Biofilm Control in Wastewater Treatment: A Review Regarding the Application of Quorum Sensing and Quenching Processes and Future Perspectives
Abstract
1. Introduction
2. Biofilm
2.1. Definition and Formation of Biofilms
Biofilm Formation Mechanisms
2.2. Biofilm Composition
2.2.1. Biological Composition
2.2.2. Chemical Composition
2.3. Biofilms in Wastewater Treatment
3. Quorum Sensing
3.1. Definition of Quorum Sensing Mechanism
3.2. Mechanism
- Autoinduction—stimulating further AHL production.
- Biofilm formation.
- Antibiotic resistance mechanisms.
- Production of toxins or other pathogenic factors.
- Mobility behaviors, such as swarming.
3.3. Applications of QS in Wastewater Treatment Through Biofilm Formation
3.4. Detection Methods for QS
3.5. Optimization of QS Utilization
- During nitrification, nanomaterials function primarily as carriers that facilitate the attachment and growth of specific Anaerobic Ammonium-Oxidizing Bacteria (AnAOB). This increases AnAOB abundance and enhances the population density-dependent nitrification process [97].
- During denitrification, QS activation can inhibit bacterial denitrification efficiency. Conversely, nanomaterials can stimulate bacterial denitrification by acting as QQ agents to inhibit bacterial QS [94]. Dosage is critical; an appropriate dose of QQ-active nanomaterials stimulates denitrification, whereas higher doses can directly disrupt the expression of key genes involved in nitrogen metabolism, electron transfer, and transport, all of which are essential for this process [98].
4. Quorum Quenching
4.1. Mechanisms of QS Inhibition—Application of QQ Approach
- ▪
- Inhibitors of signaling molecule synthesis. These molecules can block certain enzymes, such as synthases (Luxl), which are considered responsible for AHL synthesis in Gram-negative bacteria, and LuxS, which plays a major role in AI-2 production, a signal molecule used by both Gram-positive and Gram-negative bacteria. Parsek et al. [108] demonstrated that structural analogs of AHL, such as L/D-S-adenosyl-homocysteine, cinnamaldehyde, and butyryl-S-adenosyl-methionine (butyryl-SAM), act as inhibitors for AHL synthesis in vitro. Similarly, curcumin has been shown to suppress the virulence factors of Pseudomonas Aeruginosa (PAO1) and to reduce the biofilm formation by interfering with AHL production. However, its precise inhibitory mechanism remains somewhat unclear [109]. On the other hand, the enzyme LuxS, which catalyzes the conversion of S-ribosyl-homocysteine (SRH) to AI-2, can also be targeted, as several SRH analogs have been reported to inhibit LuxS activity [110,111]. Brominated furanones have also been shown to interfere with LuxS [112].
- ▪
- Enzymatic degradation of AHL molecules. This is the most well-known mechanism of QQ. The reaction can be catalyzed by four distinct enzyme groups. Lactonases and acylases hydrolyze the Homoserine Lactone (HSL) ring of AHL molecules, while the oxidoreductases can modify the AHLs chemically, reducing their activity [113]. For example, the enzyme AHL-lactonase derived from Bacillus cereus (VT96) has the unique ability to directly control the production of virulence factors, such as exopolysaccharides, biofilm formation, and pyocyanin in Pseudomonas aeruginosa (PAO1) [114]. Another example is that particular bacterial species, including Agrobacterium tumefaciens, Pseudomonas aeruginosa, Klebsiella pneumoniae, and several Bacillus species, produce enzymes that may degrade AHL molecules. Muricauda olearia Th120’s lactonase (MomL) can equally hydrolyze long- and short-chain AHLs, reducing the pathogenicity of several bacteria [115]. Furthermore, plants and fungi, such as Pachyrhizus erosus, Lotus corniculatus, and Hordeum vulgare, have been reported to produce enzymes that degrade AHL molecules, thereby disrupting bacterial QS.
- ▪
- Competitive receptors. In addition, communication between bacteria can be disrupted by competitive receptors that block the binding of signaling molecules [116]. Essentially, these are molecules that can mimic signaling molecules, meaning they have a similar shape or chemical structure. However, the difference with the previous cases is that they bind to the same receptors, preventing the other molecule from attaching, i.e., showing competitive action. On the other hand, in non-competitive action, the molecule binds to a different site on the receptor (i.e., not where the natural signal binds) but changes the shape of the receptor; therefore, it avoids the activation of the receptor; thus, the sequence of commands that would lead to biofilm formation does not start. In some cases, they can also cause receptor deactivation or its breakdown.
- ▪
- Blocking signal transduction cascades, e.g., by inhibiting AI-receptor complex formation [118]. Savrin, a small-molecule inhibitor, has been shown to bind DNA and interfere with AgrA in Staphylococcus aureus (a transcriptional regulator of QS), thereby preventing the synthesis of RNAIII, which, in conjunction with AgrA, is responsible for producing numerous virulence factors [119].
