Geometry-Driven Hydraulic Behavior of Pressure-Compensating Emitters for Water-Saving Agricultural Irrigation Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Emitter Types and Internal Configuration
2.2. Hydraulic Test Bench and Procedure
2.3. Hydraulic Performance Analysis
- 0 ≤ x ≤ 0.1 → Pressure-compensating;
- 0.1 < x ≤ 0.5 → Semi-compensating;
- x > 0.5 → Non-compensating.
2.4. Statistical Analysis
3. Results
3.1. Hydraulic Performance of Emitter
3.1.1. Nominal Versus Actual Discharge
3.1.2. Flow Coefficient (k) and Pressure Exponent (x)
3.1.3. Discharge Variability, Emission Uniformity, and Flow Variation
3.1.4. Overall Hydraulic Performance Assessment
3.2. Pressure–Discharge Relationships
3.3. Influence of Flow Path Geometry and Predictive Modeling
3.4. Comparative Ranking of Emitters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sultan, W.M.; Hussien, A.A.; Hussein, N.S. Effect of drippers geometrics map on hydraulic performance of drippers. Egypt. J. Agric. Res. 2018, 96, 1009–1018. [Google Scholar] [CrossRef]
- Yang, F.; Li, H.; Jiang, Y. A Review of Pressure Regulation Technologies for Irrigation Pipeline Systems. Agriculture 2025, 15, 1528. [Google Scholar] [CrossRef]
- Xu, T.; Bao, S.; Li, Z.; Yu, Q.; Zheng, E. The study of Structural optimization on hydraulic performance and anti-clogging performance of Labyrinth Drip Irrigation Emitters. Agronomy 2023, 13, 2496. [Google Scholar] [CrossRef]
- Sethi, V.P. Greenhouse Engineering: Software-Driven Design and Modelling for Optimal Microclimate Control; CRC Press: Boca Raton, FL, USA, 2025. [Google Scholar]
- Xing, S.; Wang, Z.; Zhang, J.; Liu, N.; Zhou, B. Simulation and verification of hydraulic performance and energy dissipation mechanism of perforated drip irrigation emitters. Water 2021, 13, 171. [Google Scholar] [CrossRef]
- De Marchis, M.; Bruno, F.; Saccone, D.; Napoli, E. Performance of Emitters in Drip Irrigation Systems Using Computational Fluid Dynamic Analysis. Water 2025, 17, 689. [Google Scholar] [CrossRef]
- Sokol, J.; Narain, J.; Costello, J.; McLaurin, T.; Kumar, D.; Winter, A.G. Analytical model for predicting activation pressure and flow rate of pressure-compensating inline drip emitters and its use in low-pressure emitter design. Irrig. Sci. 2022, 40, 217–237. [Google Scholar] [CrossRef]
- Elnemer, M.; Abo-Elatta, N. Effect of inlet water temperature on the uniformity parameters of drip irrigation system. Damietta J. Agric. Sci. 2024, 3, 114–123. [Google Scholar] [CrossRef]
- Sharu, E.H. Hydraulic performance analysis of drip irrigation system using pressure compensated dripper at low operating pressure. Adv. Agric. Food Res. J. 2022, 3, e0000225. [Google Scholar] [CrossRef]
- Ramachandrula, V.R.; Kasa, R.R. Non-destructive characterization of physical and chemical clogging in cylindrical drip emitters. Heliyon 2020, 6, e05327. [Google Scholar] [CrossRef]
- Ramachandrula, V.R.; Kasa, R.R. Prevention and treatment of drip emitter clogging: A review of various innovative methods. Water Pract. Technol. 2022, 17, 2059–2070. [Google Scholar] [CrossRef]
- Dallagi, H.; Ait-Mouheb, N.; Soric, A.; Boiron, O. Simulation of the flow characteristics of a labyrinth milli-channel used in drip irrigation. Biosyst. Eng. 2024, 239, 114–129. [Google Scholar] [CrossRef]
- Dewan, A.; Srivastava, P. A review of heat transfer enhancement through flow disruption in a microchannel. J. Therm. Sci. 2015, 24, 203–214. [Google Scholar] [CrossRef]
- Fresta, E.; Costa, R.D. Beyond traditional light-emitting electrochemical cells–a review of new device designs and emitters. J. Mater. Chem. C 2017, 5, 5643–5675. [Google Scholar] [CrossRef]
- ISO 9261:2004; Agricultural Irrigation Equipment—Emitters and Emitting Pipe—Specification and Test Methods. International Organization for Standardization: Geneva, Switzerland, 2004.
