Multicriteria Analysis of the Effects of Sewage Sludge Conditioning Prior to the Dewatering Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Sludge and Polyelectrolytes
2.2. Dewaterability Assessment
2.3. Description of Radar Chart Methodology
2.4. Statistical Analysis
3. Results
3.1. Statistical Analysis
3.2. Test Results
3.3. Radar Charts Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, B.; Dai, X.; Chai, X. Critical Review on Dewatering of Sewage Sludge: Influential Mechanism, Conditioning Technologies and Implications to Sludge Re-Utilizations. Water Res. 2020, 180, 115912. [Google Scholar] [CrossRef]
- Qi, Y.; Thapa, K.B.; Hoadley, A.F.A. Application of Filtration Aids for Improving Sludge Dewatering Properties—A Review. Chem. Eng. J. 2011, 171, 373–384. [Google Scholar] [CrossRef]
- Wakeman, R.J. Separation Technologies for Sludge Dewatering. J. Hazard. Mater. 2007, 144, 614–619. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Q.; Wang, D.; Li, X.; Zhong, Y.; Li, X.; Deng, Y.; Wang, L.; Yi, K.; Zeng, G. Enhanced Dewaterability of Waste Activated Sludge by Fe(II)-Activated Peroxymonosulfate Oxidation. Bioresour. Technol. 2016, 206, 134–140. [Google Scholar] [CrossRef]
- Shen, J.; Zhou, X.; Zhou, L.; Huang, Z.; Huang, S. Effect of Sludge Conditioning by Microbial Fuel Cell on Electro-Dewatering Performance. J. Water Process Eng. 2023, 55, 104137. [Google Scholar] [CrossRef]
- Kowalczyk, M. The Influence of the Addition of Cement and Zeolite on the Increase in the Efficiency of Sewage Sludge Dewatering in the Pressure Filtration Process. Energies 2024, 17, 685. [Google Scholar] [CrossRef]
- Sawalha, O.; Scholz, M. Assessment of Capillary Suction Time (CST) Test Methodologies. Environ. Technol. 2007, 28, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Xu, Z.; Jiang, Y.; Jiang, Y.; Xiao, K. Correlating Parameters Evaluating Sludge Dewaterability and Morphological Characteristics of Sludge Flocs by a Commercial Smartphone and Image Analysis. Water 2025, 17, 2019. [Google Scholar] [CrossRef]
- Gray, N.F. Capillary Suction Time (CST). In Progress in Filtration and Separation; Academic Press: Cambridge, MA, USA, 2015; pp. 659–670. [Google Scholar] [CrossRef]
- Sawalha, O.; Scholz, M. Impact of Temperature on Sludge Dewatering Properties Assessed by the Capillary Suction Time. Ind. Eng. Chem. Res. 2012, 51, 2782–2788. [Google Scholar] [CrossRef]
- Volume 28, No. 8, August 1956 of Sewage and Industrial Wastes on JSTOR. Available online: https://www.jstor.org/stable/i25033124 (accessed on 3 November 2025).
- Fitria, D.; Scholz, M.; Swift, G.M. Sludge Dewaterability Testing: Relationship Between Capillary Suction Time (CST) and Specic Resistance to Filtration (SRF) for Coagulation Occulation Sludge. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Ginisty, P.; Mailler, R.; Rocher, V. Sludge Conditioning, Thickening and Dewatering Optimization in a Screw Centrifuge Decanter: Which Means for Which Result? J. Environ. Manag. 2021, 280, 111745. [Google Scholar] [CrossRef] [PubMed]
- Pambou, Y.B.; Fraikin, L.; Salmon, T.; Crine, M.; Léonard, A. Enhanced Sludge Dewatering and Drying Comparison of Two Linear Polyelectrolytes Co-Conditioning with Polyaluminium Chloride. In Proceedings of the ECSM 2014—4th European Conference on Sludge Management, Izmir, Turkey, 26–27 May 2014. [Google Scholar]
- Bień, B. The Effect of PIX 123 and Polyelectrolyte Zetag 8160 on the Conditioning and Dewatering of Sewage Sludge. Eng. Prot. Environ. 2017, 20, 165–174. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Wooley, J.F. Specific Resistance. Operational Control Tests for Mwastewater Facilities. Instructor’s Manual [and] Student Workbook; Linn-Benton Community College: Albany, OR, USA, 1982. Available online: https://files.eric.ed.gov/fulltext/ED221401.pdf (accessed on 10 October 2025).
