- Garfí, M.; Pedescoll, A.; Bécares, E.; Hijosa-Valsero, M.; Sidrach-Cardona, R.; García, J. Effect of climatic conditions, season and wastewater quality on contaminant removal efficiency of two experimental constructed wetlands in different regions of Spain. Sci. Total Environ. 2012, 437, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Merino-Solís, M.; Villegas, E.; de Anda, J.; López-López, A. The effect of the hydraulic retention time on the performance of an ecological wastewater treatment system: An anaerobic filter with a constructed wetland. Water 2015, 7, 1149. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the köppen-geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- IVIA. Riegos IVIA Datos Metereológicos. Available online: http://riegos.ivia.es/datos-meteorologicos (accessed on 19 September 2014). (In Spanish)
- Black, C.A.; Evans, D.; Dinauer, R. Methods of Soil Analysis; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Water Quality, Sampling, Part 1: Guidance on the Design of Sampling Programmes and Sampling Techniques; ISO-5667-1; International Organization for Standardization: Geneva, Switzerland, 2006; p. 31.
- Water Quality, Sampling, Part 2: Guidance on Sampling Techniques; ISO-5667-2; International Organization for Standardization: Geneva, Switzerland, 1991; p. 24.
- Water Quality, Sampling, Part 3: Preservation and Handling of Water Samples; ISO-5667-3; International Organization for Standardization: Geneva, Switzerland, 2012; p. 42.
- Rice, E.W.; Bridgewater, L.; American Public Health Association; American Water Works Association. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012; p. 1496. [Google Scholar]
- Pedescoll, A.; Sidrach-Cardona, R.; Sánchez, J.C.; Bécares, E. Evapotranspiration affecting redox conditions in horizontal constructed wetlands under Mediterranean climate: Influence of plant species. Ecol. Eng. 2013, 58, 335–343. [Google Scholar] [CrossRef]
- Metcalf, L.; Eddy, H.P.; Tchobanoglous, G. Wastewater Engineering: Treatment, Disposal, and Reuse; McGraw-Hill: New York, NY, USA, 1991; p. 1362. [Google Scholar]
- Kouki, S.; M’hiri, F.; Saidi, N.; Belaïd, S.; Hassen, A. Performances of a constructed wetland treating domestic wastewaters during a macrophytes life cycle. Desalination 2009, 246, 452–467. [Google Scholar] [CrossRef]
- Akratos, C.S.; Tsihrintzis, V.A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng. 2007, 29, 173–191. [Google Scholar] [CrossRef]
- Rousseau, D.P.L.; Lesage, E.; Story, A.; Vanrolleghem, P.A.; De Pauw, N. Constructed wetlands for water reclamation. Desalination 2008, 218, 181–189. [Google Scholar] [CrossRef]
- Hua, G.; Zhao, Z.; Kong, J.; Guo, R.; Zeng, Y.; Zhao, L.; Zhu, Q. Effects of plant roots on the hydraulic performance during the clogging process in mesocosm vertical flow constructed wetlands. Environ. Sci. Pollut. Res. 2014, 21, 13017–13026. [Google Scholar] [CrossRef] [PubMed]
- Galletti, A.; Verlicchi, P.; Ranieri, E. Removal and accumulation of Cu, Ni and Zn in horizontal subsurface flow constructed wetlands: Contribution of vegetation and filling medium. Sci. Total Environ. 2010, 408, 5097–5105. [Google Scholar] [CrossRef] [PubMed]
