Impacts of Climate Change on Mean Annual Water Balance for Watersheds in Michigan, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Used
2.2. Potential Evapotranspiration Calculation
Gaging Station ID | Station Name and Location | Latitude | Delineated Area (km2) | P (mm/yr) | ETP (mm/yr) | Q (mm/yr) | ETa (mm/yr) | Q/P | BFI | ||
---|---|---|---|---|---|---|---|---|---|---|---|
04040500 | Sturgeon River near Sidnaw | 46.584 | 429.8 | 878 | 832 | 416 | 462 | 0.95 | 0.47 | 0.53 | 0.66 |
04043050 | Trap Rock River near Lake Linden | 47.229 | 77.1 | 807 | 757 | 529 | 278 | 0.94 | 0.66 | 0.34 | 0.66 |
04045500 | Tahquamenon River near Paradise | 46.575 | 1960.6 | 828 | 832 | 395 | 432 | 1.00 | 0.48 | 0.52 | 0.73 |
04057510 | Sturgeon River near Nahma Junction | 45.943 | 475.4 | 826 | 866 | 348 | 478 | 1.05 | 0.42 | 0.58 | 0.74 |
04059500 | Ford River near Hyde | 45.755 | 1156.8 | 776 | 843 | 278 | 499 | 1.09 | 0.36 | 0.64 | 0.68 |
04096405 | Sturgeon River at Wolverine | 45.274 | 454.7 | 850 | 906 | 402 | 449 | 1.07 | 0.47 | 0.53 | 0.80 |
04105000 | Manistee River near Sherman | 44.436 | 2241.9 | 835 | 912 | 428 | 407 | 1.09 | 0.51 | 0.49 | 0.80 |
04105700 | Pere Marquette River at Scottville | 43.945 | 1787.7 | 883 | 963 | 396 | 487 | 1.09 | 0.45 | 0.55 | 0.79 |
04108600 | Macatawa River at State Road near Zeeland | 42.779 | 172.9 | 930 | 951 | 406 | 525 | 1.02 | 0.44 | 0.56 | 0.45 |
04108800 | Rabbit River near Hopkins | 42.642 | 174.9 | 938 | 934 | 307 | 631 | 1.00 | 0.33 | 0.67 | 0.70 |
04117500 | Thornapple River near Hastings | 42.616 | 1063.4 | 886 | 972 | 328 | 558 | 1.10 | 0.37 | 0.63 | 0.71 |
04122500 | Augusta Creek Near Augusta | 42.353 | 95.2 | 949 | 1003 | 394 | 555 | 1.06 | 0.42 | 0.58 | 0.78 |
04124000 | Battle Creek at Battle Creek | 42.331 | 710 | 888 | 970 | 335 | 552 | 1.09 | 0.38 | 0.62 | 0.72 |
04127997 | St. Joseph River at Burlington | 42.103 | 530.7 | 932 | 957 | 319 | 613 | 1.03 | 0.34 | 0.66 | 0.76 |
04161580 | Stony Creek near Romeo | 42.801 | 61.7 | 826 | 925 | 237 | 589 | 1.12 | 0.29 | 0.71 | 0.69 |
04164000 | Clinton River near Fraser | 42.578 | 1188.3 | 823 | 943 | 340 | 483 | 1.15 | 0.41 | 0.59 | 0.70 |
04166100 | River Rouge at Southfield | 42.448 | 225.3 | 815 | 954 | 307 | 509 | 1.17 | 0.38 | 0.62 | 0.61 |
2.3. Water Balance Modeling Based on Budyko Hypothesis
2.4. Climate Sensitivity of Streamflow Based on the Budyko Hypothesis
3. Results and Discussion
3.1. Mean Annual Water Balance in the Study Watersheds
3.2. Impact of Climatic Controls on Mean Annual Water Balance
Gaging Station ID | ∂Q/∂P | ∂Q/∂ETp | (P/Q) × (∂Q/∂P) | (ETp/Q) × (∂Q/∂ETp) |
---|---|---|---|---|
04040500 | 0.74 | −0.29 | 1.57 | −0.58 |
04043050 | 0.83 | −0.19 | 1.26 | −0.27 |
04045500 | 0.73 | −0.26 | 1.53 | −0.54 |
04057510 | 0.69 | −0.26 | 1.64 | −0.66 |
04059500 | 0.65 | −0.27 | 1.80 | −0.83 |
04096405 | 0.66 | −0.31 | 1.92 | −0.93 |
04105000 | 0.66 | −0.26 | 1.75 | −0.76 |
04105700 | 0.69 | −0.26 | 1.66 | −0.67 |
04108600 | 0.65 | −0.33 | 2.00 | −1.02 |
04108800 | 0.71 | −0.27 | 1.62 | −0.63 |
04117500 | 0.66 | −0.26 | 1.77 | −0.78 |
04122500 | 0.70 | −0.24 | 1.56 | −0.58 |
04124000 | 0.74 | −0.21 | 1.44 | −0.45 |
04127997 | 0.72 | −0.24 | 1.52 | −0.54 |
04161580 | 0.59 | −0.28 | 2.06 | −1.09 |
04164000 | 0.67 | −0.23 | 1.62 | −0.64 |
04166100 | 0.64 | −0.23 | 1.70 | −0.72 |
4. Discussions
4.1. Compared with Other Similar Studies
4.2. Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schreiber, P. Ueber die beziehungen zwischen dem niederschlag und der wasseruhrung der flusse in Mitteleuropa. Meteorol. Z. 1904, 21, 441–452. [Google Scholar]
- Ol’dekop, E.M. On evaporation from the surface of river basins. Trans. Meteorol. Observ. 1911, 4, 200. [Google Scholar]