- Cydzik-Kwiatkowska, A.; Nosek, D.; Wojnowska-Baryła, I.; Mikulski, A. Efficient Dewatering of Polymer-Rich Aerobic Granular Sludge with Cationic Polymer Containing Hydrocarbons. Int. J. Environ. Sci. Technol. 2020, 17, 361–370. [Google Scholar] [CrossRef]
- Duan, R.; Tong, J.; Sutton, A.J.; Asch, D.A.; Chu, H.; Schmid, C.H.; Chen, Y. Origami Plot: A Novel Multivariate Data Visualization Tool That Improves Radar Chart. J. Clin. Epidemiol. 2023, 156, 85–94. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z. Multiple Criteria Decision Making (MCDM) Methods in Economics: An Overview. Technol. Econ. Dev. Econ. 2011, 17, 397–427. [Google Scholar] [CrossRef]
- Kalonia, C.; Kumru, O.S.; Kim, J.H.; Middaugh, C.R.; Volkin, D.B. Radar Chart Array Analysis to Visualize Effects of Formulation Variables on IgG1 Particle Formation as Measured by Multiple Analytical Techniques. J. Pharm. Sci. 2013, 102, 4256–4267. [Google Scholar] [CrossRef]
- Smyth, M.; Minall, R. Predicting Sludge Dewaterability: A Reverse-Run Mass Balance Approach to Close the Expectation Gap. In Proceedings of the European Biosolids and Organic Resources Conference, Edinburgh, Scotland, 15–16 November 2016. [Google Scholar]
- Kamizela, T.; Kowalczyk, M. Dewaterability of Digested Sludge Conditioned with Sludge from a Water Treatment Plant. Rocz. Ochr. Sr. 2019, 21, 217–233. [Google Scholar]
- Cheng, C.F.; Lin, C.J.; Liu, I.C. Mobile Data Visualisation Interface Design for Industrial Automation and Control: A User-Centred Usability Study. Appl. Sci. 2025, 15, 10832. [Google Scholar] [CrossRef]
- Qi, S.; Song, Y.; Zhou, S.; Zhang, J.; Peng, Y. Effect of Ion Type and Molecular Weight of Polyacrylamide on Dewatering Performance of Flotation Clean Coal. Physicochem. Probl. Miner. Process. 2025, 61, 204126. [Google Scholar] [CrossRef]
- Wang, H.-F.; Wang, H.-J.; Hu, H.; Zeng, R.J. Applying Rheological Analysis to Understand the Mechanism of Polyacrylamide (PAM) Conditioning for Sewage Sludge Dewatering. RSC Adv. 2017, 7, 30274–30282. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, J.; Xu, H.; Wu, S.; Yang, Z.; Zhou, A.; Hao, Y. Optimizing Sludge Dewatering Efficiency with Ultrasonic Treatment: Insights into Parameters, Effects, and Microstructural Changes. Ultrason. Sonochem. 2024, 102, 106736. [Google Scholar] [CrossRef]
- Sveegaard, S.G.; Keiding, K.; Christensen, M.L. Compression and Swelling of Activated Sludge Cakes During Dewatering. Water Res. 2012, 46, 4999–5008. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Perucho, P.; Torres, K.M.M.; Ferrer, J.; Robles, Á. Evaluating the Potential of Off-Line Methodologies to Determine Sludge Filterability from Different Municipal Wastewater Treatment Systems. Chem. Eng. J. 2023, 468, 143537. [Google Scholar] [CrossRef]
- To, V.H.P.; Nguyen, T.V.; Vigneswaran, S.; Duc Nghiem, L.; Murthy, S.; Bustamante, H.; Higgins, M. Modified Centrifugal Technique for Determining Polymer Demand and Achievable Dry Solids Content in the Dewatering of Anaerobically Digested Sludge. Desalin. Water Treat. 2016, 57, 25509–25519. [Google Scholar] [CrossRef]