4.2. Application Fields of QQ
5. Future Perspectives
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AHLs | Acyl-homoserine Lactones—AHLs |
| AIPs | Autoinducing Peptides |
| AIs | Autoinducers |
| BWT | Biological Wastewater Treatment |
| DCEO | Design, Construction, Evaluation, Optimization |
| CLSM | Confocal Laser Scanning Microscopy |
| COD | Chemical Oxygen Demand |
| CWs | Constructed Wetlands |
| DO | Dissolved Oxygen |
| EPS | Extracellular Polymeric Substances |
| FBR | Fluidized-bed Biofilm Reactor |
| FTIR | Fourier Transform Ιnfrared Spectroscopy |
| H2-MBR | Hydrogen-Based Membrane Biofilm Reactor |
| HNAD | Heterotrophic Nitrification-Aerobic Denitrification |
| HPLC | High-Performance Liquid Chromatography |
| IFAS | Integrated Fixed-film Activated Sludge |
| LBD | Ligand-Binding Domain |
| LC | Liquid Chromatography |
| MBBR | Moving Bed Biofilm Reactor |
| MBR | Membrane Biofilm Reactor |
| MS | Mass Spectrometry |
| MQQ | Marine Quorum Quenching consortium |
| NQQ | Normal Quorum Quenching consortium |
| Quorum Quenching | |
| RBC | Rotating Biological Contactors |
| SND | Simultaneous Nitrification and Denitrification |
| SVI | Sludge Volume Index |
| TF | Trickling Filters, rotating biological contactors (RBC), |
| TKN | Total Kjeldahl Nitrogen |
| TP | Total Phosphorus |
| PVA | Polyvinyl Alcohol |
| QS | Quorum Sensing |
| QSIs | Quorum Sensing Inhibitors |
| RO | Reverse Osmosis |
| RMCF | Rotary Microbial Carrier Frame |
| ΤΜP | Trans-Membrane Pressure |
| TLC | Thin-Layer Chromatography |
| UASB | Up-flow Anaerobic Sludge Blanket |
| WWT | Wastewater Treatment |
References
- Shamshad, J.; Rehman, R.U. Innovative Approaches to Sustainable Wastewater Treatment: A Comprehensive Exploration of Conventional and Emerging Technologies. Environ. Sci. Adv. 2025, 4, 189–222. [Google Scholar] [CrossRef]
- Saini, S.; Tewari, S.; Dwivedi, J.; Sharma, V. Biofilm Mediated Wastewater Treatment: A Comprehensive Review. Mater. Adv. 2023, 4, 1415–1443. [Google Scholar] [CrossRef]
- Krsmanovic, M.; Biswas, D.; Ali, H.; Kumar, A.; Ghosh, R.; Dickerson, A.K. Hydrodynamics and Surface Properties Influence Biofilm Proliferation. Adv. Colloid Interface Sci. 2021, 288, 102336. [Google Scholar] [CrossRef]
- Rajamanikandan, S.; Jeyakanthan, J.; Srinivasan, P. Molecular Docking, Molecular Dynamics Simulations, Computational Screening to Design Quorum Sensing Inhibitors Targeting LuxP of Vibrio Harveyi and Its Biological Evaluation. Appl. Biochem. Biotechnol. 2017, 181, 192–218. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, I.; Banu, R.; Usman, T.M.M.; Varjani, S. Exploring the Role of Microbial Biofilm for Industrial Effluents Treatment. Bioengineered 2022, 13, 6420–6440. [Google Scholar] [CrossRef]
- Gkotsis, P.K.; Zouboulis, A.I. Biomass Characteristics and Their Effect on Membrane Bioreactor Fouling. Molecules 2019, 24, 2867. [Google Scholar] [CrossRef] [PubMed]
- Zouboulis, A.I.; Katsoyiannis, I.A. Recent Advances in Water and Wastewater Treatment with Emphasis in Membrane Treatment Operations. Water 2019, 11, 45. [Google Scholar] [CrossRef]
- Sikdar, R.; Elias, M. Quorum Quenching Enzymes and Their Effects on Virulence, Biofilm, and Microbiomes: A Review of Recent Advances. Expert Rev. Anti Infect. Ther. 2020, 18, 1221–1233. [Google Scholar] [CrossRef]
- Zeng, X.; Zou, Y.; Zheng, J.; Qiu, S.; Liu, L.; Wei, C. Quorum Sensing-Mediated Microbial Interactions: Mechanisms, Applications, Challenges and Perspectives. Microbiol. Res. 2023, 273, 127414. [Google Scholar] [CrossRef]
- Hu, H.; Luo, F.; Liu, Y.; Zeng, X. Function of Quorum Sensing and Cell Signaling in Wastewater Treatment Systems. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2021, 83, 515–531. [Google Scholar] [CrossRef]
- Mahto, K.U.; Das, S. Bacterial Biofilm and Extracellular Polymeric Substances in the Moving Bed Biofilm Reactor for Wastewater Treatment: A Review. Bioresour. Technol. 2022, 345, 126476. [Google Scholar] [CrossRef]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial Biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Geesey, G.G.; Cheng, K.J. How Bacteria Stick. Sci. Am. 1978, 238, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.; Kumar, R.; Raj, A. Biofilm-Based Technology for Industrial Wastewater Treatment: Current Technology, Applications and Future Perspectives. World J. Microbiol. Biotechnol. 2023, 39, 112. [Google Scholar] [CrossRef]
- Mosharaf, M.K.; Tanvir, M.Z.H.; Haque, M.M.; Haque, M.A.; Khan, M.a.A.; Molla, A.H.; Alam, M.Z.; Islam, M.S.; Talukder, M.R. Metal-Adapted Bacteria Isolated From Wastewaters Produce Biofilms by Expressing Proteinaceous Curli Fimbriae and Cellulose Nanofibers. Front. Microbiol. 2018, 9, 1334. [Google Scholar] [CrossRef]
- Dufour, D.; Leung, V.; Levesque, C. Bacterial Biofilm: Structure, Function, and Antimicrobial Resistance. Endod. Top. 2010, 22. [Google Scholar] [CrossRef]
