Synergistic Water-Treatment Reactors Using a TiO2-Modified Ti-Mesh Filter
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Methods
2.2. Fabrication of TMiP
2.3. Fabrication of the Water Purification System Using TMiP
2.4. Test Method for Evaluation of the Water Purification Ability of the System
3. Results and Discussion
3.1. Water-Purification Ability of the Reactors Evaluated by Methylene Blue Decolorization
3.2. Water-Purification Ability of the Reactors Evaluated by the Inactivation of Waterborne Pathogens
3.3. Water-Purification Ability of the Reactors Using the Higher Concentration of O3 and UV-C
3.4. Treatment of Sewage Water Samples
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Ochiai, T.; Fujishima, A. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J. Photochem. Photobiol. C 2012, 13, 247–262. [Google Scholar]
- Ollis, D.F. Photocatalytic purification and remediation of contaminated air and water. C. R. Acad. Sci. II C 2000, 3, 405–411. [Google Scholar]
- Ollis, D.F.; Pelizzetti, E.; Serpone, N. Photocatalyzed destruction of water contaminants. Environ. Sci. Technol. 1991, 25, 1522–1529. [Google Scholar] [CrossRef]
- Prieto-Rodriguez, L.; Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Puma, G.L.; Malato, S. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. J. Hazard. Mater. 2012, 211–212, 131–137. [Google Scholar] [CrossRef]
- Chen, M.; Chu, W. Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis. J. Hazard. Mater. 2012, 219–220, 183–189. [Google Scholar] [CrossRef]
- Sánchez, L.; Peral, J.; Domènech, X. Aniline degradation by combined photocatalysis and ozonation. Appl. Catal. B Environ. 1998, 19, 59–65. [Google Scholar] [CrossRef]
- Ochiai, T.; Hoshi, T.; Slimen, H.; Nakata, K.; Murakami, T.; Tatejima, H.; Koide, Y.; Houas, A.; Horie, T.; Morito, Y.; et al. Fabrication of TiO2 nanoparticles impregnated titanium mesh filter and its application for environmental purification unit. Catal. Sci. Technol. 2011, 1, 1324–1327. [Google Scholar] [CrossRef]
- Ochiai, T.; Nakata, K.; Murakami, T.; Morito, Y.; Hosokawa, S.; Fujishima, A. Development of an air-purification unit using a photocatalysis-plasma hybrid reactor. Electrochemistry 2011, 79, 838–841. [Google Scholar] [CrossRef]
- Ochiai, T.; Niitsu, Y.; Kobayashi, G.; Kurano, M.; Serizawa, I.; Horio, K.; Nakata, K.; Murakami, T.; Morito, Y.; Fujishima, A. Compact and effective photocatalytic air-purification unit by using of mercury-free excimer lamps with TiO2 coated titanium mesh filter. Catal. Sci. Technol. 2011, 1, 1328–1330. [Google Scholar] [CrossRef]
- Ochiai, T.; Nakata, K.; Murakami, T.; Horie, T.; Morito, Y.; Fujishima, A. Anodizing effects of titanium-mesh surface for fabrication of photocatalytic air purification filter. Nanosci. Nanotechnol. Lett. 2012, 4, 544–547. [Google Scholar] [CrossRef]
- Ochiai, T.; Nanba, H.; Nakagawa, T.; Masuko, K.; Nakata, K.; Murakami, T.; Nakano, R.; Hara, M.; Koide, Y.; Suzuki, T.; et al. Development of an O3-assisted photocatalytic water-purification unit by using a TiO2 modified titanium mesh filter. Catal. Sci. Technol. 2012, 2, 76–78. [Google Scholar] [CrossRef]
- Ochiai, T.; Hayashi, Y.; Ito, M.; Nakata, K.; Murakami, T.; Morito, Y.; Fujishima, A. An effective method for a separation of smoking area by using novel photocatalysis-plasma synergistic air-cleaner. Chem. Eng. J. 2012, 209, 313–317. [Google Scholar] [CrossRef]
