Soil Erosion Measurement Techniques and Field Experiments, 2nd Edition
1. Introduction
2. Main Contributions of the Special Issue
3. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Li, Z.W.; Zhang, G.H.; Geng, R.; Wang, H.; Zhang, X.C. Land use impacts on soil detachment capacity by overland flow in the Loess Plateau, China. Catena 2015, 124, 9–17. [Google Scholar] [CrossRef]
- Di Stefano, C.; Nicosia, A.; Palmeri, V.; Pampalone, V.; Ferro, V. Estimating flow resistance in steep slope rills. Hydrol. Process. 2021, 35, e14296. [Google Scholar] [CrossRef]
- Ferro, V.; Nicosia, A. Comment on “Rill erosion processes on steep colluvial deposit slope under heavy rainfall in flume experiments with artificial rain by F. Jiang et al.”. Catena 2020, 185, 103793. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Pol. 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Carollo, F.G.; Di Stefano, C.; Nicosia, A.; Palmeri, V.; Pampalone, V.; Ferro, V. A new strategy to assure compliance with soil loss tolerance at a regional scale. Catena 2023, 223, 106945. [Google Scholar] [CrossRef]
- Food and Agricultural Organization (FAO). Soil Erosion: The Greatest Challenge to Sustainable Soil Management; Food and Agricultural Organization (FAO): Rome, Italy, 2019; 100p, Available online: https://www.fao.org/documents/card/en/c/ca4395en (accessed on 2 December 2025).
- Mullan, D. Soil erosion under the impacts of future climate change: Assessing the statistical significance of future changes and the potential on-site and off-site problems. Catena 2013, 109, 234–246. [Google Scholar] [CrossRef]
- Pampalone, V.; Carollo, F.G.; Nicosia, A.; Palmeri, V.; Di Stefano, C.; Bagarello, V.; Ferro, V. Measurement of Water Soil Erosion at Sparacia Experimental Area (Southern Italy): A Summary of More than Twenty Years of Scientific Activity. Water 2022, 14, 1881. [Google Scholar] [CrossRef]
- Nicosia, A.; Carollo, F.G.; Di Stefano, C.; Palmeri, V.; Pampalone, V.; Serio, M.A.; Bagarello, V.; Ferro, V. The Importance of Measuring Soil Erosion by Water at the Field Scale: A Review. Water 2024, 16, 3427. [Google Scholar] [CrossRef]
- Čupić, A.; Smičiklas, I.; Manić, M.; Đokić, M.; Dragović, R.; Đorđević, M.; Gocić, M.; Jović, M.; Topalović, D.; Dragović, S. 137Cs-Based Assessment of Soil Erosion Rates in a Morphologically Diverse Catchment with Varying Soil Types and Vegetation Cover: Relationship with Soil Properties and RUSLE Model Predictions. Water 2025, 17, 526. [Google Scholar] [CrossRef]
- Ghaderi Dehkordi, N.; Khaledi Darvishan, A.; Zare, M.R.; Porto, P. Temporal changes in the average contribution of land uses in sediment yield using the 137Cs method and geochemical tracers. Water 2024, 17, 73. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, C. The Contradictory Issue of the Impact of Antecedent Soil Moisture to Interrill Erosion in Clay Soil: A Two-Year Field Study. Water 2024, 16, 2076. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Wu, L. Research on Sediment Deposition Characteristics and the Vegetation Restoration of Ecological Riverbanks in the Deep Waterway Regulation Scheme of Yangtze River. Water 2024, 16, 2350. [Google Scholar] [CrossRef]
- Todisco, F.; Massimi Alunno, A.; Vergni, L. Spatial Distribution, Temporal Behaviour, and Trends of Rainfall Erosivity in Central Italy Using Coarse Data. Water 2025, 17, 801. [Google Scholar] [CrossRef]
- Caruso, R.; Serio, M.A.; Búrdalo-Salcedo, G.; Carollo, F.G.; Ortiz-Marqués, A.; Ferro, V.; Fernández-Raga, M. Integrated Approach to Assess Simulated Rainfall Uniformity and Energy-Related Parameters for Erosion Studies. Water 2025, 17, 3429. [Google Scholar] [CrossRef]
- Lu, Y.; Fu, J.; Tang, L. Correlation Analysis of Geological Disaster Density and Soil and Water Conservation Prevention and Control Capacity: A Case Study of Guangdong Province. Water 2025, 17, 2527. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Cambronero-Ruiz, L.; Moreno-Cuenca, L.; González-Vivar, J.; González-Moreno, M.T.; Rodríguez-Galiano, V. Integrating UAV-LiDAR and Field Experiments to Survey Soil Erosion Drivers in Citrus Orchards Using an Exploratory Machine Learning Approach. Water 2025, 17, 3541. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ferro, V.; Nicosia, A. Soil Erosion Measurement Techniques and Field Experiments, 2nd Edition. Water 2026, 18, 202. https://doi.org/10.3390/w18020202
Ferro V, Nicosia A. Soil Erosion Measurement Techniques and Field Experiments, 2nd Edition. Water. 2026; 18(2):202. https://doi.org/10.3390/w18020202
Chicago/Turabian StyleFerro, Vito, and Alessio Nicosia. 2026. "Soil Erosion Measurement Techniques and Field Experiments, 2nd Edition" Water 18, no. 2: 202. https://doi.org/10.3390/w18020202
APA StyleFerro, V., & Nicosia, A. (2026). Soil Erosion Measurement Techniques and Field Experiments, 2nd Edition. Water, 18(2), 202. https://doi.org/10.3390/w18020202

