Climate Change and Thermal Dynamics of the Lake Sevan Basin (Armenia): Observational Insights and Future Projections
Abstract
1. Introduction
2. Data and Methods
- SSP1–2.6 (Sustainability—Taking the Green Road): This pathway envisions a sustainable future with high social equity, focusing on renewable energy and reduced emissions. It requires data on economic growth, energy consumption, and land use practices.
- SSP2–4.5 (Middle of the Road): A balanced approach with moderate economic growth, blending continued fossil fuel use with sustainability efforts. It necessitates datasets on economic trends, energy production, and demographic changes.
- SSP3–7.0 (Regional Rivalry—A Rocky Road): A fragmented world marked by nationalism and limited international cooperation, where high fossil fuel reliance and environmental degradation prevail. It requires data on geopolitical trends and energy systems.
- SSP5–8.5 (Fossil-Fueled Development—Taking the Highway): This pathway is characterized by rapid economic growth fueled by fossil fuel consumption, projecting severe climate impacts. It requires data on fossil fuel investments and environmental degradation.
3. Results
3.1. Long-Term Decadal Variability of Air Temperature
3.2. Monthly Air Temperature Variations
3.3. Intensity of Heat Inflow and Outflow: Heat Circulation
3.4. Seasonal and Interannual Patterns of Air and Water Temperature Variability
3.5. Projected Temperature Changes in the Lake Sevan Basin
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ARCCS | Australian Research Council Centre of Excellence for Climate System Science |
| BCSD | Bias-correction-spatial-disaggregation |
| CCKP | Climate Change Knowledge Portal |
| CMIP | Coupled Model Intercomparison Project |
| CSIRO | Commonwealth Scientific and Industrial Research Organization |
| IAM | Integrated Assessment Models |
| IPCC | Intergovernmental Panel on Climate Change |
| MESCS | Ministry of Education, Science, Culture, and Sports |
| NERC | Natural Environment Research Council |
| NOAA | National Oceanic and Atmospheric Administration |
| RCP | Representative Concentration Pathway |
| SSP | Shared Socioeconomic Pathways |
| WMO | World Meteorological Organization |
References
- Shivanna, K.R. Climate change and its impact on biodiversity and human welfare. Proc. Indian Natl. Sci. Acad. 2022, 88, 160–171. [Google Scholar] [CrossRef]
- Muluneh, M.G. Impact of climate change on biodiversity and food security: A global perspective—A review article. Agric. Food Secur. 2021, 10, 36. [Google Scholar] [CrossRef]
- Feulner, G. Global challenges: Climate change. Glob. Chall. 2015, 1, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Pörtner, H.-O.; Roberts, D.C.; Adams, H.; Adelekan, I.; Adler, C.; Adrian, R.; Aldunce, P.; Ali, E.; Ara Begum, R.; Bednar-Friedl, B.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability; Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Méndez, C.; Simpson, N.; Johnson, F.; Birt, A. Climate Change 2023: Synthesis Report (Full Volume); Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Gevorgyan, G.; Tümpling, W.; Shahnazaryan, G.; Friese, K.; Schultze, M. Lake-wide assessment of trace elements in surface sediments and water of Lake Sevan. J. Limnol. 2023, 81, 2096. [Google Scholar] [CrossRef]
- Hayrapetyan, A.; Gevorgyan, G.; Schultze, M.; Shikhani, M.; Khachikyan, T.; Krylov, A.; Rinke, K. Contemporary community composition, spatial distribution patterns, and biodiversity characteristics of zooplankton in large alpine Lake Sevan, Armenia. J. Limnol. 2023, 81, 2150. [Google Scholar] [CrossRef]
- Mkrtchyan, S.S.; Gabrielyan, A.H.; Maghakyan, H.G.; Pafengolts, K.N.; Vardanyants, L.A. (Eds.) Geology of the Armenian SSR. Volume I: Geomorphology; Academy of Sciences Press: Yerevan, Armenia, 1962. (In Russian) [Google Scholar]
- Climate Risk Country Profile: Armenia. The World Bank Group and the Asian Development Bank: Yerevan, Armenia. 2021. [Cited 10 December 2025]. Available online: https://www.adb.org/publications/climate-risk-country-profile-armenia (accessed on 1 December 2025).