- Hussein, N.; Saad, S.; Refaie, K.; Sultan, W.; Ghonimy, M.; Alzoheıry, A. Air injection in Subsurface Drip Irrigation as an Efficient Method for Zucchini Production. Turk. J. Agric. Eng. Res. 2024, 5, 303–318. [Google Scholar] [CrossRef]
- Chen, X.; Wei, Z.; He, K. An estimation of the discharge exponent of a drip irrigation emitter by response surface methodology and machine learning. Water 2022, 14, 1034. [Google Scholar] [CrossRef]
- Harbuck, T.L.; Fulton, J.P.; Dougherty, M.; Taylor, S.T.; Eakes, D.J.; Sibley, J.L. In-field application uniformity evaluation of pressure-compensating subsurface-drip irrigation products. Appl. Eng. Agric. 2011, 27, 43–50. [Google Scholar] [CrossRef]
- Lamm, F.R.; Colaizzi, P.D.; Sorensen, R.B.; Bordovsky, J.P.; Dougherty, M.; Balkcom, K.; Zaccaria, D.; Bali, K.M.; Rudnick, D.R.; Peters, R.T. A 2020 vision of subsurface drip irrigation in the US. Trans. ASABE 2021, 64, 1319–1343. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Sharu, E.H.; Ab Razak, M.S. Hydraulic performance and modelling of pressurized drip irrigation system. Water 2020, 12, 2295. [Google Scholar] [CrossRef]
- Li, Y.; Feng, X.; Liu, Y.; Han, X.; Liu, H.; Sun, Y.; Li, H.; Xie, Y. Research on hydraulic properties and energy dissipation mechanism of the novel water-retaining labyrinth channel emitters. Agronomy 2022, 12, 1708. [Google Scholar] [CrossRef]
- Chen, X.; Wei, Z.; Ma, R.; Li, J.; Wang, Y.; Huang, L.; Dang, C.; Zhoo, J.; Li, Z. Research on the compensation mechanism of pressure compensating emitters based on numerical simulation and visualisation experiment. Biosyst. Eng. 2025, 253, 104125. [Google Scholar] [CrossRef]
- Du, K.; Xing, S.; Zhang, J.; Liu, N.; Zhang, J.; Li, M.; Wang, Z. Numerical simulation and structure optimization for hydraulic performance of perforated drip irrigation emitters. Water Supply 2024, 24, 1117–1130. [Google Scholar] [CrossRef]
- Naeeni, S.T.O.; Rahmani Firozjaei, M.; Hajebi, Z.; Akbari, H. Investigation of the performance of the response surface method to optimize the simulations of hydraulic phenomena. Innov. Infrastruct. Solut. 2023, 8, 10. [Google Scholar] [CrossRef]
- Zaiyu, L.; Yan, M.; Hao, G.; Shihong, G.; Yanqun, Z.; Guangyong, L.; Feng, W. The hydraulic performance and clogging characteristics of a subsurface drip irrigation system operating for five years in the North China plain. Agric. Water Manag. 2025, 307, 109217. [Google Scholar] [CrossRef]
- Dhoble, S.J.; Nande, A.; Kalyani, N.T.; Tiwari, A.; Arof, A.K. (Eds.) Functional Materials from Carbon, Inorganic, and Organic Sources: Methods and Advances; Woodhead Publishing: Stockton, UK, 2022. [Google Scholar]
- Hou, P.; Ma, C.; Wang, J.; Li, Y.; Zhang, K.; Hou, S.; Li, J.; Sun, Z.; Xiao, Y.; Li, Y. Failure behavior of pressure compensating emitter under different operation pressures in drip irrigation systems. Agric. Water Manag. 2024, 297, 108835. [Google Scholar] [CrossRef]
- AL-Dulaimi, B.A.; AL-Mehmdy, S.M. Effect of pipe type and Emitters discharge on performance criteria of surface drip irrigation system. In IOP Conference Series: Earth and Environmental Science, Proceedings of the Third Scientific and First International Conference of De-sert Studies-2021 (ICDS-2021), Ramadi, Iraq, 17–18 November 2021; IOP Publishing: Bristol, UK, 2021; Volume 904, p. 012013. [Google Scholar]
- Barua, S. Design and Analysis of a Pressure Compensated Emitter for Efficient Drip Irrigation System; Central library of Bangladesh University of Engineering and Technology: Dhaka, Bangladesh, 2019; Available online: http://lib.buet.ac.bd:8080/xmlui/handle/123456789/6215 (accessed on 22 October 2025).
