Estimation of Soil Water Flux Using the Heat Pulse Technique and Vector Addition in Saturated Soils of Different Textures
Abstract
1. Introduction
2. Materials and Methods
2.1. Theory
2.2. Experimental Setup
2.3. Probe Spacing Calibration and Model Evaluation
3. Results
3.1. Influence of Water Flux on Probe Temperature
3.2. Measured Soil Water Flux
4. Discussion
4.1. Performance of the Vector HPT Methods
4.2. Effects of Soil Texture and Probe Spacing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, L.M.; Shao, M.A. Advances and perspectives on soil water research in China’s Loess Plateau. Earth Sci. Rev. 2019, 199, 102962. [Google Scholar] [CrossRef]
- Fu, Z.; Yan, Z.; Wang, Y. The deep soil water dynamics and its environmental controls after long-term revegetation. J. Hydrol. 2024, 628, 130530. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, X.; Wang, Y.; Zhang, C.; Jiang, M.; Zhu, X. Surface Soil Moisture Retrieval over Winter Wheat Fields Based on Fused Multispectral and L-Band MiniSAR Data. Water 2025, 17, 3345. [Google Scholar] [CrossRef]
- Zahra, H.; Sajjad, A.; Sajid, G.H.; Iqbal, M.; Khan, A.H.A. Identification of Groundwater Recharge Potential Zones in Islamabad and Rawalpindi for Sustainable Water Management. Water 2025, 17, 3392. [Google Scholar] [CrossRef]
- Rossi, M.J.; Ares, J.O.; Jobbágy, E.G.; Vivoni, E.R.; Vervoort, R.W.; Schreiner–McGraw, A.P.; Saco, P.M. Vegetation and terrain drivers of infiltration depth along a semiarid hillslope. Sci. Total Environ. 2018, 644, 1399–1408. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Pachepsky, Y.; Montzka, C.; Van Der Kruk, J.; Bogena, H.; Weihermüller, L.; Herbst, M.; Martinez, G.; Vanderborght, J. On the spatio–temporal dynamics of soil moisture at the field scale. J. Hydrol. 2014, 516, 76–96. [Google Scholar] [CrossRef]
- Tang, D.W.; French, H.K.; Leijnse, A.; Bartholomeus, R.P.; van der Zee, S.E. Reactive contaminant infiltration under dynamic preferential flow. J. Hydrol. 2024, 634, 131111. [Google Scholar] [CrossRef]
- Vicente–Serrano, S.M.; Miralles, D.G.; McDowell, N.; Brodribb, T.; Domínguez-Castro, F.; Leung, R.; Koppa, A. The uncertain role of rising atmospheric CO2 on global plant transpiration. Earth Sci. Rev. 2022, 230, 104055. [Google Scholar] [CrossRef]
- Rowland, L.; da Costa, A.C.L.; Galbraith, D.R.; Oliveira, R.S.; Binks, O.J.; Oliveira, A.A.; Pullen, A.M.; Doughty, C.E.; Metcalfe, D.B.; Vasconcelos, S.S.; et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 2015, 528, 119–122. [Google Scholar] [CrossRef]
- Iinuma, R.; Harada, S.; Yamauchi, N. Modeling Three-Dimensional Exfiltration Rates from Permeable Street Stormwater Inlets as One-Dimensional Water Flux in Urban Hydrological Models. Water 2024, 16, 3076. [Google Scholar] [CrossRef]
- Su, M.; Ma, R.; Wang, Y.; Sun, Z.; Yin, M.; Ge, M. Tracing the soil water flux in variably saturated zones using temperature data. Water Resour. Res. 2023, 59, e2022WR033677. [Google Scholar] [CrossRef]
- Naranjo, R.C.; Turcotte, R. A new temperature profiling probe for investigating groundwater-surface water interaction. Water Resour. Res. 2015, 51, 7790–7797. [Google Scholar] [CrossRef]
- Rau, G.C.; Andersen, M.S.; Acworth, R.I. Experimental investigation of the thermal dispersivity term and its significance in the heat transport equation for flow in sediments. Water Resour. Res. 2012, 48, W03511. [Google Scholar] [CrossRef]
- Kinar, N.J.; Pomeroy, J.W.; Si, B. Signal processing for in situ detection of effective heat pulse probe spacing radius as the basis of a self–calibrating heat pulse probe. Geosci. Instrum. Methods Data Syst. 2020, 9, 293–315. [Google Scholar] [CrossRef]
- Naruke, C.; Sheng, W.; Zhou, R.; Jones, S.B. Standardizing Heat Pulse Probe measurements for thermal property determination using ice and water. Agric. For. Meteorol. 2021, 308, 108610. [Google Scholar] [CrossRef]