- Sudeep, T.; Dahal, S.; Shrestha, D.; Guyennon, N.; Romano, E.; Colombo, N.; Salerno, F. Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015. Atmos. Res. 2019, 228, 261–269. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Z.; Ma, Y. Spatial and temporal analysis of changes in temperature extremes in the non-monsoon region of China from 1961 to 2016. Theor. Appl. Climatol. 2019, 137, 2697–2713. [Google Scholar] [CrossRef]
- Gao, L.; Deng, H.; Lei, X.; Wei, J.; Chen, Y.; Li, Z.; Ma, M.; Chen, X.; Chen, Y.; Liu, M.; et al. Evidence of elevation-dependent warming from the Chinese Tian Shan. Cryosphere 2021, 15, 5765–5783. [Google Scholar] [CrossRef]
- Sigro, J.; Cisneros, M.; Perez-Luque, A.J.; Perez-Martinez, C.; Vegas-Vilarrubia, T. Trends in temperature and precipitation at high and low elevations in the main mountain ranges of the Iberian Peninsula (1894–2020): The Sierra Nevada and the Pyrenees. Int. J. Climatol. 2024, 44, 2897–2920. [Google Scholar] [CrossRef]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef]
- Armenian Legal Information System (ARLIS). RA Government Resolution N. 1912-N Dated 08.12.2022, Sevan Water Basin Management Area Management Plan for 2022–2027. 2022; [Cited 10 December 2025]. Available online: http://arlis.am/DocumentView.aspx?DocID=171479 (accessed on 1 December 2025). (In Armenian)
- Muller, R.; Curry, J.; Groom, D.; Jacobsen, R.; Perlmutter, S.; Rohde, R.; Rosenfeld, A.; Wickham, C.; Wurtele, J. Decadal variations in the global atmospheric land temperatures. J. Geophys. Res. Atmos. 2013, 118, e50458. [Google Scholar] [CrossRef]
- Wang, T.; Yin, S.; Wei, H.; Wang, H.; Luo, F.; Miao, J.; Fu, Y. Decadal variability of extreme high temperature in mid- and high-latitude Asia and its associated North Atlantic air–sea interaction. Clim. Dyn. 2023, 61, 4587–4601. [Google Scholar] [CrossRef]
- Neukom, R.; Barboza, L.; Erb, M.; Shi, F.; Emile-Geay, J.; Evans, M.; Franke, J.; Kaufman, D.; Luecke, L.; Rehfeld, K.; et al. Consistent multi-decadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 2019, 12, 643–649. [Google Scholar] [CrossRef] [PubMed]
- González Hidalgo, J.C.; Beguería, S.; Peña Ángulo, D.; Sandonis, L. Variability of maximum and minimum monthly mean air temperatures over mainland Spain and their relationship with low variability atmospheric patterns for the period 1916–2015. Int. J. Climatol. 2022, 42, 1723–1741. [Google Scholar] [CrossRef]
- Duhan, D.; Pandey, A.; Gahalaut, K.P.S.; Pandey, R.P. Spatial and temporal variability in maximum, minimum and mean air temperatures at Madhya Pradesh in central India. Comptes Rendus Geosci. 2013, 345, 3–21. [Google Scholar] [CrossRef]
- Buytaert, W. Assessment of the impacts of climate change on mountain hydrology: Development of a methodology through a case study in the Andes of Peru. Mt. Res. Dev. 2012, 32, 385–386. [Google Scholar] [CrossRef]
- Vergara, W.; Deeb, A.; Leino, I.; Kitoh, A.; Escobar, M. Assessment of the Impacts of Climate Change on Mountain Hydrology: Development of a Methodology Through a Case Study in the Andes of Peru; World Bank Publications, No. 2278; The World Bank Group: Washington, DC, USA, 2011. [Google Scholar]
- Gevorgyan, A.; Melkonyan, H.; Aleksanyan, T.; Iritsyan, A.; Khalatyan, Y. An assessment of observed and projected temperature changes in Armenia. Arab. J. Geosci. 2016, 9, 27. [Google Scholar] [CrossRef]
- Alexander, L.; Zhang, X.; Peterson, T.C.; Caesar, J.; BA, G.; Tank, A.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar] [CrossRef]
- Melkonyan, A. Climate change impact on water resources and crop production in Armenia. Agric. Water Manag. 2015, 161, 86–101. [Google Scholar] [CrossRef]
- Robles, M.; Peyron, O.; Brugiapaglia, E.; Ménot, G.; Dugerdil, L.; Ollivier, V.; Ansanay-Alex, S.; Develle, A.-L.; Tozalakyan, P.; Meliksetian, K.; et al. Impact of climate changes on vegetation and human societies during the Holocene in the South Caucasus (Vanevan, Armenia): A multiproxy approach including pollen, NPPs and brGDGTs. Quat. Sci. Rev. 2022, 277, 107297. [Google Scholar] [CrossRef]