- Ochiai, T.; Masuko, K.; Tago, S.; Nakano, R.; Niitsu, Y.; Kobayashi, G.; Horio, K.; Nakata, K.; Murakami, T.; Hara, M.; et al. Development of a hybrid environmental purification unit by using of excimer VUV lamps with TiO2 coated titanium mesh filter. Chem. Eng. J. 2013, 218, 327–332. [Google Scholar] [CrossRef]
- Ochiai, T.; Nakata, K.; Murakami, T.; Fujishima, A.; Yao, Y.Y.; Tryk, D.A.; Kubota, Y. Development of solar-driven electrochemical and photocatalytic water treatment system using a boron-doped diamond electrode and TiO2 photocatalyst. Water Res. 2010, 44, 904–910. [Google Scholar] [CrossRef]
- Yao, Y.; Ochiai, T.; Ishiguro, H.; Nakano, R.; Kubota, Y. Antibacterial performance of a novel photocatalytic-coated cordierite foam for use in air cleaners. Appl. Catal. B Environ. 2011, 106, 592–599. [Google Scholar] [CrossRef]
- Yao, Y.; Kubota, Y.; Murakami, T.; Ochiai, T.; Ishiguro, H.; Nakata, K.; Fujishima, A. Electrochemical inactivation kinetics of boron-doped diamond electrode on waterborne pathogens. J. Water Health 2011, 9, 534–543. [Google Scholar] [CrossRef]
- Yamauchi, K.; Yao, Y.; Ochiai, T.; Sakai, M.; Kubota, Y.; Yamauchi, G. Antibacterial activity of hydrophobic composite materials containing a visible-light-sensitive photocatalyst. J. Nanotechnol. 2011, 2011. [Google Scholar] [CrossRef]
- Kreutz, L.C.; Seal, B.S.; Mengeling, W.L. Early interaction of feline calicivirus with cells in culture. Arch. Virol. 1994, 136, 19–34. [Google Scholar] [CrossRef]
- Nohr, R.S.; MacDonald, J.G.; Kogelschatz, U.; Mark, G.; Schuchmann, H.P.; von Sonntag, C. Application of excimer incoherent-UV sources as a new tool in photochemistry: photodegradation of chlorinated dibenzodioxins in solution and adsorbed on aqueous pulp sludge. J. Photochem. Photobiol. A 1994, 79, 141–149. [Google Scholar] [CrossRef]
- Tasbihi, M.; Ngah, C.R.; Aziz, N.; Mansor, A.; Abdullah, A.Z.; Teong, L.K.; Mohamed, A.R. Lifetime and regeneration studies of various supported TiO2 photocatalysts for the degradation of phenol under UV-C light in a batch reactor. Ind. Eng. Chem. Res. 2007, 46, 9006–9014. [Google Scholar] [CrossRef]
- Oppenländer, T.; Gliese, S. Mineralization of organic micropollutants (homologous alcohols and phenols) in water by vacuum-UV-oxidation (H2O-VUV) with an incoherent xenon-excimer lamp at 172 nm. Chemosphere 2000, 40, 15–21. [Google Scholar] [CrossRef]
- Oppenländer, T.; Walddörfer, C.; Burgbacher, J.; Kiermeier, M.; Lachner, K.; Weinschrott, H. Improved vacuum-UV (VUV)-initiated photomineralization of organic compounds in water with a xenon excimer flow-through photoreactor (Xe* lamp, 172 nm) containing an axially centered ceramic oxygenator. Chemosphere 2005, 60, 302–309. [Google Scholar] [CrossRef]
- Oppenländer, T. Mercury-free sources of VUV/UV radiation: Application of modern excimer lamps (excilamps) for water and air treatment. J. Environ. Eng. Sci. 2007, 6, 253–264. [Google Scholar] [CrossRef]
- Afzal, A.; Oppenländer, T.; Bolton, J.R.; El-Din, M.G. Anatoxin—A degradation by advanced oxidation processes: Vacuum-UV at 172 nm, photolysis using medium pressure UV and UV/H2. Water Res. 2010, 44, 278–286. [Google Scholar] [CrossRef]
- Wang, D.; Oppenländer, T.; El-Din, M.G.; Bolton, J.R. Comparison of the disinfection effects of Vacuum-UV (VUV) and UV light on Bacillus subtilis spores in aqueous suspensions at 172, 222 and 254 nm. Photochem. Photobiol. 2010, 86, 176–181. [Google Scholar] [CrossRef]