- Lu, X.R.; Sun, Y.; Chen, G.S.; Qin, Y.; Bai, Y.F.; Li, X.J.; Mou, X.J. Influences of thermal dispersion on soil water flux estimates using heat pulse technique in saturated soils. Catena 2018, 167, 228–235. [Google Scholar] [CrossRef]
- Ren, T.; Kluitenberg, G.J.; Horton, R. Determining soil water flux and pore water velocity by a heat pulse technique. Soil Sci. Soc. Am. J. 2000, 64, 552–560. [Google Scholar] [CrossRef]
- Wang, Q.; Ochsner, T.E.; Horton, R. Mathematical analysis of heat pulse signals for soil water flux determination. Water Resour. Res. 2002, 38, 27-1–27-7. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Horton, R.; Kluitenberg, G.J.; Wang, Q. Evaluation of the heat pulse ratio method for measuring soil water flux. Soil Sci. Soc. Am. J. 2005, 69, 757–765. [Google Scholar] [CrossRef]
- Lu, X.; Chen, G.; Qin, Y.; Sun, Y.; Li, X. Evaluation of water flux prediction with heat-pulse technique in saturated soils. Arch. Agron. Soil Sci. 2017, 63, 455–467. [Google Scholar] [CrossRef]
- Sheng, W.; Rumana, K.; Sakai, M.; Silfa, F.; Jones, S.B. A multi-functional penta-needle thermos-dielectric sensor for porous media sensing. IEEE Sens. J. 2016, 16, 3670–3678. [Google Scholar] [CrossRef]
- Endo, A.; Hara, M. Simultaneous measurement of water flux density vectors and thermal properties under drainage conditions in soils. Paddy Water Environ. 2007, 5, 171–180. [Google Scholar] [CrossRef]
- Yang, C.; Sakai, M.; Jones, S.B. Inverse method for simultaneous determination of soil water flux density and thermal properties with a penta–needle heat pulse probe. Water Resour. Res. 2013, 49, 5851–5864. [Google Scholar] [CrossRef]
- Endo, A.; Hara, M. Simultaneous measurement of thermal front advection velocity vector and thermal properties of sandy soil under two–dimensional flow field with quintuple–probe heat–pulse technique and its applications. Trans. Soc. Instrum. Control Eng. 2003, 2, 88–95. [Google Scholar]
- Yang, C.; Jones, S.B. INV–WATFLX, a code for simultaneous estimation of soil properties and planar vector water flux from fully or partly functioning needles of a penta-needle heat-pulse probe. Comput. Geosci. 2009, 35, 2250–2258. [Google Scholar] [CrossRef]
- Mori, Y.; Hopmans, J.W.; Mortensen, A.P.; Kluitenberg, G.J. Multi-functional heat pulse probe for the simultaneous measurement of soil water content, solute concentration, and heat transport parameters. Vadose Zone J. 2003, 2, 561–571. [Google Scholar] [CrossRef]
- Ren, T.; Noborio, K.; Horton, R. Measuring soil water content, electrical conductivity, and thermal properties with a thermo-time domain reflectometry probe. Soil Sci. Soc. Am. J. 1999, 63, 450–457. [Google Scholar] [CrossRef]
- Ren, T.; Ochsner, T.E.; Horton, R.; Ju, Z. Heat-pulse method for soil water content measurement: Influence of the specific heat of the soil solids. Soil Sci. Soc. Am. J. 2003, 67, 1631–1634. [Google Scholar] [CrossRef]
- Wen, M.; Liu, G.; Li, B.; Si, B.C.; Horton, R. Evaluation of a self-correcting dual probe heat pulse sensor. Agric. For. Meteorol. 2015, 200, 203–208. [Google Scholar] [CrossRef]
- Kluitenberg, G.J.; Kamai, T.; Vrugt, J.A.; Hopmans, J.W. Effect of probe deflection on dual-probe heat-pulse thermal conductivity measurements. Soil Sci. Soc. Am. J. 2010, 74, 1537–1540. [Google Scholar] [CrossRef]
- Liu, G.; Wen, M.; Chang, X.; Ren, T.; Horton, R. A self-calibrated dual probe heat pulse sensor for in situ calibrating the probe spacing. Soil Sci. Soc. Am. J. 2013, 77, 417–421. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P. Macropores and water flow in soils revisited. Water Resour. Res. 2013, 49, 3071–3092. [Google Scholar] [CrossRef]
- Urbina, C.F.; Van Dam, J.C.; Hendriks, R.F.A.; van Den Berg, F.; Gooren, H.P.A.; Ritsema, C.J. Water flow in soils with heterogeneous macropore geometries. Vadose Zone J. 2019, 18, 1–17. [Google Scholar] [CrossRef]