- Shikhani, M.; Feldbauer, J.; Ladwig, R.; Mercado-Bettín, D.; Moore, T.N.; Gevorgyan, A.; Misakyan, A.; Mi, C.; Schultze, M.; Boehrer, B.; et al. Combining a multi-lake model ensemble and a multi-domain CORDEX climate data ensemble for assessing climate change impacts on Lake Sevan. Water Resour. Res. 2024, 60, e2023WR036511. [Google Scholar] [CrossRef] [PubMed]
- Shikhani, M.; Mi, C.; Gevorgyan, A.; Gevorgyan, G.; Misakyan, A.; Azizyan, L.; Barfus, K.; Schulze, M.; Shatwell, T.; Rinke, K. Simulating thermal dynamics of the largest lake in the Caucasus region: The mountain Lake Sevan. J. Limnol. 2021, 81, 2024. [Google Scholar] [CrossRef]
- Siabi, E.K.; Awafo, E.A.; Kabo-bah, A.T.; Derkyi, N.S.A.; Akpoti, K.; Mortey, E.M.; Yazdanie, M. Assessment of Shared Socioeconomic Pathway (SSP) climate scenarios and its impacts on the Greater Accra region. Urban Clim. 2023, 49, 101432. [Google Scholar] [CrossRef]
- Nazarenko, L.; Tausnev, N.; Russell, G.; Rind, D.; Miller, R.; Schmidt, G.; Bauer, S.; Kelley, M.; Ruedy, R.; Ackerman, A.; et al. Future climate change under SSP emission scenarios with GISS-E2.1. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002871. [Google Scholar] [CrossRef]
- Ciampittiello, M.; Marchetto, A.; Boggero, A. Water resources management under climate change: A review. Sustainability 2024, 16, 3590. [Google Scholar] [CrossRef]
- Yuan, X.; Li, S.; Chen, J.; Yu, H.; Yang, T.; Wang, C.; Huang, S.; Chen, H.; Ao, X. Impacts of global climate change on agricultural production: A comprehensive review. Agronomy 2024, 14, 1360. [Google Scholar] [CrossRef]
- Zhao, M.; Boll, J. Adaptation of water resources management under climate change. Front. Water 2022, 4, 983228. [Google Scholar] [CrossRef]
- Earth System Model Evaluation Project. CMIP6—Coupled Model Intercomparison Project Phase 6. In Program for Climate Model Diagnosis and Intercomparison (PCMDI) [Internet]; Cited 10 December 2025; LLNL: Livermore, CA, USA, 2014. Available online: https://pcmdi.llnl.gov/CMIP6/ (accessed on 1 December 2025).
- Eyring, V.; Bony, S.; Meehl, G.; Senior, C.; Stevens, B.; Stouffer, R.; Taylor, K. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Bock, L.; Lauer, A. Cloud properties and their projected changes in CMIP models with low to high climate sensitivity. Atmos. Chem. Phys. 2024, 24, 1587–1605. [Google Scholar] [CrossRef]
- O’Neill, B.; Kriegler, E.; Riahi, K.; Ebi, K.; Hallegatte, S.; Carter, T.; Mathur, R.; Vuuren, D. A new scenario framework for climate change research: The concept of Shared Socioeconomic Pathways. Climatic Change 2014, 122, 387–400. [Google Scholar] [CrossRef]
- Vuuren, D.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Johannsen, F.; Lima, D.; Lemos, G.; Bento, V.; Bushenkova, A. High-resolution downscaling of CMIP6 Earth system and global climate models using deep learning for Iberia. Geosci. Model. Dev. 2024, 17, 229–259. [Google Scholar] [CrossRef]
- Grose, M.; Narsey, S.; Trancoso, R.; Mackallah, C.; Delage, F.; Dowdy, A.; Virgilio, G.; Watterson, I.; Dobrohotoff, P.; Rashid, H.; et al. A CMIP6-based multi-model downscaling ensemble to underpin climate change services in Australia. SSRN Prepr. 2022. [Google Scholar] [CrossRef]
- Gebrechorkos, S.; Leyland, J.; Slater, L.; Wortmann, M.; Ashworth, P.J.; Bennett, G.L.; Boothroyd, R.; Cloke, H.; Delorme, P.; Griffith, H.; et al. A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses. Sci. Data 2023, 10, 611. [Google Scholar] [CrossRef]
- World Bank. Climate Metadata. [Internet]. World Bank Climate Knowledge Portal. 2025. [Cited 10 December 2025]. Available online: https://climateknowledgeportal.worldbank.org/metadata (accessed on 3 December 2025).