- Masi, F.; Martinuzzi, N. Constructed wetlands for the Mediterranean countries: Hybrid systems for water reuse and sustainable sanitation. Desalination 2007, 215, 44–55. [Google Scholar] [CrossRef]
- Barbera, A.C.; Cirelli, G.L.; Cavallaro, V.; Di Silvestro, I.; Pacifici, P.; Castiglione, V.; Toscano, A.; Milani, M. Growth and biomass production of different plant species in two different constructed wetland systems in Sicily. Desalination 2009, 246, 129–136. [Google Scholar] [CrossRef]
- Fountoulakis, M.S.; Terzakis, S.; Chatzinotas, A.; Brix, H.; Kalogerakis, N.; Manios, T. Pilot-scale comparison of constructed wetlands operated under high hydraulic loading rates and attached biofilm reactors for domestic wastewater treatment. Sci. Total Environ. 2009, 407, 2996–3003. [Google Scholar] [CrossRef] [PubMed]
- Bulc, T.; Vrhovsek, D.; Kukanja, V. The use of constructed wetland for landfill leachate treatment. Water Sci. Technol. 1997, 35, 301–306. [Google Scholar] [CrossRef]
- Kotti, I.P.; Gikas, G.D.; Tsihrintzis, V.A. Effect of operational and design parameters on removal efficiency of pilot-scale FWS constructed wetlands and comparison with HSF systems. Ecol. Eng. 2010, 36, 862–875. [Google Scholar] [CrossRef]
- El Hamouri, B.; Nazih, J.; Lahjouj, J. Subsurface-horizontal flow constructed wetland for sewage treatment under Moroccan climate conditions. Desalination 2007, 215, 153–158. [Google Scholar] [CrossRef]
- Mander, Ü.; Dotro, G.; Ebie, Y.; Towprayoon, S.; Chiemchaisri, C.; Nogueira, S.F.; Jamsranjav, B.; Kasak, K.; Truu, J.; Tournebize, J.; et al. Greenhouse gas emission in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2014, 66, 19–35. [Google Scholar] [CrossRef]
- Barbera, A.C.; Borin, M.; Cirelli, G.L.; Toscano, A.; Maucieri, C. Comparison of carbon balance in Mediterranean pilot constructed wetlands vegetated with different C4 plant species. Environ. Sci. Pollut. Res. 2015, 22, 2372–2383. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Kröpfelová, L. Removal of organics in constructed wetlands with horizontal sub-surface flow: A review of the field experience. Sci. Total Environ. 2009, 407, 3911–3922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Y.; Zhang, L.; Liu, Y.D.; Shen, Y.W.; Liu, H.; Xiong, Y. Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater. Desalination 2010, 250, 915–920. [Google Scholar] [CrossRef]
- Crites, R.W.; Tchobanoglous, G. Small and Decentralized Wastewater Management Systems; McGraw-Hill: New York, NY, USA, 1998; p. 1084. [Google Scholar]
- Vymazal, J. The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol. Eng. 2009, 35, 1–17. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Nivala, J.; Wallace, S.; Headley, T.; Kassa, K.; Brix, H.; van Afferden, M.; Müller, R. Oxygen transfer and consumption in subsurface flow treatment wetlands. Ecol. Eng. 2013, 61, 544–554. [Google Scholar] [CrossRef]
