Removal and Recovery of Ammonium Nitrogen from Dairy Processing Wastewater Using Air Stripping Technology: A Pilot-Scale Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Wastewater Collection and Sample Preparation
2.2. Design and Construction of a Pilot-Scale Treatment System
2.3. Experimental Procedure
2.3.1. Air Stripping Trial with Synthetic Wastewater
2.3.2. Air Stripping Trial with DPW
2.3.3. Removal Efficiency and Recovery
2.4. Analytical Methods
2.5. Modelling
2.5.1. Kinetic Model
2.5.2. Response Surface Model
3. Results
3.1. NH4+-N Removal
3.1.1. Effect of pH
3.1.2. Effect of Temperature
3.1.3. Effect of Airflow Rate
3.1.4. Response Surface Model
3.2. NH4+-N Recovery
3.3. NH4+-N Removal and Recovery from DPW
4. Discussion
4.1. NH4+-N Removal
4.2. NH4+-N Recovery
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Mahoney, R.; Coughlan, N.E.; Walsh, É.; Jansen, M.A.K. Cultivation of Lemna Minor on Industry-Derived, Anaerobically Digested, Dairy Processing Wastewater. Plants 2022, 11, 3027. [Google Scholar] [CrossRef]
- Leonard, P.; Clifford, E.; Finnegan, W.; Siggins, A.; Zhan, X. Deployment and optimisation of a pilot-scale IASBR system for treatment of dairy processing wastewater. Energies 2021, 14, 7365. [Google Scholar] [CrossRef]
- Shapiro Ellis, T.; Rahman, M.S.; Ingram, M.; McIntosh, S.; Erler, D. Nutrient Recovery from Dairy Processing Wastewater Using Biochar. Water 2025, 17, 2250. [Google Scholar] [CrossRef]
- Cordell, D.; Neset, T.S.S. Phosphorus vulnerability: A qualitative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity. Glob. Environ. Change 2014, 24, 108–122. [Google Scholar] [CrossRef]
- Kavvada, O.; Tarpeh, W.A.; Horvath, A.; Nelson, K.L. Life-cycle cost and environmental assessment of decentralized nitrogen recovery using ion exchange from source-separated urine through spatial modeling. Environ. Sci. Technol. 2017, 51, 12061–12071. [Google Scholar] [CrossRef]
- Choi, Y.-K.; Jang, H.M.; Kan, E.; Wallace, A.R.; Sun, W. Adsorption of phosphate in water on a novel calcium hydroxide-coated dairy manure-derived biochar. Environ. Eng. Res. 2019, 24, 434–442. [Google Scholar] [CrossRef]
- Yesigat, A.; Worku, A.; Mekonnen, A.; Bae, W.; Feyisa, G.L.; Gatew, S.; Han, J.-L.; Liu, W.; Wang, A.; Guadie, A. Phosphorus recovery as K-struvite from a waste stream: A review of influencing factors, advantages, disadvantages and challenges. Environ. Res. 2022, 214, 114086. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, S.; Hunt, L.; Thompson Brewster, E.; Rose, A.; Thornton, A.; Erler, D. Struvite production from dairy processing waste. Sustainability 2022, 14, 15807. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Principi, P.; Villa, F.; Bernasconi, M.; Zanardini, E. Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization. Water Res. 2006, 40, 99–106. [Google Scholar] [CrossRef]
- Alves, A.; Lima, P.; Dezotti, M.; Bassin, J. Impact of phenol shock loads on the performance of a combined activated sludge-moving bed biofilm reactor system. Int. Biodeterior. Biodegrad. 2017, 123, 146–155. [Google Scholar] [CrossRef]
- Ye, Y.; Ngo, H.H.; Guo, W.; Liu, Y.; Chang, S.W.; Nguyen, D.D.; Liang, H.; Wang, J. A critical review on ammonium recovery from wastewater for sustainable wastewater management. Bioresour. Technol. 2018, 268, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-L.; Chen, L.-H.; Lin, Y.J.; Yu, C.-P.; Ma, H.-w.; Chiang, P.-C. Advanced ammonia nitrogen removal and recovery technology using electrokinetic and stripping process towards a sustainable nitrogen cycle: A review. J. Clean. Prod. 2021, 309, 127369. [Google Scholar] [CrossRef]