- Heit, G.; Neuner, A.; Saugy, P.-Y.; Braun, A.M. Vacuum-UV (172 nm) actinometry. The quantum yield of the photolysis of water. J. Phys. Chem. A 1998, 102, 5551–5561. [Google Scholar] [CrossRef]
- Weeks, J.L.; Meaburn, G.M.A.C.; Gordon, S. Absorption coefficients of liquid water and aqueous solutions in the far ultraviolet. Radiat. Res. 1963, 19, 559–567. [Google Scholar] [CrossRef]
- Han, W.; Zhang, P.; Zhu, W.; Yin, J.; Li, L. Photocatalysis of p-chlorobenzoic acid in aqueous solution under irradiation of 254 nm and 185 nm UV light. Water Res. 2004, 38, 4197–4203. [Google Scholar] [CrossRef]
- Cho, M.; Chung, H.; Yoon, J. Disinfection of water containing natural organic matter by using ozone-initiated radical reactions. Appl. Environ. Microbiol. 2003, 69, 2284–2291. [Google Scholar] [CrossRef]
- Cho, M.; Chung, H.; Choi, W.; Yoon, J. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res. 2004, 38, 1069–1077. [Google Scholar] [CrossRef]
- Cho, M.; Chung, H.; Choi, W.; Yoon, J. Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl. Environ. Microbiol. 2005, 71, 270–275. [Google Scholar] [CrossRef]
- Cho, M.; Yoon, J. Measurement of OH radical CT for inactivating cryptosporidium parvum using photo/ferrioxalate and photo/TiO2 systems. J. Appl. Microbiol. 2008, 104, 759–766. [Google Scholar] [CrossRef]
- Cho, M.; Gandhi, V.; Hwang, T.M.; Lee, S.; Kim, J.H. Investigating synergism during sequential inactivation of MS-2 phage and Bacillus subtilis spores with UV/H2O2 followed by free chlorine. Water Res. 2011, 45, 1063–1070. [Google Scholar] [CrossRef]
- Cho, M.; Cates, E.L.; Kim, J.H. Inactivation and surface interactions of MS-2 bacteriophage in a TiO2 photoelectrocatalytic reactor. Water Res. 2011, 45, 2104–2110. [Google Scholar] [CrossRef]
- Chatzisymeon, E.; Droumpali, A.; Mantzavinos, D.; Venieri, D. Disinfection of water and wastewater by UV-A and UV-C irradiation: Application of real-time PCR method. Photochem. Photobiol. Sci. 2011, 10, 389–395. [Google Scholar] [CrossRef]
- Oguma, K.; Katayama, H.; Ohgaki, S. Photoreactivation of legionella pneumophila after inactivation by low- or medium-pressure ultraviolet lamp. Water Res. 2004, 38, 2757–2763. [Google Scholar] [CrossRef]
- Halfmann, H.; Denis, B.; Bibinov, N.; Wunderlich, J.; Awakowicz, P. Identification of the most efficient VUV/UV radiation for plasma based inactivation of Bacillus atrophaeus spores. J. Phys. D 2007, 40. [Google Scholar] [CrossRef]
- Beltrán, F.J.; Rivas, F.J.; Gimeno, O.; Carbajo, M. Photocatalytic enhanced oxidation of fluorene in water with ozone. Comparison with other chemical oxidation methods. Ind. Eng. Chem. Res. 2005, 44, 3419–3425. [Google Scholar] [CrossRef]
- Nishimoto, S.; Mano, T.; Kameshima, Y.; Miyake, M. Photocatalytic water treatment over WO3 under visible light irradiation combined with ozonation. Chem. Phys. Lett. 2010, 500, 86–89. [Google Scholar] [CrossRef]
- Nicolas, M.; Ndour, M.; Ka, O.; DʼAnna, B.; George, C. Photochemistry of atmospheric dust: Ozone decomposition on illuminated titanium dioxide. Environ. Sci. Technol. 2009, 43, 7437–7442. [Google Scholar] [CrossRef]
- Rivas, F.J.; Beltrán, F.J.; Gimeno, O.; Carbajo, M. Fluorene oxidation by coupling of ozone, radiation, and semiconductors: A mathematical approach to the kinetics. Ind. Eng. Chem. Res. 2006, 45, 166–174. [Google Scholar] [CrossRef]