- Yang, Y.Q.; Hou, Q.; Zhou, C.H.; Liu, H.L.; Wang, Y.Q.; Niu, T. Sand/dust storm processes in Northeast Asia and associated large-scale circulations. Atmos. Chem. Phys. 2008, 8, 25–33. [Google Scholar] [CrossRef]
- Data Buoy Cooperation Panel (DBCP). Reference Guide to the GTS Sub-System of the Argos Processing System. Rev. 1.6; DBCP Technical Document No. 2; WMO & IOC Data Buoy Cooperation Panel: Geneva, Switzerland, 2005; 102p. [Google Scholar] [CrossRef]
- Hegerl, G.C.; Zwiers, F.W.; Braconnot, P.; Gillet, N.P.; Luo, Y.; Marengo, J.; Nicholls, N.; Penner, J.E.; Stott, P.A. Understanding and attributing climate change. In Climate Change 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Mille, H.L., Eds.; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Pepin, N.C.; Arnone, E.; Gobiet, A.; Haslinger, K.; Kotlarski, S.; Notarnicola, C.; Palazzi, E.; Seibert, P.; Serafin, S.; Schöner, W.; et al. Climate changes and their elevational patterns in the mountains of the world. Rev. Geophys. 2022, 60, e2020RG000730. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). The Global Climate 2011–2020: A Decade of Accelerating Climate Change; WMO-No. 1338; World Meteorological Organization: Geneva, Switzerland, 2023.
- Subin, Z.M.; Murphy, L.N.; Li, F.; Bonfils, C.; Riley, W.J. Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: Analyses in the Community Earth System Model 1 (CESM1). Tellus A 2012, 64, 15639. [Google Scholar] [CrossRef]
- Jiang, Y.; Chi, Y.; Wang, W.; Li, W.; Wang, H.; Sun, J. Responses of the East Asian winter climate to global warming in CMIP6 models. Atmosphere 2025, 16, 1143. [Google Scholar] [CrossRef]
- Hu, S.; Hsu, P.-C. Drivers of elevation-dependent warming over the Tibetan Plateau. Atmos. Ocean. Sci. Lett. 2023, 16, 100289. [Google Scholar] [CrossRef]
- Wang, H.; Wang, B.-B.; Cui, P.; Ma, Y.-M.; Wang, Y.; Hao, J.-S.; Wang, Y.; Li, Y.-M.; Sun, L.-J.; Wang, J.; et al. Disaster effects of climate change in High Mountain Asia: State of art and scientific challenges. Adv. Clim. Change Res. 2024, 15, 367–389. [Google Scholar] [CrossRef]
- Lenters, J.; Kratz, T.; Bowser, C. Effects of climate variability on lake evaporation: Results from a long-term energy budget study of Sparkling Lake, northern Wisconsin (USA). J. Hydrol. 2005, 308, 168–195. [Google Scholar] [CrossRef]
- Kundzewicz, Z.; Mata, L.; Arnell, N.; Doll, P.; Jiménez, B.; Miller, K.; Oki, T.; Şen, Z.; Shiklomanov, I. The implications of projected climate change for freshwater resources and their management. Hydrol. Sci. J. 2008, 53, 3–10. [Google Scholar] [CrossRef]
- Verma, A.; Agrawal, S. Evaluating the natural cooling potential of waterbodies in dense urban landscape: A case study of Bengaluru, India. Urban Clim. 2024, 58, 102200. [Google Scholar] [CrossRef]
- Galstyan, H.; Sfîcă, L.; Ichim, P. Long-term variability of temperature in Armenia in the context of climate change. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 2016, 10, 19–25. [Google Scholar]
- UNDP Armenia. Fourth National Communication on Climate Change; UNDP Armenia: Yerevan, Armenia, 2020; 213p, Available online: http://env.am/storage/files/fnc-eng.pdf (accessed on 4 December 2025).