- Maghfiroh, M.; Park, N.; Chang, H.; Jung, J.; Ahn, K.; Lim, H.; Kim, W. Water spray reactor for ammonia removal via air stripping: An evaluation on mass transfer and process efficiency. J. Environ. Chem. Eng. 2022, 10, 108498. [Google Scholar] [CrossRef]
- Campos, J.C.; Moura, D.; Costa, A.P.; Yokoyama, L.; Araujo, F.V.d.F.; Cammarota, M.C.; Cardillo, L.J.J.o.E.S. Evaluation of pH, alkalinity and temperature during air stripping process for ammonia removal from landfill leachate. J. Environ. Sci. Health Part A 2013, 48, 1105–1113. [Google Scholar] [CrossRef]
- Jia, D.; Lu, W.; Zhang, Y. Research on mechanism of air stripping enabled ammonia removal from industrial wastewater and its application. Chem. Eng. Trans. 2017, 62, 115–120. [Google Scholar]
- Zangeneh, A.; Sabzalipour, S.; Takdatsan, A.; Yengejeh, R.J.; Khafaie, M.A. Ammonia removal form municipal wastewater by air stripping process: An experimental study. S. Afr. J. Chem. Eng. 2021, 36, 134–141. [Google Scholar] [CrossRef]
- Georgiou, D.; Liliopoulos, V.; Aivasidis, A. Upgrading of biogas by utilizing aqueous ammonia and the alkaline effluent from air-stripping of anaerobically digested animal manure. Application on the design of a semi-industrial plant unit. J. Water Process Eng. 2020, 36, 101318. [Google Scholar] [CrossRef]
- Bonmatí, A.; Flotats, X. Air stripping of ammonia from pig slurry: Characterisation and feasibility as a pre-or post-treatment to mesophilic anaerobic digestion. Waste Manag. 2003, 23, 261–272. [Google Scholar] [CrossRef]
- Folino, A.; Zema, D.A.; Calabrò, P.S. Environmental and economic sustainability of swine wastewater treatments using ammonia stripping and anaerobic digestion: A short review. Sustainability 2020, 12, 4971. [Google Scholar] [CrossRef]
- Quan, X.; Wang, F.; Zhao, Q.; Zhao, T.; Xiang, J. Air stripping of ammonia in a water-sparged aerocyclone reactor. J. Hazard. Mater. 2009, 170, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Leite, V.D.; Prasad, S.; Lopes, W.S.; de Sousa, J.T.; Barros, A.J. Study on ammonia stripping process of leachate from the packed towers. J. Urban Environ. Eng. 2013, 7, 215–222. [Google Scholar] [CrossRef]
- Obaid-ur-Rehman, S.; Beg, S. Ammonia removal by air stripping—From origin to present state of technology. J. Environ. Sci. Health Part A 1990, 25, 343–365. [Google Scholar] [CrossRef]
- Değermenci, N.; Ata, O.N.; Yildız, E. Ammonia removal by air stripping in a semi-batch jet loop reactor. J. Ind. Eng. Chem. 2012, 18, 399–404. [Google Scholar] [CrossRef]
- Kinidi, L.; Tan, I.A.W.; Abdul Wahab, N.B.; Tamrin, K.F.B.; Hipolito, C.N.; Salleh, S.F. Recent development in ammonia stripping process for industrial wastewater treatment. Int. J. Chem. Eng. 2018, 2018, 3181087. [Google Scholar] [CrossRef]
- Li, W.; Shi, X.; Zhang, S.; Qi, G. Modelling of ammonia recovery from wastewater by air stripping in rotating packed beds. Sci. Total Environ. 2020, 702, 134971. [Google Scholar] [CrossRef]
- Anthonisen, A.C.; Loehr, R.C.; Prakasam, T.; Srinath, E. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 1976, 48, 835–852. [Google Scholar]
- Wang, L.K.; Hung, Y.-T.; Shammas, N.K. Advanced Physicochemical Treatment Technologies; Springer: Humana Totowa, NJ, USA, 2007; Volume 5. [Google Scholar]
- Limoli, A.; Langone, M.; Andreottola, G. Ammonia removal from raw manure digestate by means of a turbulent mixing stripping process. J. Environ. Manag. 2016, 176, 1–10. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, X.; Li, X.; Jiang, Y.; Li, Y.; Liang, Y. Review of separation methods for the determination of ammonium/ammonia in natural water. Trends Environ. Anal. Chem. 2020, 27, e00098. [Google Scholar] [CrossRef]