- Bacq–Labreuil, A.; Crawford, J.; Mooney, S.J.; Neal, A.L.; Ritz, K. Phacelia (Phacelia tanacetifolia Benth.) affects soil structure differently depending on soil texture. Plant Soil. 2019, 441, 543–554. [Google Scholar] [CrossRef]
- Gupta, S.; Borrelli, P.; Panagos, P.; Alewell, C. An advanced global soil erodibility (K) assessment including the effects of saturated hydraulic conductivity. Sci. Total Environ. 2024, 908, 168249. [Google Scholar] [CrossRef]
- Kamai, T.; Tuli, A.; Kluitenberg, G.J.; Hopmans, J.W. Soil water flux density measurements near 1 cm d−1 using an improved heat pulse probe design. Water Resour. Res. 2008, 44, W00D14. [Google Scholar] [CrossRef]
- He, H.; Dyck, M.F.; Horton, R.; Ren, T.; Bristow, K.L.; Lv, J.; Si, B. Development and application of the heat pulse method for soil physical measurements. Rev. Geophys. 2018, 56, 567–620. [Google Scholar] [CrossRef]
- Wang, B.; Chen, L.W.; Niu, Z. Critical hydraulic gradient and fine particle migration of sand under upward seepage flow. Sci. Rep. 2022, 12, 14440. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Bai, Y.; Xu, H.; Cao, Y.; Hu, X. A theoretical model to predict the critical hydraulic gradient for soil particle movement under two-dimensional seepage flow. Water 2017, 9, 828. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Indraratna, B. Fluidization of soil under increasing seepage flow: An energy perspective through CFD-DEM coupling. Granul. Matter. 2022, 24, 80. [Google Scholar] [CrossRef]






| Texture | Particle Size (mm) | Bulk Density | ||
|---|---|---|---|---|
| >0.050 | 0.050–0.002 | <0.002 | ||
| (%) | (Mg·m−3) | |||
| Sand | 98.60 | 1.40 | 0 | 1.46 |
| Sandy loam | 51.31 | 47.06 | 1.63 | 1.39 |
| Silt loam | 25.16 | 69.72 | 5.12 | 1.33 |
| Texture | α | Cb | λ | Needle-to-Needle Spacing | |||||
|---|---|---|---|---|---|---|---|---|---|
| x1 | x2 | x3 | x4 | x5 | x6 | ||||
| (10−7·m2·s−1) | (MJ·m−3·k−1) | (W·m−1·K−1) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | |
| Sand | 7.58 (0.018) | 2.83 (0.034) | 2.14 (0.027) | 3.98 (0.029) | 4.09 (0.047) | 4.08 (0.014) | 4.13 (0.037) | 3.82 (0.019) | 3.86 (0.023) |
| Sandy loam | 6.26 (0.033) | 3.06 (0.016) | 1.92 (0.022) | 4.24 (0.012) | 4.13 (0.025) | 4.07 (0.033) | 4.16 (0.042) | 4.09 (0.031) | 4.01 (0.014) |
| Silt loam | 5.77 (0.026) | 3.07 (0.023) | 1.77 (0.031) | 4.02 (0.046) | 4.15 (0.029) | 4.07 (0.041) | 3.92 (0.030) | 3.84 (0.026) | 4.05 (0.032) |
| Textures | MAPE/% | RMSE/(μm·s−1) | ||||||
|---|---|---|---|---|---|---|---|---|
| Ratio Method | Vector Ratio Method | MDTD Method | Vector MDTD Method | Ratio Method | Vector Ratio Method | MDTD Method | Vector MDTD Method | |
| Sand | 11.14 | 19.97 | 30.54 | 28.85 | 5.02 | 5.29 | 17.39 | 14.16 |
| Sandy loam | 15.17 | 8.44 | 34.54 | 33.50 | 9.05 | 4.69 | 19.94 | 17.67 |
| Silt loam | 33.51 | 15.31 | 56.99 | 55.19 | 5.91 | 3.45 | 10.65 | 10.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lu, F.; Zhao, Z.; Pan, Q.; Zhang, Y.; Lu, D.; Wu, Y. Estimation of Soil Water Flux Using the Heat Pulse Technique and Vector Addition in Saturated Soils of Different Textures. Water 2026, 18, 67. https://doi.org/10.3390/w18010067
Lu F, Zhao Z, Pan Q, Zhang Y, Lu D, Wu Y. Estimation of Soil Water Flux Using the Heat Pulse Technique and Vector Addition in Saturated Soils of Different Textures. Water. 2026; 18(1):67. https://doi.org/10.3390/w18010067
Chicago/Turabian StyleLu, Fuyun, Zhi Zhao, Qinghua Pan, Yuping Zhang, Dongye Lu, and Yang Wu. 2026. "Estimation of Soil Water Flux Using the Heat Pulse Technique and Vector Addition in Saturated Soils of Different Textures" Water 18, no. 1: 67. https://doi.org/10.3390/w18010067
APA StyleLu, F., Zhao, Z., Pan, Q., Zhang, Y., Lu, D., & Wu, Y. (2026). Estimation of Soil Water Flux Using the Heat Pulse Technique and Vector Addition in Saturated Soils of Different Textures. Water, 18(1), 67. https://doi.org/10.3390/w18010067