- Buema, G.; Harja, M.; Lupu, N.; Chiriac, H.; Forminte, L.; Ciobanu, G.; Bucur, D.; Bucur, R.D. Adsorption Performance of Modified Fly Ash for Copper Ion Removal from Aqueous Solution. Water 2021, 13, 207. [Google Scholar] [CrossRef]
- Domínguez-Niño, J.M.; Oliver-Manera, J.; Girona, J.; Casadesús, J. Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors. Agric. Water Manag. 2020, 228, 105880. [Google Scholar] [CrossRef]
- Gao, N.; Mo, Y.; Wang, J.; Yang, L.; Gong, S. Effects of Flow Path Geometrical Parameters on the Hydraulic Performance of Variable Flow Emitters at the Conventional Water Supply Stage. Agriculture 2022, 12, 1531. [Google Scholar] [CrossRef]
- Chen, X.; Wei, Z.; Wei, C.; He, K. Effect of compensation chamber structure on the hydraulic performance of pressure compensating drip emitters. Biosyst. Eng. 2022, 214, 107–121. [Google Scholar] [CrossRef]
- Li, Y.; Feng, X.; Han, X.; Sun, Y.; Liu, Y.; Yao, M.; Liu, H.; He, Q.; Li, H. Analysis of internal flow characteristics and determination of the core structural parameters of a stellate labyrinth channel irrigation emitter. Biosyst. Eng. 2023, 231, 1–19. [Google Scholar] [CrossRef]
- Du, Y.; Fu, Q.; Ai, P.; Ma, Y.; Pan, Y. Modeling Comprehensive Deficit Irrigation Strategies for Drip-Irrigated Cotton Using AquaCrop. Agriculture 2024, 14, 1269. [Google Scholar] [CrossRef]




| Emitter Type | Nominal Flow Rate, L/h | ND Feature | Labyrinth Type | Inlet Filtration Design |
|---|---|---|---|---|
| E1 | 3.8 | Yes | Long tortuous, multi-tooth | Multi-stage radial slots |
| E2 | 4.2 | No | Medium length, staggered | Peripheral slits |
| E3 | 3.6 | No | Compact zigzag | Cross-slot entry |
| E4 | 3.6 | No | Long spiral, deep channel | Radial multi-slot with screen filter |
| E5 | 3.5 | Yes | Short compact with high tortuosity | Multi-stage with fine mesh |
| E6 | 3.75 | Yes | Medium zigzag with energy dissipators | Longitudinal slit entry |
| Hydraulic Performance | Emitter Type | |||||
|---|---|---|---|---|---|---|
| E1 | E2 | E3 | E4 | E5 | E6 | |
| qnom, L/h | 3.8 | 4.2 | 3.6 | 3.6 | 3.5 | 3.75 |
| qact, L/h | 3.99 ± 0.08 | 4.19 ± 0.08 | 3.44 ± 0.10 | 3.35 ± 0.09 | 3.59 ± 0.06 | 3.74 ± 0.11 |
| k, L/h | 4.02 | 4.29 | 3.48 | 3.35 | 3.63 | 3.82 |
| x | 0.04 | 0.12 | 0.09 | 0.03 | 0.01 | 0.04 |
| Flow regime | PC | Semi-PC | PC | PC | PC | PC |
| CV, % | 2.83 | 3.08 | 4.33 | 2.64 | 2.16 | 2.86 |
| Classification (CV) | Excellent | Excellent | Excellent | Excellent | Excellent | Excellent |
| EU, % | 96.2 | 95.8 | 94.4 | 96.3 | 97.2 | 96 |
| Classification (EU) | Excellent | Excellent | Excellent | Excellent | Excellent | Excellent |
| qvar, % | 7.08 | 7.30 | 12.62 | 9.23 | 8.95 | 10.70 |
| Classification (qvar) | Acceptable | Acceptable | Acceptable | Acceptable | Acceptable | Acceptable |
| Emitter | A, mm2 | Dh, mm | L, mm | Ls, mm | n | τ | ND, 0/1 | θ−, ° | Ain, mm2 | Aout, mm2 | CV(Dh), % | L/Dh |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| E1 | 0.75 | 4.0 | 91.8 | 6.0 | 22 | 15.3 | 1 | 69 | 1.7 | 3.1 | 7.0 | 22.8 |