- Budyko, M.I. The Heat Balance of the Earth’s Surface; US Department of Commerce: Washington, DC, USA, 1958. [Google Scholar]
- Budyko, M.I. Climate and Life; Academic Press: San Diego, CA, USA, 1974; p. 508. [Google Scholar]
- Choudhury, B.J. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol. 1999, 216, 99–110. [Google Scholar] [CrossRef]
- Sankarasubramanian, A.; Vogel, R.M. Annual hydroclimatology of the United States. Water. Resour. Res. 2002, 38. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. On the importance of including vegetation dynamics in Budyko’s hydrological model. Hydrol. Earth. Syst. Sci. 2007, 11, 983–995. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water. Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Xiong, L.; Guo, S. Appraisal of Budyko formula in calculating long-term water balance in humid watersheds of southern China. Hydrol. Process. 2012, 26, 1370–1378. [Google Scholar] [CrossRef]
- Turc, L. The water balance of soils. Relation between precipitation evaporation and flow. Ann. Agron. 1954, 5, 491–569. [Google Scholar]
- Pike, J.G. The estimation of annual runoff from meteorological data in a tropical climate. J. Hydrol. 1964, 2, 116–123. [Google Scholar] [CrossRef]
- Fu, B. On the calculation of the evaporation from land surface. Sci. Atmos. Sin. 1981, 5, 23–31. [Google Scholar]
- Milly, P.C.D. Climate, soil water storage, and the average annual water balance. Water. Resour. Res. 1994, 30, 2143–2156. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water. Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.R. A rational function approach for estimating mean annual Evapotranspiration. Water. Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Potter, N.J.; Zhang, L. Interannual variability of catchment water balance in Australia. J. Hydrol. 2009, 369, 120–129. [Google Scholar] [CrossRef]
- Tekleab, S.; Uhlenbrook, S.; Mohamed, Y.; Savenije, H.H.G.; Temesgen, M.; Wenninger, J. Water balance modeling of Upper Blue Nile catchments using a top-down approach. Hydrol. Earth. Syst. Sci. 2011, 15, 2179–2193. [Google Scholar] [CrossRef]
- Zhang, L.; Potter, N.; Hickel, K.; Zhang, Y.; Shao, Q. Water balance modeling over variable time scales based on the Budyko framework-Model development and testing. J. Hydrol. 2008, 360, 117–131. [Google Scholar]
- Wang, H.; Yu, X. Sensitivity analysis of climate on streamflow in north China. Theor. Appl. Climatol. 2015, 119, 391–399. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Xia, J. Comparison of the streamflow sensitivity to aridity index between the Danjiangkou Reservoir basin and Miyun Reservoir basin, China. Theor. Appl. Climatol. 2013, 111, 683–691. [Google Scholar] [CrossRef]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water. Resour. Res. 2011, 47, W00J12. [Google Scholar] [CrossRef]
- Teng, J.; Chiew, F.H.S.; Vaze, J. Estimation of climate change impact on mean annual runoff across continental Australia using Budyko and Fu equations and hydrological models. J. Hydrometeorol. 2012, 13, 1094–1106. [Google Scholar] [CrossRef]
- Wang, T.; Istanbulluoglu, J.L.; Scott, D. On the role of groundwater and soil texture in the regional water balance: An investigation of the Nebraska Sand Hills, USA. Water. Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Zhang, Y.; Ahiablame, L.; Engel, B.; Liu, J. Regression modeling of baseflow and baseflow index for Michigan USA. Water 2013, 5, 1797–1815. [Google Scholar] [CrossRef]
- Daly, C.; Neilson, R.P.; Philips, D.L. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol. 1994, 33, 140–158. [Google Scholar] [CrossRef]
- ArcGIS 10, Environmental Systems Resource Institute, Inc: Redlands, CA, USA, 2010.