- Lewandowski, Z.; Boltz, J.P. Biofilms in Water and Wastewater Treatment. In Treatise on Water Science; Elsevier: Amsterdam, The Netherlands, 2011; pp. 529–570. ISBN 978-0-444-53199-5. [Google Scholar]
- Ghanbari, A.; Dehghany, J.; Schwebs, T.; Müsken, M.; Häussler, S.; Meyer-Hermann, M. Inoculation Density and Nutrient Level Determine the Formation of Mushroom-Shaped Structures in Pseudomonas Aeruginosa Biofilms. Sci. Rep. 2016, 6, 32097. [Google Scholar] [CrossRef]
- Vo, T.P.; Danaee, S.; Chaiwong, C.; Pham, B.T.; Poddar, N.; Kim, M.; Kuzhiumparambil, U.; Songsomboon, C.; Pernice, M.; Ngo, H.H.; et al. Microalgae-Bacteria Consortia for Organic Pollutants Remediation from Wastewater: A Critical Review. J. Environ. Chem. Eng. 2024, 12, 114213. [Google Scholar] [CrossRef]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Douterelo, I.; Fish, K.E.; Boxall, J.B. Succession of Bacterial and Fungal Communities within Biofilms of a Chlorinated Drinking Water Distribution System. Water Res. 2018, 141, 74–85. [Google Scholar] [CrossRef]
- Mosharraf, F.B.; Chowdhury, S.S.; Ahmed, A.; Hossain, M.M. A Comparative Study of Static Biofilm Formation and Antibiotic Resistant Pattern between Environmental and Clinical Isolate of Pseudomonas Aeruginosa. Adv. Microbiol. 2020, 10, 663–672. [Google Scholar] [CrossRef]
- Posadas, E.; García-Encina, P.-A.; Soltau, A.; Domínguez, A.; Díaz, I.; Muñoz, R. Carbon and Nutrient Removal from Centrates and Domestic Wastewater Using Algal–Bacterial Biofilm Bioreactors. Bioresour. Technol. 2013, 139, 50–58. [Google Scholar] [CrossRef]
- Gulis, V.; Suberkropp, K. Effect of Inorganic Nutrients on Relative Contributions of Fungi and Bacteria to Carbon Flow from Submerged Decomposing Leaf Litter. Microb. Ecol. 2003, 45, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Cho, D.-H.; Ramanan, R.; Kim, B.-H.; Oh, H.-M.; Kim, H.-S. Microalgae-Associated Bacteria Play a Key Role in the Flocculation of Chlorella Vulgaris. Bioresour. Technol. 2013, 131, 195–201. [Google Scholar] [CrossRef]
- Praveen, P.; Loh, K.-C. Photosynthetic Aeration in Biological Wastewater Treatment Using Immobilized Microalgae-Bacteria Symbiosis. Appl. Microbiol. Biotechnol. 2015, 99, 10345–10354. [Google Scholar] [CrossRef]
- Foladori, P.; Petrini, S.; Andreottola, G. Evolution of Real Municipal Wastewater Treatment in Photobioreactors and Microalgae-Bacteria Consortia Using Real-Time Parameters. Chem. Eng. J. 2018, 345, 507–516. [Google Scholar] [CrossRef]
- Turki, Y.; Mehri, I.; Lajnef, R.; Rajeb, A.; Khessairi, A.; Cherif, H.; Ouzari, H.I.; Hassen, A. Biofilms in Bioremediation and Wastewater Treatment: Characterization of Bacterial Community Structure and Diversity during Seasons in Municipal Wastewater Treatment Process. Environ. Sci. Pollut. Res. 2017, 24, 3519–3530. [Google Scholar] [CrossRef]
- Boelee, N.C.; Temmink, H.; Janssen, M.; Buisman, C.J.N.; Wijffels, R.H. Scenario Analysis of Nutrient Removal from Municipal Wastewater by Microalgal Biofilms. Water 2012, 4, 460–473. [Google Scholar] [CrossRef]
- Zerveas, S.; Mente, M.S.; Tsakiri, D.; Kotzabasis, K. Microalgal Photosynthesis Induces Alkalization of Aquatic Environment as a Result of H+ Uptake Independently from CO2 Concentration—New Perspectives for Environmental Applications. J. Environ. Manag. 2021, 289, 112546. [Google Scholar] [CrossRef]
- Dai, C.; Wang, F. Potential Applications of Microalgae–Bacteria Consortia in Wastewater Treatment and Biorefinery. Bioresour. Technol. 2024, 393, 130019. [Google Scholar] [CrossRef]
- Khan, M.S.A.; Altaf, M.M.; Ahmad, I. Chemical Nature of Biofilm Matrix and Its Significance. In Biofilms in Plant and Soil Health; Ahmad, I., Husain, F.M., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 151–177. ISBN 978-1-119-24634-3. [Google Scholar]
- Branda, S.S.; Vik, S.; Friedman, L.; Kolter, R. Biofilms: The Matrix Revisited. Trends Microbiol. 2005, 13, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, I.W. The Biofilm Matrix—An Immobilized but Dynamic Microbial Environment. Trends Microbiol. 2001, 9, 222–227. [Google Scholar] [CrossRef]
- Balducci, E.; Papi, F.; Capialbi, D.E.; Del Bino, L. Polysaccharides’ Structures and Functions in Biofilm Architecture of Antimicrobial-Resistant (AMR) Pathogens. Int. J. Mol. Sci. 2023, 24, 4030. [Google Scholar] [CrossRef]
- Asri, M.; El Abed, S.; Saad, I.; El Ghachtouli, N. Biofilm-Based Systems for Industrial Wastewater Treatment. In Handbook of Environmental Materials Management; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-58538-3. [Google Scholar]
- Choudhary, M.; Peter, C.N.; Shukla, S.K.; Govender, P.P.; Joshi, G.M.; Wang, R. Environmental Issues: A Challenge for Wastewater Treatment. In Green Materials for Wastewater Treatment; Naushad, M., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–12. ISBN 978-3-030-17724-9. [Google Scholar]