- Paerl, H.W.; Huisman, J. Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 2009, 1, 27–37. [Google Scholar] [CrossRef]
- Li, X.; Hang, X.; Zhu, S.; Sun, L.; Li, Y. Response of cyanobacterial blooms to climate warming: Evidence from satellite observations and long-term trends in Lake Taihu in China. Sci. Rep. 2025, 15, 38820. [Google Scholar] [CrossRef]
- Erratt, K.J.; Creed, I.F.; Lobb, D.A.; Smol, J.P.; Trick, C.G. Climate change amplifies the risk of potentially toxigenic cyanobacteria. Glob. Change Biol. 2023, 29, 5240–5249. [Google Scholar] [CrossRef]
- Gevorgyan, G.; Rinke, K.; Schultze, M.; Mamyan, A.; Kuzmin, A.; Belykh, O.; Sorokovikova, E.; Hayrapetyan, A.; Hovsepyan, A.; Khachikyan, T.; et al. First report about toxic cyanobacterial bloom occurrence in Lake Sevan, Armenia. Int. Rev. Hydrobiol. 2020, 105, 131–142. [Google Scholar] [CrossRef]
- Lee, S.; Park, H.-S.; Kim, M.-K.; Min, S.-K.; Hwang, H. Future increases in Eurasian mid-latitude winter temperature variability shaped by a weakened Atlantic Meridional Overturning Circulation. Commun. Earth Environ. 2025, 6, 22. [Google Scholar] [CrossRef]
- Gevorgyan, A.; Melkonyan, H.; Abrahamyan, R.; Petrosyan, Z.; Shahnazaryan, A.; Astsatryan, H.; Sahakyan, V.; Shoukouryan, Y. A persistent surface inversion event in Armenia as simulated by WRF model. In 2015 Computer Science and Information Technology (CSIT); IEEE: New York, NY, USA, 2015. [Google Scholar] [CrossRef]










| Model Name | Modeling Center |
|---|---|
| hadgem3-gc31-ll | UK Met Office Hadley Centre, UK |
| ipsl-cm6a-lr | The Institute Pierre Simon Laplace, France |
| inm-cm4-8 | Institute for Numerical Mathematics, Russia |
| kiost-esm | Korea Institute of Ocean Science and Technology, Republic of Korea |
| kace-1-0-g | National Institute of Meteorological Research, Republic of Korea |
| miroc6 | Atmosphere and Ocean Research Institute, The University of Tokyo, Japan |
| access-cm2 | CSIRO (Commonwealth Scientific and Industrial Research Organization, Australia), and ARCCS (Australian Research Council Centre of Excellence for Climate System Science, Australia |
| miroc-es2l | Atmosphere and Ocean Research Institute, The University of Tokyo, Center for Climate System Research-National Institute for Environmental Studies, Japan |
| mpi-esm1-2-hr | Max Planck Institute for Meteorology (MPI-M), Germany |
| giss-e2-1-g | Goddard Institute of Space Studies, NASA, USA |
| access-esm1.5 | CSIRO (Commonwealth Scientific and Industrial Research Organization, Australia), and ARCCS (Australian Research Council Centre of Excellence for Climate System Science, Australia |
| gfdl-esm4 | Geophysical Fluid Dynamics Laboratory, NOAA, USA |
| cnrm-cm6-1 | Centre National de Recherches Meteorologiques, France |
| hadgem3-gc31-mm | UK Met Office Hadley Centre, UK |
| gfdl-cm4 | Geophysical Fluid Dynamics Laboratory, NOAA, USA |
| canesm5 | Canadian Centre for Climate Modeling and Analysis, Canada |
| mpi-esm1-2-lr | Max Planck Institute for Meteorology (MPI-M), Germany |
| bcc-csm2-mr | Beijing Climate Center, China Meteorological Administration, China |