- Wang, R.; Baldy, V.; Périssol, C.; Korboulewsky, N. Influence of plants on microbial activity in a vertical-downflow wetland system treating waste activated sludge with high organic matter concentrations. J. Environ. Manag. 2012, 95, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Faulwetter, J.L.; Gagnon, V.; Sundberg, C.; Chazarenc, F.; Burr, M.D.; Brisson, J.; Camper, A.K.; Stein, O.R. Microbial processes influencing performance of treatment wetlands: A review. Ecol. Eng. 2009, 35, 987–1004. [Google Scholar] [CrossRef]
- Paredes, D.; Kuschk, P.; Köser, H. Influence of plants and organic matter on the nitrogen removal in laboratory-scale model subsurface flow constructed wetlands inoculated with anaerobic ammonium oxidizing bacteria. Eng. Life Sci. 2007, 7, 565–576. [Google Scholar] [CrossRef]
- Wu, S.-Q.; Chang, J.-J.; Dai, Y.; Wu, Z.-B.; Liang, W. Treatment performance and microorganism community structure of integrated vertical-flow constructed wetland plots for domestic wastewater. Environ. Sci. Pollut. Res. 2013, 20, 3789–3798. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R. Large constructed wetlands for phosphorus control: A review. Water 2016, 8, 243. [Google Scholar] [CrossRef]
- Tanner, C.C.; Clayton, J.S.; Upsdell, M.P. Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands—I. Removal of oxygen demand, suspended solids and faecal coliforms. Water Res. 1995, 29, 17–26. [Google Scholar] [CrossRef]
- Vohla, C.; Kõiv, M.; Bavor, H.J.; Chazarenc, F.; Mander, Ü. Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecol. Eng. 2011, 37, 70–89. [Google Scholar] [CrossRef]
- Harada, J.; Inoue, T.; Kato, K.; Uraie, N.; Sakuragi, H. Performance evaluation of hybrid treatment wetland for six years of operation in cold climate. Environ. Sci. Pollut. Res. Int. 2015, 22, 12861–12869. [Google Scholar] [CrossRef] [PubMed]
- Kõiv, M.; Vohla, C.; Mõtlep, R.; Liira, M.; Kirsimäe, K.; Mander, Ü. The performance of peat-filled subsurface flow filters treating landfill leachate and municipal wastewater. Ecol. Eng. 2009, 35, 204–212. [Google Scholar] [CrossRef]
- Brix, H. Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 1997, 35, 11–17. [Google Scholar] [CrossRef]
- Reed, S.C.; Crites, R.W.; Middlebrooks, E.J. Natural Systems for Waste Management and Treatment, 2nd ed.; McGraw-Hill: New York, NY, USA, 1995; p. 433. [Google Scholar]
- Vymazal, J.; Krőpfelová, L. Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic. Ecol. Eng. 2005, 25, 606–621. [Google Scholar] [CrossRef]
- Maucieri, C.; Borin, M.; Barbera, A.C. Role of C3 plant species on carbon dioxide and methane emissions in Mediterranean constructed wetland. Ital. J. Agron. 2014, 9, 120–126. [Google Scholar] [CrossRef]
- Tao, W.; Bays, J.; Meyer, D.; Smardon, R.; Levy, Z. Constructed wetlands for treatment of combined sewer overflow in the US: A review of design challenges and application status. Water 2014, 6, 3362. [Google Scholar] [CrossRef]
- García, J.; Aguirre, P.; Barragán, J.; Mujeriego, R.; Matamoros, V.; Bayona, J.M. Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands. Ecol. Eng. 2005, 25, 405–418. [Google Scholar] [CrossRef]