- Dhiman, S.; Sharma, A. Secondary Clarification of Wastewater Relying on Biological Treatment Processes: Advancements and Drawbacks. In Wastewater Treatment; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Mitra, A.; Mukhopadhyay, S.; Mitra, A.; Mukhopadhyay, S. Biofilm Mediated Decontamination of Pollutants from the Environment. AIMS Bioeng. 2016, 3, 44–59. [Google Scholar] [CrossRef]
- Costley, S.C.; Wallis, F.M. Bioremediation of Heavy Metals in a Synthetic Wastewater Using a Rotating Biological Contactor. Water Res. 2001, 35, 3715–3723. [Google Scholar] [CrossRef]
- Sharma, A.; Dhiman, S. Microbial Biofilms in Wastewater Remediation. In Microbial Technologies in Industrial Wastewater Treatment; Shah, M.P., Ed.; Springer Nature: Singapore, 2023; pp. 101–118. ISBN 978-981-99-2435-6. [Google Scholar]
- Ingole, N.V. Fluidized Bed Biofilm Reactor—A Novel Wastewater Treatment Reactor. Int. J. Res. Environ. Sci. Technol. 2013, 3, 145–155. [Google Scholar]
- Puhakka, J.A.; Melin, E.S.; Järvinen, K.T.; Koro, P.M.; Rintala, J.A.; Hartikainen, P.; Shieh, W.K.; Ferguson, J.F. Fluidized-Bed Biofilms for Chlorophenol Mineralization. Water Sci. Technol. 1995, 31, 227–235. [Google Scholar] [CrossRef]
- Waqas, S.; Bilad, M.R.; Man, Z.; Wibisono, Y.; Jaafar, J.; Indra Mahlia, T.M.; Khan, A.L.; Aslam, M. Recent Progress in Integrated Fixed-Film Activated Sludge Process for Wastewater Treatment: A Review. J. Environ. Manag. 2020, 268, 110718. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, M.; Diggle, S.P.; Greenberg, E.P. Progress in and Promise of Bacterial Quorum Sensing Research. Nature 2017, 551, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, F.; De Craemer, S.; Debunne, N.; Janssens, Y.; Wynendaele, E.; Van de Wiele, C.; De Spiegeleer, B. Peptides as Quorum Sensing Molecules: Measurement Techniques and Obtained Levels In Vitro and In Vivo. Front. Neurosci. 2017, 11, 183. [Google Scholar] [CrossRef]
- Waters, C.M.; Bassler, B.L. Quorum Sensing: Cell-to-Cell Communication in Bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef]
- Paluch, E.; Rewak-Soroczyńska, J.; Jędrusik, I.; Mazurkiewicz, E.; Jermakow, K. Prevention of Biofilm Formation by Quorum Quenching. Appl. Microbiol. Biotechnol. 2020, 104, 1871–1881. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Y.; Ge, Y.; Zhu, X.; Pan, J. Regulatory Mechanisms and Promising Applications of Quorum Sensing-Inhibiting Agents in Control of Bacterial Biofilm Formation. Front. Microbiol. 2020, 11, 589640. [Google Scholar] [CrossRef]
- Ali, A.; Zahra, A.; Kamthan, M.; Husain, F.M.; Albalawi, T.; Zubair, M.; Alatawy, R.; Abid, M.; Noorani, M.S. Microbial Biofilms: Applications, Clinical Consequences, and Alternative Therapies. Microorganisms 2023, 11, 1934. [Google Scholar] [CrossRef]
- Coquant, G.; Grill, J.-P.; Seksik, P. Impact of N-Acyl-Homoserine Lactones, Quorum Sensing Molecules, on Gut Immunity. Front. Immunol. 2020, 11, 1827. [Google Scholar] [CrossRef] [PubMed]
- Vannini, A.; Volpari, C.; Gargioli, C.; Muraglia, E.; Cortese, R.; De Francesco, R.; Neddermann, P.; Di Marco, S. The Crystal Structure of the Quorum Sensing Protein TraR Bound to Its Autoinducer and Target DNA. EMBO J. 2002, 21, 4393–4401. [Google Scholar] [CrossRef] [PubMed]
- Bottomley, M.J.; Muraglia, E.; Bazzo, R.; Carfì, A. Molecular Insights into Quorum Sensing in the Human Pathogen Pseudomonas Aeruginosa from the Structure of the Virulence Regulator LasR Bound to Its Autoinducer. J. Biol. Chem. 2007, 282, 13592–13600. [Google Scholar] [CrossRef]
- Lintz, M.J.; Oinuma, K.-I.; Wysoczynski, C.L.; Greenberg, E.P.; Churchill, M.E.A. Crystal Structure of QscR, a Pseudomonas Aeruginosa Quorum Sensing Signal Receptor. Proc. Natl. Acad. Sci. USA 2011, 108, 15763–15768. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Swem, L.R.; Swem, D.L.; Stauff, D.L.; O’Loughlin, C.T.; Jeffrey, P.D.; Bassler, B.L.; Hughson, F.M. A Strategy for Antagonizing Quorum Sensing. Mol. Cell 2011, 42, 199–209. [Google Scholar] [CrossRef]
- Kim, T.; Duong, T.; Wu, C.; Choi, J.; Lan, N.; Kang, S.W.; Lokanath, N.K.; Shin, D.; Hwang, H.-Y.; Kim, K.K. Structural Insights into the Molecular Mechanism of Escherichia Coli SdiA, a Quorum-Sensing Receptor. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 694–707. [Google Scholar] [CrossRef]
- Lixa, C.; Mujo, A.; Anobom, C.D.; Pinheiro, A.S. A Structural Perspective on the Mechanisms of Quorum Sensing Activation in Bacteria. An. Acad. Bras. Ciências 2015, 87, 2189–2203. [Google Scholar] [CrossRef] [PubMed]
- Abdul Hamid, N.W.; Nadarajah, K. Microbe Related Chemical Signalling and Its Application in Agriculture. Int. J. Mol. Sci. 2022, 23, 8998. [Google Scholar] [CrossRef]