- USGS Current Water Data for the Nation. Available online: http://waterdata.usgs.gov/usa/nwis/rt (accessed on 10 November 2012).
- Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. 2005, 19, 507–515. [Google Scholar] [CrossRef]
- Lim, K.J.; Engel, B.A.; Tang, Z.; Chou, J.; Kim, K.S.; Muthukrishnan, S.; Tripathy, D. Automated web GIS-based hydrograph analysis tool, WHAT. J. Am. Water. Resour. Assoc. 2005, 41, 1407–1416. [Google Scholar] [CrossRef]
- Hargreaves, G.H; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Sankarasubramanian, A.; Vogel, R.M.; Limbrunner, J.F. Climate elasticity of streamflow in the United States. Water. Resour. Res. 2001, 37, 1771–1781. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Allen, R.G. History and evaluation of Hargreaves evapotranspiration equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Bachour, R.; Walker, W.R.; Torres-Rua, A.F.; McKee, M. Assessment of reference evapotranspiration by the Hargreaves method in the Bekaa Valley, Lebanon. J. Irrig. Drain. Eng. 2013, 139, 933–938. [Google Scholar] [CrossRef]
- Calculation of extraterrestrial solar radiation (to horizontal surface at top of atmosphere). Available online: http://www.engr.scu.edu/~emaurer/tools/calc_solar_cgi.pl (accessed on 20 April 2014).
- Yang, D.; Sun, F.; Liu, Z.; Cong, Z.; Lei, Z. Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Wang, D.; Alimohammadi, N. Responses of annual runoff, evaporation, and storage change to climate variability at the watershed scale. Water. Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Ponce, V.M.; Pandey, R.P.; Ercan, S. Characterization of drought across the climate spectrum. J. Hydrol. Eng. 2000, 5, 222–224. [Google Scholar] [CrossRef]
- Xu, X.; Scanlon, B.R.; Schilling, K.; Sun, A. Relative importance of climate and land surface changes on hydrologic changes in the US Midwest since the 1930s: Implications for biofuel production. J. Hydrol. 2013, 497, 110–120. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Woods, R.A.; Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Chang. 2014, 4, 583–586. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Assessing the differences in sensitivities of runoff to changes in climatic conditions across a large basin. J. Hydrol. 2011, 406, 234–244. [Google Scholar] [CrossRef]
- Koster, R.D.; Suarez, M.J. A simple framework for examining the interannual variability of land surface moisture fluxes. J. Clim. 1999, 12, 1911–1917. [Google Scholar] [CrossRef]
- Zeng, R.; Cai, X. Assessing the temporal variance of evapotranspiration considering climate and catchment storage factors. Adv. Water. Resour. 2015, 79, 51–60. [Google Scholar] [CrossRef]
- National Land Cover Data (NLCD). Available online: http://seamless.usgs.gov (accessed on 30 November 2012).
- Soil Survey Geographic Database (SSURGO). Available online: http://soils.usda.gov/survey/geography (accessed on 8 January 2013).
- Yang, D.; Sun, F.; Liu, Z.; Cong, Z.; Ni, G.; Lei, Z. Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis. Water. Resour. Res. 2007, 43, W04426. [Google Scholar] [CrossRef]
- Renner, M.; Bernhofer, C. Applying simple water-energy balance frameworks to predict the climate sensitivity of streamflow over the continental United States. Hydrol. Earth. Syst. Sci. 2012, 16, 2531–2546. [Google Scholar] [CrossRef]
- Donohue, R.J.; McVicar, T.R.; Roderick, M.L. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J. Hydrol. 2010, 386, 186–197. [Google Scholar] [CrossRef]
- Yang, D.; Shao, W.; Yeh, P.J.F.; Yang, H.; Kanae, S.; Oki, T. Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water. Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Scanlon, B.R.; Zhang, L.; Pan, M. Local and global factors controlling water-energy balances within the Budyko framework. Geophys. Res. Lett. 2013, 40, 6123–6129. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Engel, B.; Ahiablame, L.; Liu, J. Impacts of Climate Change on Mean Annual Water Balance for Watersheds in Michigan, USA. Water 2015, 7, 3565-3578. https://doi.org/10.3390/w7073565
Zhang Y, Engel B, Ahiablame L, Liu J. Impacts of Climate Change on Mean Annual Water Balance for Watersheds in Michigan, USA. Water. 2015; 7(7):3565-3578. https://doi.org/10.3390/w7073565
Chicago/Turabian StyleZhang, Yinqin, Bernard Engel, Laurent Ahiablame, and Junmin Liu. 2015. "Impacts of Climate Change on Mean Annual Water Balance for Watersheds in Michigan, USA" Water 7, no. 7: 3565-3578. https://doi.org/10.3390/w7073565