- Parra, I.; Chiang, G. Modelo integrado de un sistema de biodepuración en origen de aguas residuales domiciliarias. Una propuesta para comunidades periurbanas del centro sur de Chile. Rev. Gest. Ambient. 2013, 16, 39–51. (In Spanish) [Google Scholar]
- Gorra, R.; Freppaz, M.; Zanini, E.; Scalenghe, R. Mountain dairy wastewater treatment with the use of a ‘irregularly shaped’ constructed wetland (Aosta Valley, Italy). Ecol. Eng. 2014, 73, 176–183. [Google Scholar] [CrossRef]
Variable | Influent | Effluent | Abatement Efficiency | Limits EC [5] | ||||
---|---|---|---|---|---|---|---|---|
First Year | Second Year | First Year | Second Year | First Year | Second Year | Value | Abatement | |
T (°C) | 23.3 ± 4.7 | 22.6 ± 4.8 | 21.4 ± 5.1 | 19.7 ± 4.8 | ||||
pH | 7.4 ± 0.2 | 7.6 ± 0.4 | 7.7 ± 0.4 | 7.3 ± 0.2 | ||||
BOD5 | 398.9 ± 154.5 | 349.5 ± 75.8 | 13.2 ± 5.3 | 25.4 ± 12.4 | 96.4 ± 1.8 | 92.0 ± 4.4 | 25 | 70–90 |
COD | 710.8 ± 230.5 | 721.1 ± 116.7 | 102.1 ± 13.5 | 156.1 ± 60.9 | 84.6 ± 4.0 | 77.7 ± 9.4 | 125 | 75 |
TSS | 173.0 ± 28.2 | 205.3 ± 31.1 | 8.8 ± 4.0 | 20.3 ± 8.7 | 94.8 ± 2.4 | 89.9 ± 4.3 | 35 | 70–90 |
TN | 142.7 ± 11.8 | 136.3 ± 12.0 | 29.3 ± 8.3 | 46.0 ± 17.0 | 79.5 ± 5.6 | 66.0 ± 11.7 | 15 | 70–80 |
NH4+-N | 109.2 ± 9.9 | 97.2 ± 6.3 | 1.4 ± 1.1 | 12.8 ± 10.1 | 98.8 ± 0.9 | 86.6 ± 10.5 | ||
NO2−-N | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.3 ± 0.1 | 0.4 ± 0.1 | −5.8 ± 17.1 | −40.0 ± 41.0 | ||
NO3−-N | 2.0 ± 1.0 | 2.4 ± 1.5 | 21.1 ± 6.2 | 25.6 ± 12.0 | −1280.5 ± 989.4 | −961.1 ± 918.0 | ||
TP | 20.2 ± 5.1 | 18.2 ± 3.0 | 3.2 ± 0.4 | 2.9 ± 0.7 | 83.7 ± 2.8 | 82.8 ± 4.9 | 2 | 80 |
Month | Qin (m3) | Kcw * | ETWT (mm·m−2) | P (mm·m−2) | Qout (m3) |
---|---|---|---|---|---|
July | 8.1 | 4.2 | 788.5 | 1.7 | −13.1 |
August | 8.1 | 4.5 | 714.2 | 9.2 | −10.9 |
Reference | Location | BOD5 | COD | TSS | TN | NH4+-N | TP | Surface PE−1 |
---|---|---|---|---|---|---|---|---|
[18] | Spain * | 74.2 | 66.0 | 87.8 | 56.5 | 45.7 | 40.0–50.0 | 1.0–7.0 |
[19] | Catalonia (Spain) | 65.0–97.0 | 83.0–97.0 | 55.0 | 4.7 | |||
[34] | Ferrara (Italy) | 61.0 | 71.0 | 76.0 | 0.9 | |||
[36] | Sicily (Italy) | 74.0 | 60.0 | 89.0 | 35.0 | 57.0 | 7.2 | |
[37] | Heraklion (Crete) | 77.0–61.0 | 83.0–68.0 | 10.0–45.0 | 40.0–50.0 | 3.2 | ||
[38] | Dragonja (Croatia) | 46.0 | 68.0 | - | 8.3 | |||
[39] | Greece | 76.0 | 64.0 | 55.0 | 43.0 | 48.0 | 12.5 | |
[40] | Marrakech (Morocco) | 79.0 | 78.0 | 80.0 | 8.0 | 9.0 | 15.0 | 0.7 |
[40] | Egypt | 93.0 | 91.0 | 92.0 | 60.0 | 57.0 | 63.0 | 8.2 |
[35] | Other Mediterranean countries | ** | ** | 59.0–96.0 | 23.0–77.0 | 18.0–76.0 | ||
This study | 96.4–92.0 | 84.6–77.7 | 94.8–89.9 | 79.5–66.0 | 98.8–86.6 | 83.7–82.8 | 25.0 |
BOD5 | TSS | TN | TP |
---|---|---|---|
As = wetland treatment area (m2), Q = influent wastewater flow (m3·d−1), d = water depth in wetland (m), n = void ratio or porosity corresponding to proportion of typical wetland cross section not occupied by vegetation, Kt = rate constant corresponding to water temperature in wetland (d−1), Kp = constant phosphorous removal (cm·d−1), L = wetland length (m), W = wetland width and T0 = assumed water temperature entering wetland (°C), HLR = hydraulic loading rate (cm·d−1). | |||