| mri-esm2-0 | Meteorological Research Institute, Japan |
| taiesm1 | Research Center for Environmental Changes, Academia Sinica, Taiwan |
| ec-earth3-veg-lr | EC-Earth-Consortium |
| ukesm1-0-ll | UK’s Met Office and Natural Environment Research Council (NERC), UK |
| cmcc-esm2 | Euro-Mediterranean Center on Climate Change |
| nesm3 | Nanjing University of Information Science and Technology, China |
| noresm2-mm | Norwegian Climate Centre, Norway |
| ec-earth2 | EC-Earth-Consortium |
| noresm2-lm | Norwegian Climate Centre, Norway |
| inm-cm5-0 | Institute for Numerical Mathematics, Russia |
| cnrm-esm2-1 | Centre National de Recherches Meteorologiques/Centre Européen de Recherche et Formation Avancées en Calcul Scientifique, France |
| fgoals-g3 | China Academy of Sciences, China |
| N | Meteorological Station | Station Code | Geographic Coordinates | Altitude Above Sea Level (m) | |
|---|---|---|---|---|---|
| Latitude | Longitude | ||||
| 1 | Semyonovka | M-1 | 40.6597 | 44.8981 | 2104 |
| 2 | Sevan | M-2 | 40.5653 | 45.0083 | 1917 |
| 3 | Gavar | M-3 | 40.3486 | 45.1300 | 1961 |
| 4 | Martuni | M-4 | 40.1369 | 45.2969 | 1943 |
| 5 | Masrik | M-5 | 40.2075 | 45.7644 | 1940 |
| 6 | Shorzha | M-6 | 40.5006 | 45.2717 | 1917 |
| Hydrological station | |||||
| 1 | Sevan Peninsula | H-1 | 40.5628 | 45.0084 | 1890 |
| 2 | Martuni | H-2 | 40.1623 | 45.3076 | 1890 |
| 3 | Karchaghbyur | H-3 | 40.1783 | 45.5644 | 1890 |
| 4 | Shorzha | H-4 | 40.4972 | 45.2700 | 1890 |
| Stations | Winter | Spring | Summer | Autumn |
|---|---|---|---|---|
| Shorzha | ±1.77 | ±1.67 | ±1.41 | ±1.51 |
| Martuni | ±1.68 | ±1.30 | ±0.86 | ±1.01 |
| Gavar | ±1.69 | ±1.25 | ±0.81 | ±0.91 |
| Masrik | ±2.04 | ±1.15 | ±0.89 | ±1.06 |
| Semyonovka | ±2.41 | ±1.63 | ±1.10 | ±1.19 |
| Sevan | ±1.67 | ±1.35 | ±1.04 | ±1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Khachatryan, G.; Gevorgyan, A.; Vaseashta, A.; Misakyan, A.; Rinke, K.; Gevorgyan, A.; Ghukasyan, L.; Gevorgyan, G. Climate Change and Thermal Dynamics of the Lake Sevan Basin (Armenia): Observational Insights and Future Projections. Water 2026, 18, 352. https://doi.org/10.3390/w18030352
Khachatryan G, Gevorgyan A, Vaseashta A, Misakyan A, Rinke K, Gevorgyan A, Ghukasyan L, Gevorgyan G. Climate Change and Thermal Dynamics of the Lake Sevan Basin (Armenia): Observational Insights and Future Projections. Water. 2026; 18(3):352. https://doi.org/10.3390/w18030352
Chicago/Turabian StyleKhachatryan, Gor, Artur Gevorgyan, Ashok Vaseashta, Amalya Misakyan, Karsten Rinke, Artak Gevorgyan, Lilit Ghukasyan, and Gor Gevorgyan. 2026. "Climate Change and Thermal Dynamics of the Lake Sevan Basin (Armenia): Observational Insights and Future Projections" Water 18, no. 3: 352. https://doi.org/10.3390/w18030352
APA StyleKhachatryan, G., Gevorgyan, A., Vaseashta, A., Misakyan, A., Rinke, K., Gevorgyan, A., Ghukasyan, L., & Gevorgyan, G. (2026). Climate Change and Thermal Dynamics of the Lake Sevan Basin (Armenia): Observational Insights and Future Projections. Water, 18(3), 352. https://doi.org/10.3390/w18030352