- Hidalgo, D.; Corona, F.; Martín-Marroquín, J.M.; del Álamo, J.; Aguado, A. Resource recovery from anaerobic digestate: Struvite crystallisation versus ammonia stripping. Desalination Water Treat. 2016, 57, 2626–2632. [Google Scholar] [CrossRef]
- Saracco, G.; Genon, G. High temperature ammonia stripping and recovery from process liquid wastes. J. Hazard. Mater. 1994, 37, 191–206. [Google Scholar] [CrossRef]
- Prasad, K.Y.; Ramanujam, T. Gas holdup and overall volumetric mass transfer coefficient in a modified reversed flow jet loop reactor. Can. J. Chem. Eng. 1995, 73, 190–195. [Google Scholar] [CrossRef]
- Jain, D.; Patwari, A.; Khan, A.; Rao, M.B. Liquid circulation characteristics in jet loop reactors. Can. J. Chem. Eng. 1990, 68, 1047–1051. [Google Scholar] [CrossRef]
- Kavanaugh, M.C.; Trussell, R.R. Design of aeration towers to strip volatile contaminants from drinking water. J. Am. Water Work. Assoc. 1980, 72, 684–692. [Google Scholar] [CrossRef]
- Arogo, J.; Zhang, R.; Riskowski, G.; Christianson, L.; Day, D. Mass transfer coefficient of ammonia in liquid swine manure and aqueous solutions. J. Agric. Eng. Res. 1999, 73, 77–86. [Google Scholar] [CrossRef]
- Chung, T.-W.; Lai, C.-H.; Wu, H. Analysis of mass transfer performance in an air stripping tower. Sep. Sci. Technol. 1999, 34, 2837–2851. [Google Scholar] [CrossRef]
- Quan, X.; Ye, C.; Xiong, Y.; Xiang, J.; Wang, F. Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping. J. Hazard. Mater. 2010, 178, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, E. Wastewater Engineering Treatment and Resource Recovery, 5th ed.; McGraw-Hill Education.: Columbus, OH, USA, 2014. [Google Scholar]
- Ho, Y.-S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Azizian, S. Kinetic models of sorption: A theoretical analysis. J. Colloid Interface Sci. 2004, 276, 47–52. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 2011, 168, 493–504. [Google Scholar] [CrossRef]
- Crittenden, J.C.; Trussell, R.R.; Hand, D.W.; Howe, K.J.; Tchobanoglous, G. MWH’s Water Treatment: Principles and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Guštin, S.; Marinšek-Logar, R. Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent. Process Saf. Environ. Prot. 2011, 89, 61–66. [Google Scholar] [CrossRef]
- Maurer, M.; Pronk, W.; Larsen, T. Treatment processes for source-separated urine. Water Res. 2006, 40, 3151–3166. [Google Scholar] [CrossRef]
- Gao, F.; Xue, Y.; Deng, P.; Cheng, X.; Yang, K. Removal of aqueous ammonium by biochars derived from agricultural residuals at different pyrolysis temperatures. Chem. Speciat. Bioavailab. 2015, 27, 92–97. [Google Scholar] [CrossRef]
- Serra-Toro, A.; Vinardell, S.; Astals, S.; Madurga, S.; Llorens, J.; Mata-Álvarez, J.; Mas, F.; Dosta, J. Ammonia recovery from acidogenic fermentation effluents using a gas-permeable membrane contactor. Bioresour. Technol. 2022, 356, 127273. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, H.; Liu, J.; Wang, X.; Li, J.; Shi, E.; Wang, C.; Yang, J.; Zhang, Z. A study on and adsorption mechanism of ammonium nitrogen by modified corn straw biochar. R. Soc. Open Sci. 2023, 10, 221535. [Google Scholar] [CrossRef]
- Kizito, S.; Wu, S.; Kirui, W.K.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci. Total Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Firmino, M.V.; Tremier, A.; Couvert, A.; Szymczyk, A. New insights into biochar ammoniacal nitrogen adsorption and its correlation to aerobic degradation ammonia emissions. Waste Manag. 2024, 178, 257–266. [Google Scholar] [CrossRef]