- Sonwani, R.K.; Swain, G.; Giri, B.S.; Singh, R.S.; Rai, B.N. A Novel Comparative Study of Modified Carriers in Moving Bed Biofilm Reactor for the Treatment of Wastewater: Process Optimization and Kinetic Study. Bioresour. Technol. 2019, 281, 335–342. [Google Scholar] [CrossRef]
- Sakarikou, C.; Kostoglou, D.; Simões, M.; Giaouris, E. Exploitation of Plant Extracts and Phytochemicals against Resistant Salmonella Spp. in Biofilms. Food Res. Int. 2020, 128, 108806. [Google Scholar] [CrossRef]
- Cornforth, D.M.; Popat, R.; McNally, L.; Gurney, J.; Scott-Phillips, T.C.; Ivens, A.; Diggle, S.P.; Brown, S.P. Combinatorial Quorum Sensing Allows Bacteria to Resolve Their Social and Physical Environment. Proc. Natl. Acad. Sci. USA 2014, 111, 4280–4284. [Google Scholar] [CrossRef]
- Duan, K.; Surette, M.G. Environmental Regulation of Pseudomonas Aeruginosa PAO1 Las and Rhl Quorum-Sensing Systems. J. Bacteriol. 2007, 189, 4827. [Google Scholar] [CrossRef]
- Ha, J.-H.; Hauk, P.; Cho, K.; Eo, Y.; Ma, X.; Stephens, K.; Cha, S.; Jeong, M.; Suh, J.-Y.; Sintim, H.O.; et al. Evidence of Link between Quorum Sensing and Sugar Metabolism in Escherichia Coli Revealed via Cocrystal Structures of LsrK and HPr. Sci. Adv. 2018, 4, eaar7063. [Google Scholar] [CrossRef] [PubMed]
- Horswill, A.R.; Stoodley, P.; Stewart, P.S.; Parsek, M.R. The Effect of the Chemical, Biological, and Physical Environment on Quorum Sensing in Structured Microbial Communities. Anal. Bioanal. Chem. 2007, 387, 371–380. [Google Scholar] [CrossRef]
- Mellbye, B.; Schuster, M. Physiological Framework for the Regulation of Quorum Sensing-Dependent Public Goods in Pseudomonas Aeruginosa. J. Bacteriol. 2014, 196, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Gámez, S.; Sorg, R.A.; Domenech, A.; Kjos, M.; Weissing, F.J.; van Doorn, G.S.; Veening, J.-W. Quorum Sensing Integrates Environmental Cues, Cell Density and Cell History to Control Bacterial Competence. Nat. Commun. 2017, 8, 854. [Google Scholar] [CrossRef]
- Slager, J.; Kjos, M.; Attaiech, L.; Veening, J.-W. Antibiotic-Induced Replication Stress Triggers Bacterial Competence by Increasing Gene Dosage near the Origin. Cell 2014, 157, 395–406. [Google Scholar] [CrossRef]
- Li, D.; Guo, W.; Liang, D.; Zhang, J.; Li, J.; Li, P.; Wu, Y.; Bian, X.; Ding, F. Rapid Start-up and Advanced Nutrient Removal of Simultaneous Nitrification, Endogenous Denitrification and Phosphorus Removal Aerobic Granular Sequence Batch Reactor for Treating Low C/N Domestic Wastewater. Environ. Res. 2022, 212, 113464. [Google Scholar] [CrossRef]
- Dobretsov, S.; Teplitski, M.; Paul, V. Mini-Review: Quorum Sensing in the Marine Environment and Its Relationship to Biofouling. Biofouling 2009, 25, 413–427. [Google Scholar] [CrossRef]
- Shrout, J.D.; Nerenberg, R. Monitoring Bacterial Twitter: Does Quorum Sensing Determine the Behavior of Water and Wastewater Treatment Biofilms? Environ. Sci. Technol. 2012, 46, 1995–2005. [Google Scholar] [CrossRef]
- Song, X.-N.; Cheng, Y.-Y.; Li, W.-W.; Li, B.-B.; Sheng, G.-P.; Fang, C.-Y.; Wang, Y.-K.; Li, X.-Y.; Yu, H.-Q. Quorum Quenching Is Responsible for the Underestimated Quorum Sensing Effects in Biological Wastewater Treatment Reactors. Bioresour. Technol. 2014, 171, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Thakur, K.; Kuthiala, T.; Singh, G.; Arya, S.K.; Iwai, C.B.; Ravindran, B.; Khoo, K.S.; Chang, S.W.; Awasthi, M.K. An Alternative Approach towards Nitrification and Bioremediation of Wastewater from Aquaponics Using Biofilm-Based Bioreactors: A Review. Chemosphere 2023, 316, 137849. [Google Scholar] [CrossRef]
- Oh, H.-S.; Lee, C.-H. Origin and Evolution of Quorum Quenching Technology for Biofouling Control in MBRs for Wastewater Treatment. J. Membr. Sci. 2018, 554, 331–345. [Google Scholar] [CrossRef]
- Escudié, R.; Cresson, R.; Delgenès, J.-P.; Bernet, N. Control of Start-up and Operation of Anaerobic Biofilm Reactors: An Overview of 15 Years of Research. Water Res. 2011, 45, 1–10. [Google Scholar] [CrossRef]
- Huang, H.; Peng, C.; Peng, P.; Lin, Y.; Zhang, X.; Ren, H. Towards the Biofilm Characterization and Regulation in Biological Wastewater Treatment. Appl. Microbiol. Biotechnol. 2019, 103, 1115–1129. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Wu, Z.; Yu, X. Quorum Sensing in Water and Wastewater Treatment Biofilms. J. Environ. Biol. 2013, 34, 437–444. [Google Scholar] [PubMed]
- Huber, B.; Riedel, K.; Hentzer, M.; Heydorn, A.; Gotschlich, A.; Givskov, M.; Molin, S.; Eberl, L. The Cep Quorum-Sensing System of Burkholderia Cepacia H111 Controls Biofilm Formation and Swarming Motility. Microbiology 2001, 147, 2517–2528. [Google Scholar] [CrossRef]
- Davies, D.G.; Parsek, M.R.; Pearson, J.P.; Iglewski, B.H.; Costerton, J.W.; Greenberg, E.P. The Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm. Science 1998, 280, 295–298. [Google Scholar] [CrossRef]