| E2 | 1.00 | 4.0 | 166.0 | 6.5 | 16 | 25.5 | 0 | 76 | 17.2 | 2 × 3.1 | 6.8 | 41.5 |
| E3 | 1.00 | 4.1 | 210.0 | 6.5 | 24 | 32.3 | 0 | 90 | 3.7 | 4 × 3.1 | 7.5 | 51.2 |
| E4 | 1.00 | 4.0 | 94.38 | 7.5 | 30 | 12.6 | 0 | 52 | 3.2 | 3.1 | 8.6 | 23.6 |
| E5 | 0.50 | 3.0 | 30.2 | 6.5 | 15 | 4.6 | 1 | 75 | 2.6 | 7.1 | 7.8 | 10.1 |
| E6 | 1.00 | 4.1 | 210.0 | 6.5 | 24 | 32.3 | 1 | 90 | 3.7 | 4 × 3.1 | 6.9 | 51.2 |
| Predictor | Coefficient for ln (k) (β ± SE) | p-Value | Coefficient for x (β ± SE) | p-Value |
|---|---|---|---|---|
| ln A | +0.21 ± 0.07 | 0.028 | +0.04 ± 0.02 | 0.021 |
| ln (L/Dh) | –0.26 ± 0.09 | 0.015 | –0.06 ± 0.02 | 0.024 |
| n | –0.07 ± 0.03 | 0.044 | –0.03 ± 0.01 | 0.041 |
| τ | –0.14 ± 0.05 | 0.021 | –0.05 ± 0.02 | 0.017 |
| ND | +0.10 ± 0.04 | 0.059 | –0.01 ± 0.01 | 0.145 |
| θ− | –0.02 ± 0.01 | 0.124 | –0.02 ± 0.01 | 0.038 |
| ln qnom | +0.04 ± 0.01 | 0.011 | +0.01 ± 0.00 | 0.020 |
| Constant | 3.75 ± 0.12 | <0.001 | 0.09 ± 0.01 | <0.001 |
| Emitter | k, L/h | x | q, L/h at 1 Bar | |||
|---|---|---|---|---|---|---|
| Act. | Pre. | Act. | Pre. | Act. | Pre. | |
| E1 | 4.02 | 4.00 | 0.04 | 0.05 | 4.02 | 4.00 |
| E2 | 4.29 | 4.26 | 0.12 | 0.11 | 4.29 | 4.26 |
| E3 | 3.48 | 3.50 | 0.09 | 0.10 | 3.48 | 3.50 |
| E4 | 3.35 | 3.37 | 0.03 | 0.04 | 3.35 | 3.37 |
| E5 | 3.63 | 3.61 | 0.01 | 0.02 | 3.63 | 3.61 |
| E6 | 3.82 | 3.81 | 0.04 | 0.05 | 3.82 | 3.81 |
| Emitter | Flow Coefficient (k) | Category (k) | Pressure Exponent (x) | Category (x) | Overall Ranking |
|---|---|---|---|---|---|
| E1 | 4.02 | High | 0.04 | High | Best overall (balanced) |
| E2 | 4.29 | High | 0.12 | Low | High-flow, weakly stable |
| E3 | 3.48 | Low | 0.09 | Low | Limited applicability |
| E4 | 3.35 | Low | 0.03 | High | Stable but low flow |
| E5 | 3.63 | Moderate | 0.01 | High | Most stable under variation |
| E6 | 3.82 | Moderate | 0.04 | High | Strong stability, balanced |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ghonimy, M.; Alharbi, A.; Hussein, N.S.; Imam, H.M. Geometry-Driven Hydraulic Behavior of Pressure-Compensating Emitters for Water-Saving Agricultural Irrigation Systems. Water 2026, 18, 244. https://doi.org/10.3390/w18020244
Ghonimy M, Alharbi A, Hussein NS, Imam HM. Geometry-Driven Hydraulic Behavior of Pressure-Compensating Emitters for Water-Saving Agricultural Irrigation Systems. Water. 2026; 18(2):244. https://doi.org/10.3390/w18020244
Chicago/Turabian StyleGhonimy, Mohamed, Abdulaziz Alharbi, Nermin S. Hussein, and Hisham M. Imam. 2026. "Geometry-Driven Hydraulic Behavior of Pressure-Compensating Emitters for Water-Saving Agricultural Irrigation Systems" Water 18, no. 2: 244. https://doi.org/10.3390/w18020244
APA StyleGhonimy, M., Alharbi, A., Hussein, N. S., & Imam, H. M. (2026). Geometry-Driven Hydraulic Behavior of Pressure-Compensating Emitters for Water-Saving Agricultural Irrigation Systems. Water, 18(2), 244. https://doi.org/10.3390/w18020244