- Ro, K.S.; Lima, I.M.; Reddy, G.B.; Jackson, M.A.; Gao, B. Removing gaseous NH3 using biochar as an adsorbent. Agriculture 2015, 5, 991–1002. [Google Scholar] [CrossRef]
- Jedynak, K.; Charmas, B. Assessment of Ammonia Adsorption Capacity on Activated Banana Peel Biochars. Materials 2025, 18, 3395. [Google Scholar] [CrossRef]






| Trials | Composition of Synthetic Wastewater, mg/L | Synthetic Wastewater, L | Airflow, L/m | Temperature (°C) | pH | |
|---|---|---|---|---|---|---|
| PO43−-P | NH4+-N | |||||
| 1 | 32.2 | 71.0 | 200 | 150 | 22 | 9 |
| 2 | 31.0 | 67.0 | 200 | 150 | 22 | 10 |
| 3 | 33.1 | 70.5 | 200 | 150 | 22 | 11 |
| 4 | 30.3 | 75.5 | 200 | 150 | 32 | 9 |
| 5 | 32.0 | 73.8 | 200 | 150 | 32 | 10 |
| 6 | 30.7 | 70.7 | 200 | 150 | 32 | 11 |
| 7 | 31.6 | 76.0 | 200 | 300 | 22 | 9 |
| 8 | 29.8 | 77.3 | 200 | 300 | 22 | 10 |
| 9 | 30.4 | 72.5 | 200 | 300 | 22 | 11 |
| 10 | 33.3 | 75.3 | 200 | 300 | 32 | 9 |
| 11 | 28.1 | 70.0 | 200 | 300 | 32 | 10 |
| 12 | 32.3 | 73.0 | 200 | 300 | 32 | 11 |
| Elements | Concentration (mg/L) |
|---|---|
| pH | 7.04 |
| PO43-P | 31.8 |
| NH4+-N | 72.4 |
| Iron | 1.12 |
| Silicon | 11.8 |
| Magnesium | 11.1 |
| Potassium | 28.8 |
| Sodium | 390 |
| Chloride | 37.4 |
| Sulfur | 21.4 |
| Calcium | 35 |
| Airflow (L/m) | Temperature (°C) | pH | NH4+-N Removal | * NH4+-N Captured by Acid Bath and GAC (%) | |
|---|---|---|---|---|---|
| mg/L | % | ||||
| 150 | 22 | 9 | 0.8 | 1.1 | 95.5 |
| 150 | 22 | 10 | 5.5 | 9.6 | 86.1 |
| 150 | 22 | 11 | 9.0 | 14.4 | 80.1 |
| 150 | 32 | 9 | 8.5 | 10.8 | 85.6 |
| 150 | 32 | 10 | 9.0 | 12.2 | 81.2 |
| 150 | 32 | 11 | 13.6 | 21.6 | 79.1 |
| 300 | 22 | 9 | 2.0 | 2.6 | 91.0 |
| 300 | 22 | 10 | 9.8 | 12.1 | 85.4 |
| 300 | 22 | 11 | 12.0 | 16.6 | 83.3 |
| 300 | 32 | 9 | 17.0 | 21.7 | 78.2 |
| 300 | 32 | 10 | 18.3 | 26.2 | 76.6 |
| 300 | 32 | 11 | 29.1 | 39.8 | 72.0 |
| Experimental Process/Stage | Airflow, L/m | Temperature (°C) | pH | NH4+-N Removal | PO43−-P Removal | ** NH4+-N Recovery % | P Content (%) | ||
|---|---|---|---|---|---|---|---|---|---|
| mg/L | % | mg/L | % | ||||||
| Precipitation | 22 | 9.5 | 20.0 | 26.0 | 27.0 | 83.7 | |||
| Precipitation plus filtering | 22 | 9.5 | 33.3 | 43.4 | 30.0 | 93.0 | |||
| Air stripping | 300 | 32 | 11 | 36.3 | 69.6 | ||||
| * Precipitation, filtering and air stripping | 61.0 | 79.3 | |||||||
| Acid bath | 300 | 32 | 11 | 68.0 | |||||
| Precipitate solids | 7.62 | ||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rahman, M.S.; Shapiro Ellis, T.; Freeburn, I.J.R.; Rose, A.; Thornton, A.W.; Erler, D. Removal and Recovery of Ammonium Nitrogen from Dairy Processing Wastewater Using Air Stripping Technology: A Pilot-Scale Study. Water 2026, 18, 196. https://doi.org/10.3390/w18020196
Rahman MS, Shapiro Ellis T, Freeburn IJR, Rose A, Thornton AW, Erler D. Removal and Recovery of Ammonium Nitrogen from Dairy Processing Wastewater Using Air Stripping Technology: A Pilot-Scale Study. Water. 2026; 18(2):196. https://doi.org/10.3390/w18020196
Chicago/Turabian StyleRahman, Md Sydur, Toby Shapiro Ellis, Isaiah J. R. Freeburn, Andrew Rose, Aaron William Thornton, and Dirk Erler. 2026. "Removal and Recovery of Ammonium Nitrogen from Dairy Processing Wastewater Using Air Stripping Technology: A Pilot-Scale Study" Water 18, no. 2: 196. https://doi.org/10.3390/w18020196
APA StyleRahman, M. S., Shapiro Ellis, T., Freeburn, I. J. R., Rose, A., Thornton, A. W., & Erler, D. (2026). Removal and Recovery of Ammonium Nitrogen from Dairy Processing Wastewater Using Air Stripping Technology: A Pilot-Scale Study. Water, 18(2), 196. https://doi.org/10.3390/w18020196