- Monzon, O.; Yang, Y.; Li, Q.; Alvarez, P.J.J. Quorum Sensing Autoinducers Enhance Biofilm Formation and Power Production in a Hypersaline Microbial Fuel Cell. Biochem. Eng. J. 2016, 109, 222–227. [Google Scholar] [CrossRef]
- Valle, A.; Bailey, M.J.; Whiteley, A.S.; Manefield, M. N-Acyl-l-Homoserine Lactones (AHLs) Affect Microbial Community Composition and Function in Activated Sludge. Environ. Microbiol. 2004, 6, 424–433. [Google Scholar] [CrossRef]
- Charlton, T.S.; de Nys, R.; Netting, A.; Kumar, N.; Hentzer, M.; Givskov, M.; Kjelleberg, S. A Novel and Sensitive Method for the Quantification of N-3-Oxoacyl Homoserine Lactones Using Gas Chromatography-Mass Spectrometry: Application to a Model Bacterial Biofilm. Environ. Microbiol. 2000, 2, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Steindler, L.; Venturi, V. Detection of Quorum-Sensing N-Acyl Homoserine Lactone Signal Molecules by Bacterial Biosensors. FEMS Microbiol. Lett. 2007, 266, 1–9. [Google Scholar] [CrossRef]
- Fuqua, W.C.; Winans, S.C. A LuxR-LuxI Type Regulatory System Activates Agrobacterium Ti Plasmid Conjugal Transfer in the Presence of a Plant Tumor Metabolite. J. Bacteriol. 1994, 176, 2796–2806. [Google Scholar] [CrossRef]
- Zhu, J.; Beaber, J.W.; Moré, M.I.; Fuqua, C.; Eberhard, A.; Winans, S.C. Analogs of the Autoinducer 3-Oxooctanoyl-Homoserine Lactone Strongly Inhibit Activity of the TraR Protein of Agrobacterium Tumefaciens. J. Bacteriol. 1998, 180, 5398–5405. [Google Scholar] [CrossRef] [PubMed]
- Fuqua, C.; Winans, S.C. Conserved Cis-Acting Promoter Elements Are Required for Density-Dependent Transcription of Agrobacterium Tumefaciens Conjugal Transfer Genes. J. Bacteriol. 1996, 178, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chai, Y.; Zhong, Z.; Li, S.; Winans, S.C. Agrobacterium Bioassay Strain for Ultrasensitive Detection of N-Acylhomoserine Lactone-Type Quorum-Sensing Molecules: Detection of Autoinducers in Mesorhizobium Huakuii. Appl. Environ. Microbiol. 2003, 69, 6949–6953. [Google Scholar] [CrossRef]
- Shaw, P.D.; Ping, G.; Daly, S.L.; Cha, C.; Cronan, J.E.; Rinehart, K.L.; Farrand, S.K. Detecting and Characterizing N-Acyl-Homoserine Lactone Signal Molecules by Thin-Layer Chromatography. Proc. Natl. Acad. Sci. USA 1997, 94, 6036–6041. [Google Scholar] [CrossRef]
- Moré, M.I.; Finger, L.D.; Stryker, J.L.; Fuqua, C.; Eberhard, A.; Winans, S.C. Enzymatic Synthesis of a Quorum-Sensing Autoinducer through Use of Defined Substrates. Science 1996, 272, 1655–1658. [Google Scholar] [CrossRef] [PubMed]
- de Kievit, T.R.; Kakai, Y.; Register, J.K.; Pesci, E.C.; Iglewski, B.H. Role of the Pseudomonas Aeruginosa Las and Rhl Quorum-Sensing Systems in rhlI Regulation. FEMS Microbiol. Lett. 2002, 212, 101–106. [Google Scholar] [CrossRef]
- Wagner, V.E.; Li, L.-L.; Isabella, V.M.; Iglewski, B.H. Analysis of the Hierarchy of Quorum-Sensing Regulation in Pseudomonas Aeruginosa. Anal. Bioanal. Chem. 2007, 387, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, G.F.; Sartorio, R.; Lee, S.-H.; Rogers, C.J.; Meijler, M.M.; Moss, J.A.; Clapham, B.; Brogan, A.P.; Dickerson, T.J.; Janda, K.D. Revisiting Quorum Sensing: Discovery of Additional Chemical and Biological Functions for 3-Oxo-N-Acylhomoserine Lactones. Proc. Natl. Acad. Sci. USA 2005, 102, 309–314. [Google Scholar] [CrossRef]
- Lowery, C.A.; Park, J.; Gloeckner, C.; Meijler, M.M.; Mueller, R.S.; Boshoff, H.I.; Ulrich, R.L.; Barry, C.E.; Bartlett, D.H.; Kravchenko, V.V.; et al. Defining the Mode of Action of Tetramic Acid Antibacterials Derived from Pseudomonas Aeruginosa Quorum Sensing Signals. J. Am. Chem. Soc. 2009, 131, 14473–14479. [Google Scholar] [CrossRef]
- Jiang, M.; Zheng, J.; Perez-Calleja, P.; Picioreanu, C.; Lin, H.; Zhang, X.; Zhang, Y.; Li, H.; Nerenberg, R. New Insight into CO2-Mediated Denitrification Process in H2-Based Membrane Biofilm Reactor: An Experimental and Modeling Study. Water Res. 2020, 184, 116177. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Bai, H.; Kong, F.; Liss, S.; Liao, B. Recent Advances in Membrane Aerated Biofilm Reactors. Crit. Rev. Environ. Sci. Technol. 2020, 51, 1–55. [Google Scholar] [CrossRef]
- Hu, C.; He, G.; Yang, Y.; Wang, N.; Zhang, Y.; Su, Y.; Zhao, F.; Wu, J.; Wang, L.; Lin, Y.; et al. Nanomaterials Regulate Bacterial Quorum Sensing: Applications, Mechanisms, and Optimization Strategies. Adv. Sci. 2024, 11, 2306070. [Google Scholar] [CrossRef]
- Sahreen, S.; Mukhtar, H.; Imre, K.; Morar, A.; Herman, V.; Sharif, S. Exploring the Function of Quorum Sensing Regulated Biofilms in Biological Wastewater Treatment: A Review. Int. J. Mol. Sci. 2022, 23, 9751. [Google Scholar] [CrossRef]
- Ma, Y.; Wei, D.; Zhang, X.; Fu, H.; Chen, T.; Jia, J. An Innovative Strategy for Inducing Anammox from Partial Nitrification Process in a Membrane Bioreactor. J. Hazard. Mater. 2019, 379, 120809. [Google Scholar] [CrossRef]