- Kang, X.; Cai, L.; Li, Y.; Gao, X.; Bai, G. Investigation on the Separation Performance and Multiparameter Optimization of Decanter Centrifuges. Processes 2022, 10, 1284. [Google Scholar] [CrossRef]




| Parameter | - |
|---|---|
| pH | 7.5–8.2 |
| Temperature | 22–25 °C |
| Color | black |
| Structure | homogeneous, dense |
| Odor | non-offensive odor |
| Moisture content (MC) | 96.56% |
| Total solids | 33,677 g/m3 |
| Density | 1025–1034 kg/m3 |
| Name | Form | Cation Level | Active Substance | Price for Active Substance [€/kg] |
|---|---|---|---|---|
| Zetag 7557 1 | Pearla | 60% | 100% | € 5.65 |
| Zetag 8180 1 | Powder | 80% | 100% | € 4.71 |
| Zetag 8190 1 | Powder | 90% | 100% | € 4.71 |
| Zetag 9249FS 1 | Emulsion | 90% | 46% | € 5.62 |
| Zetag 9246FS 1 | Emulsion | 60% | 41% | € 6.31 |
| Zetag 9248FS 1 | Emulsion | 80% | 46% | € 5.62 |
| Zetag 7587 1 | Pearla | 80% | 100% | € 5.65 |
| Superflock C446 2 | Powder | 60% | 100% | € 4.71 |
| Praestol 665 3 | Powder | 60% | 100% | € 4.71 |
| Ace 80202 4 | Powder | 80% | 100% | € 4.71 |
| Dose | Amount of Expressed Filtrate | CST [Average] | SRF 25 kPa | SRF 50 kPa | TSS | |
|---|---|---|---|---|---|---|
| Dose | 1.00 | 0.75 | −0.80 | −0.59 | −0.63 | −0.40 |
| Amount of expressed filtrate | 0.75 | 1.00 | −0.56 | −0.36 | −0.42 | −0.16 |
| CST [average] | −0.80 | 0.56 | 1.00 | 0.60 | 0.68 | 0.33 |
| SRF 25 kPa | −0.59 | 0.36 | 0.60 | 1.00 | 0.89 | 0.58 |
| SRF 50 kPa | −0.63 | 0.42 | 0.68 | 0.04 | 1.00 | 0.59 |
| TSS | −0.40 | 0.16 | 0.33 | 0.58 | 0.59 | 1.00 |
| Test Name | Units | Average Value Before Treatment | Average Value After Treatment with Highest Dosage | Efficiency [%] |
|---|---|---|---|---|
| CST | s | 487.84 | 44.65 | 91% |
| SRF 25 kPa | m/kg | 82.09 | 18.47 | 78% |
| SRF 50 kPa | m/kg | 146.83 | 29.05 | 80% |
| Amount of expressed filtrate | mL | 117.56 | 129.79 | 9% |
| TSS | g/m3 | 98.56 | 44.65 | 55% |
| Category | General | Centrifuge | Filterpress |
|---|---|---|---|
| Best polyelectrolyte (dose 4 kg/t ds) | Preastol 665 | Zetag 9249FS (emulsion) | Zetag 7557 |
| Best polyelectrolyte (dose 8 kg/t ds) | Zetag 8180 | Zetag 8190 | Super Floc C446 |
| Best polyelectrolyte (dose 16 kg/t ds) | Preastol 665 | Preastol 665 | Ace 80202 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Miodoński, S.; Ruszkowski, A.; Pietura, B.; Muszyński-Huhajło, M. Multicriteria Analysis of the Effects of Sewage Sludge Conditioning Prior to the Dewatering Process. Water 2026, 18, 76. https://doi.org/10.3390/w18010076
Miodoński S, Ruszkowski A, Pietura B, Muszyński-Huhajło M. Multicriteria Analysis of the Effects of Sewage Sludge Conditioning Prior to the Dewatering Process. Water. 2026; 18(1):76. https://doi.org/10.3390/w18010076
Chicago/Turabian StyleMiodoński, Stanisław, Aleksy Ruszkowski, Bartłomiej Pietura, and Mateusz Muszyński-Huhajło. 2026. "Multicriteria Analysis of the Effects of Sewage Sludge Conditioning Prior to the Dewatering Process" Water 18, no. 1: 76. https://doi.org/10.3390/w18010076
APA StyleMiodoński, S., Ruszkowski, A., Pietura, B., & Muszyński-Huhajło, M. (2026). Multicriteria Analysis of the Effects of Sewage Sludge Conditioning Prior to the Dewatering Process. Water, 18(1), 76. https://doi.org/10.3390/w18010076