- Nakamura, R.; Sato, S. Oxygen species active for photooxidation of n-decane over TiO2 Surfaces. J. Phys. Chem. B 2002, 106, 5893–5896. [Google Scholar] [CrossRef]
- Einaga, H.; Ogata, A.; Futamura, S.; Ibusuki, T. The stabilization of active oxygen species by Pt supported on TiO2. Chem. Phys. Lett. 2001, 338, 303–307. [Google Scholar] [CrossRef]
- Huang, H.B.; Ye, D.Q.; Leung, D.Y.C. Removal of toluene using UV-irradiated and nonthermal plasma-driven photocatalyst system. J. Environ. Eng. 2010, 136, 1231–1236. [Google Scholar] [CrossRef]
- Einaga, H.; Futamura, S. Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides. J. Catal. 2004, 227, 304–312. [Google Scholar] [CrossRef]
- Song, S.; Liu, Z.; He, Z.; Zhang, A.; Chen, J.; Yang, Y.; Xu, X. Impacts of morphology and crystallite phases of titanium oxide on the catalytic ozonation of phenol. Environ. Sci. Technol. 2010, 44, 3913–3918. [Google Scholar] [CrossRef]
- Guillard, C. Photocatalytic degradation of butanoic acid: Influence of its ionisation state on the degradation pathway: Comparison with O3/UV process. J. Photochem. Photobiol. A 2000, 135, 65–75. [Google Scholar] [CrossRef]
- Phillips, S.L.; Olesik, S.V. Initial characterization of humic acids using liquid chromatography at the critical condition followed by size-exclusion chromatography and electrospray ionization mass spectrometry. Anal. Chem. 2003, 75, 5544–5553. [Google Scholar]
- Jiang, J.; Kappler, A. Kinetics of microbial and chemical reduction of humic substances: Implications for electron shuttling. Environ. Sci. Technol. 2008, 42, 3563–3569. [Google Scholar] [CrossRef]
- Navarro, P.; Sarasa, J.; Sierra, D.; Esteban, S.; Ovelleiro, J.L. Degradation of wine industry wastewaters by photocatalytic advanced oxidation. Water Sci. Technol. 2005, 51, 113–120. [Google Scholar]
- Miguel, N.; Ormad, M.P.; Mosteo, R.; Ovelleiro, J.L. Photocatalytic degradation of pesticides in natural water: Effect of hydrogen peroxide. Int. J. Photoenergy 2012, 2012. [Google Scholar] [CrossRef]
- Bullock, G.L.; Summerfelt, S.T.; Noble, A.C.; Weber, A.L.; Durant, M.D.; Hankins, J.A. Ozonation of a recirculating rainbow trout culture system I. Effects on bacterial gill disease and heterotrophic bacteria. Aquaculture 1997, 158, 43–55. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ochiai, T.; Masuko, K.; Tago, S.; Nakano, R.; Nakata, K.; Hara, M.; Nojima, Y.; Suzuki, T.; Ikekita, M.; Morito, Y.; et al. Synergistic Water-Treatment Reactors Using a TiO2-Modified Ti-Mesh Filter. Water 2013, 5, 1101-1115. https://doi.org/10.3390/w5031101
Ochiai T, Masuko K, Tago S, Nakano R, Nakata K, Hara M, Nojima Y, Suzuki T, Ikekita M, Morito Y, et al. Synergistic Water-Treatment Reactors Using a TiO2-Modified Ti-Mesh Filter. Water. 2013; 5(3):1101-1115. https://doi.org/10.3390/w5031101
Chicago/Turabian StyleOchiai, Tsuyoshi, Ken Masuko, Shoko Tago, Ryuichi Nakano, Kazuya Nakata, Masayuki Hara, Yasuhiro Nojima, Tomonori Suzuki, Masahiko Ikekita, Yuko Morito, and et al. 2013. "Synergistic Water-Treatment Reactors Using a TiO2-Modified Ti-Mesh Filter" Water 5, no. 3: 1101-1115. https://doi.org/10.3390/w5031101
APA StyleOchiai, T., Masuko, K., Tago, S., Nakano, R., Nakata, K., Hara, M., Nojima, Y., Suzuki, T., Ikekita, M., Morito, Y., & Fujishima, A. (2013). Synergistic Water-Treatment Reactors Using a TiO2-Modified Ti-Mesh Filter. Water, 5(3), 1101-1115. https://doi.org/10.3390/w5031101