- Su, Y.; Zheng, X.; Chen, Y.; Li, M.; Liu, K. Alteration of Intracellular Protein Expressions as a Key Mechanism of the Deterioration of Bacterial Denitrification Caused by Copper Oxide Nanoparticles. Sci. Rep. 2015, 5, 15824. [Google Scholar] [CrossRef]
- Ji, J.; Peng, Y.; Li, X.; Zhang, Q.; Liu, X. A Novel Partial Nitrification-Synchronous Anammox and Endogenous Partial Denitrification (PN-SAEPD) Process for Advanced Nitrogen Removal from Municipal Wastewater at Ambient Temperatures. Water Res. 2020, 175, 115690. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Xu, L.; Zhou, L.; Jiang, M.; Xu, Y.; Wang, D.; Zhang, X.; Dong, K.; Zheng, J.; et al. Quorum Sensing-Driven Control of Hydrogenotrophic Biofilms: Toward Energy-Efficient Wastewater Treatment Systems. Chem. Eng. J. 2025, 520, 166326. [Google Scholar] [CrossRef]
- Mao, Y.; Xia, Y.; Wang, Z.; Zhang, T. Reconstructing a Thauera Genome from a Hydrogenotrophic-Denitrifying Consortium Using Metagenomic Sequence Data. Appl. Microbiol. Biotechnol. 2014, 98, 6885–6895. [Google Scholar] [CrossRef]
- Braker, G.; Zhou, J.; Wu, L.; Devol, A.H.; Tiedje, J.M. Nitrite Reductase Genes (nirK and nirS) as Functional Markers to Investigate Diversity of Denitrifying Bacteria in Pacific Northwest Marine Sediment Communities. Appl. Environ. Microbiol. 2000, 66, 2096–2104. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Wang, J.; Liu, Q.; Ding, L.; Ren, H. The Role of Immobilized Quorum Sensing Strain in Promoting Biofilm Formation of Moving Bed Biofilm Reactor during Long-Term Stable Operation. Environ. Res. 2022, 215, 114159. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, Y.; Chen, H.; Lv, Y. Enhanced Pollutant Removal in Moving Bed Biofilm Reactor under High-Salinity Condition via Specialized Quorum Sensing Bacteria. Environ. Res. 2025, 285, 122610. [Google Scholar] [CrossRef]
- Siddiqui, M.F.; Rzechowicz, M.; Harvey, W.; Zularisam, A.W.; Anthony, G.F. Quorum Sensing Based Membrane Biofouling Control for Water Treatment: A Review. J. Water Process Eng. 2015, 7, 112–122. [Google Scholar] [CrossRef]
- Tang, K.; Zhang, X.-H. Quorum Quenching Agents: Resources for Antivirulence Therapy. Mar. Drugs 2014, 12, 3245–3282. [Google Scholar] [CrossRef]
- van der Meer, J.R.; Belkin, S. Where Microbiology Meets Microengineering: Design and Applications of Reporter Bacteria. Nat. Rev. Microbiol. 2010, 8, 511–522. [Google Scholar] [CrossRef]
- Parsek, M.R.; Val, D.L.; Hanzelka, B.L.; Cronan, J.E.; Greenberg, E.P. Acyl Homoserine-Lactone Quorum-Sensing Signal Generation. Proc. Natl. Acad. Sci. USA 1999, 96, 4360–4365. [Google Scholar] [CrossRef]
- Rudrappa, T.; Bais, H.P. Curcumin, a Known Phenolic from Curcuma Longa, Attenuates the Virulence of Pseudomonas Aeruginosa PAO1 in Whole Plant and Animal Pathogenicity Models. J. Agric. Food Chem. 2008, 56, 1955–1962. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, J.F.; Zhang, T.; Wynn, D.P.; Karschner, E.L.; Zhou, Z.S. Synthesis of LuxS Inhibitors Targeting Bacterial Cell-Cell Communication. Org. Lett. 2004, 6, 3043–3046. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Wan, W.; Mansouri, S.; Alfaro, J.F.; Bassler, B.L.; Cornell, K.A.; Zhou, Z.S. Chemical Synthesis of S-Ribosyl-L-Homocysteine and Activity Assay as a LuxS Substrate. Bioorg. Med. Chem. Lett. 2003, 13, 3897–3900. [Google Scholar] [CrossRef] [PubMed]
- Zang, T.; Lee, B.W.K.; Cannon, L.M.; Ritter, K.A.; Dai, S.; Ren, D.; Wood, T.K.; Zhou, Z.S. A Naturally Occurring Brominated Furanone Covalently Modifies and Inactivates LuxS. Bioorg. Med. Chem. Lett. 2009, 19, 6200–6204. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Leiknes, T. Quorum-Quenching Bacteria Isolated From Red Sea Sediments Reduce Biofilm Formation by Pseudomonas Aeruginosa. Front. Microbiol. 2018, 9, 1354. [Google Scholar] [CrossRef]
- P Shastry, R.; Ravishankar, R. Inhibition of QS-Regulated Virulence Factors in Pseudomonas Aeruginosa PAO1 and Pectobacterium Carotovorum by AHL-Lactonase of Endophytic Bacterium Bacillus Cereus VT96. Biocatal. Agric. Biotechnol. 2016, 7, 154–163. [Google Scholar] [CrossRef]
- Wang, J.; Lin, J.; Zhang, Y.; Zhang, J.; Feng, T.; Li, H.; Wang, X.; Sun, Q.; Zhang, X.; Wang, Y. Activity Improvement and Vital Amino Acid Identification on the Marine-Derived Quorum Quenching Enzyme MomL by Protein Engineering. Mar. Drugs 2019, 17, 300. [Google Scholar] [CrossRef]
- Ni, N.; Li, M.; Wang, J.; Wang, B. Inhibitors and Antagonists of Bacterial Quorum Sensing. Med. Res. Rev. 2009, 29, 65–124. [Google Scholar] [CrossRef]
- Asfour, H.Z. Anti-Quorum Sensing Natural Compounds. J. Microsc. Ultrastruct. 2018, 6, 1–10. [Google Scholar] [CrossRef]