Assumed temperature design verification (BOD5 and TN) | |||
; | |||
Tc = temperature change in the wetland (°C), Te = effluent temperature, T0 = assumed water temperature entering wetland (°C), Ta = average air temperature during period of concern (°C), Tw = average water temperature, qG = energy gain from water (J·°C−1), Cp = specific heat capacity of water (4215 J·kg−1·°C−1), δ = density of water (1000 kg·m−3), d = depth of water in wetland (m), n = porosity of wetland media (%), U = heat-transfer coefficient at the surface of the wetland bed (W·m−2·°C−1), k(1–n) = conductivity of layers 1 to n (W·m−1·°C−1), y(1–n) = thickness of layers 1 to n (m) , qL = energy lost via conduction at the atmosphere (J), σ = time conversion (86,400 s·d−1), HRT = hydraulic residence time in the wetland (d). HF-CW allowed consisting of a layer of 60 cm of gravel saturated (K = 2 W·m−1·°C−1), a layer of 8 cm of dry gravel (K = 1.5 W·m−1·°C−1) and a layer 15 cm with traces of vegetation (K = 0.05 W·m−1·°C−1). |
Design Parameter | As (m2) | L (m) | W (m) | HRT (d) | HLR (cm·d−1) | m2·PE−1 |
---|---|---|---|---|---|---|
BOD5 | 5.22 | 3.96 | 1.32 | 4.37 | 5.21 | 2.91 |
TSS | 0.18 | 0.74 | 0.25 | 0.15 | 150 | 0.10 |
TN | 10.14 | 5.52 | 1.84 | 8.48 | 2.69 | 5.65 |
TP | 23.83 | 8.46 | 2.82 | 19.95 | 1.14 | 13.27 |
Variables | Values |
---|---|
Inhabitants | 4 |
Influent wastewater flow (Q) | 0.27 m3·d−1 |
Vegetation | Phragmites australis |
Deep (d) | 0.60 m |
Medium gravel 25 mm (n) | 0.38 |
Bed slope | 1% |
BOD5 inlet (C0) | 400 mg·L−1 |
BOD5 outlet (Ce) | 25 mg·L−1 |
TSS inlet (C0) | 190 mg·L−1 |
TSS outlet (Ce) | 60 mg·L−1 |
TN inlet (C0) | 140 mg·L−1 |
TN outlet (Ce) | 15 mg·L−1 |
TP inlet (C0) | 22 mg·L−1 |
TP outlet (Ce) | 2 mg·L−1 |
Ta lowest temperature in winter (average) | 3.00 °C |
TM average winter temperature | 11.50 °C |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreo-Martínez, P.; García-Martínez, N.; Almela, L. Domestic Wastewater Depuration Using a Horizontal Subsurface Flow Constructed Wetland and Theoretical Surface Optimization: A Case Study under Dry Mediterranean Climate. Water 2016, 8, 434. https://doi.org/10.3390/w8100434
Andreo-Martínez P, García-Martínez N, Almela L. Domestic Wastewater Depuration Using a Horizontal Subsurface Flow Constructed Wetland and Theoretical Surface Optimization: A Case Study under Dry Mediterranean Climate. Water. 2016; 8(10):434. https://doi.org/10.3390/w8100434
Chicago/Turabian StyleAndreo-Martínez, Pedro, Nuria García-Martínez, and Luis Almela. 2016. "Domestic Wastewater Depuration Using a Horizontal Subsurface Flow Constructed Wetland and Theoretical Surface Optimization: A Case Study under Dry Mediterranean Climate" Water 8, no. 10: 434. https://doi.org/10.3390/w8100434
APA StyleAndreo-Martínez, P., García-Martínez, N., & Almela, L. (2016). Domestic Wastewater Depuration Using a Horizontal Subsurface Flow Constructed Wetland and Theoretical Surface Optimization: A Case Study under Dry Mediterranean Climate. Water, 8(10), 434. https://doi.org/10.3390/w8100434