- Rampioni, G.; Leoni, L.; Williams, P. The Art of Antibacterial Warfare: Deception through Interference with Quorum Sensing-Mediated Communication. Bioorg. Chem. 2014, 55, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Sully, E.K.; Malachowa, N.; Elmore, B.O.; Alexander, S.M.; Femling, J.K.; Gray, B.M.; DeLeo, F.R.; Otto, M.; Cheung, A.L.; Edwards, B.S.; et al. Selective Chemical Inhibition of Agr Quorum Sensing in Staphylococcus Aureus Promotes Host Defense with Minimal Impact on Resistance. PLoS Pathog. 2014, 10, e1004174. [Google Scholar] [CrossRef]
- Ergön-Can, T.; Kose Mutlu, B.; Koyuncu, I.; Lee, C.-H. Biofouling Control Based on Bacterial Quorum Quenching with a New Application: Rotary Microbial Carrier Frame. J. Membr. Sci. 2016, 525, 116–124. [Google Scholar] [CrossRef]
- Liang, Z.; Zhong, H.; Zhao, Q. Enhancing Mixed-Species Microalgal Biofilms for Wastewater Treatment: Design, Construction, Evaluation and Optimisation. Bioresour. Technol. 2025, 430, 132600. [Google Scholar] [CrossRef]
- Song, W.; Wan, C.; Ding, Z.; Xu, B.; Zhao, P.; Wang, X.; Ng, H.Y. Marine Quorum Quenching Consortium for Biofouling Control in Membrane Bioreactor under Salinity Stress. Water Res. 2025, 286, 124271. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, J.; Quan, L.; Li, D.; Chen, Y.; Zhang, Z.; Yang, L.; Li, B.; Wu, L. Construction of Microalgae-Bacteria Consortium to Remove Typical Neonicotinoids Imidacloprid and Thiacloprid from Municipal Wastewater: Difference of Algae Performance, Removal Effect and Product Toxicity. Biochem. Eng. J. 2022, 187, 108634. [Google Scholar] [CrossRef]
- Johnson, I.; Girijan, S.; Tripathy, B.; Ali, M.; Kumar, M. Algal–Bacterial Symbiosis and Its Application in Wastewater Treatment. In Emerging Technologies in Environmental Bioremediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 341–372. ISBN 978-0-12-819860-5. [Google Scholar]
- Morgado, D.; Fanesi, A.; Martin, T.; Tebbani, S.; Bernard, O.; Lopes, F. Non-Destructive Monitoring of Microalgae Biofilms. Bioresour. Technol. 2024, 398, 130520. [Google Scholar] [CrossRef]
- Xia, L.; Wu, B.; Cui, X.; Ran, T.; Li, Q.; Zhou, Y. Machine Learning-Based Prediction of Non-Aeration Linear Alkylbenzene Sulfonate Mineralization in an Oxygenic Microalgal-Bacteria Biofilm. Bioresour. Technol. 2025, 419, 132028. [Google Scholar] [CrossRef]





| Biofilm-Based Reactor | Dominant Biofilm Mechanism | Experimentally Demonstrated Performance |
|---|---|---|
| Trickling Filters (TFs) | Aerobic biofilm oxidation supported by EPS-rich structure | Stable organic matter removal through attached biofilm biomass with reduced sludge production [38,39] |
| Rotating Biological Contactors (RBCs) | EPS-mediated biosorption, complexation, and precipitation | >80% removal of Zn2+, Cu2+, and Cd2+ via interaction with EPS functional groups in industrial applications [40] |
| Membrane Bioreactors (MBRs) | Biofilm-assisted biological degradation and biomass retention | Enhanced process stability and reduced sludge production due to attached biofilm growth [38,39] |
| Up-flow Anaerobic Sludge Blanket (UASB) | Anaerobic biofilm-mediated biochemical conversion | Efficient sorption and biodegradation of hydrocarbons in high-strength wastewater streams [38] |
| Fluidized-bed Biofilm Reactor (FBR) | Biofilm immobilization on fluidized carriers enabling intensified mass transfer and high active biomass concentration | >99.9% removal of chlorophenols (pentachlorophenol, 2,4,6-trichlorophenol, 2,3,4,6-tetachlorophenol) at loading rates up to 1000 mg L−1 d−1 and HRT < 1 h in lab-scale groundwater remediation studies [42,43] |
| Integrated Fixed-film Activated Sludge (IFAS) | Combined attached and suspended growth biofilm mechanisms enhancing biomass retention and nutrient conversion | Improved nitrification performance, enhanced nutrient removal efficiency, extended solids retention time and superior removal of anthropogenic compounds compared to conventional activated sludge systems [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Masatlis, I.; Chatzis, A.; Zouboulis, A. Biofilm Control in Wastewater Treatment: A Review Regarding the Application of Quorum Sensing and Quenching Processes and Future Perspectives. Water 2026, 18, 77. https://doi.org/10.3390/w18010077
Masatlis I, Chatzis A, Zouboulis A. Biofilm Control in Wastewater Treatment: A Review Regarding the Application of Quorum Sensing and Quenching Processes and Future Perspectives. Water. 2026; 18(1):77. https://doi.org/10.3390/w18010077
Chicago/Turabian StyleMasatlis, Ioannis, Alexandros Chatzis, and Anastasios Zouboulis. 2026. "Biofilm Control in Wastewater Treatment: A Review Regarding the Application of Quorum Sensing and Quenching Processes and Future Perspectives" Water 18, no. 1: 77. https://doi.org/10.3390/w18010077
APA StyleMasatlis, I., Chatzis, A., & Zouboulis, A. (2026). Biofilm Control in Wastewater Treatment: A Review Regarding the Application of Quorum Sensing and Quenching Processes and Future Perspectives. Water, 18(1), 77. https://doi.org/10.3390/w18010077

