Optimizing the Arrangement of Semi-Cylindrical Structures for Bank Protection Effectiveness Using the Multi-Objective Genetic Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory of Two-Fluid and Multi-Objective Genetic Algorithms
2.2. Riverbed Model and Sediment Transport Simulation
3. Results and Discussions
3.1. Clamp Angle Optimization Result Analysis
3.2. Analysis of Flow Rate and Spacing Optimization Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Petts, G.E.; Nestler, J.; Kennedy, R. Advancing science for water resources management. Hydrobiologia 2006, 565, 277–288. [Google Scholar] [CrossRef]
- Kondolf, G.M. Hungry water: Effects of dams and gravel mining on river channels. Environ. Manag. 1997, 21, 533–551. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, K.T.; Malasani, C.G.; Reddy, K.S.; Chandra, V. Investigation on scouring and turbulence characteristics around T-head spur dike. J. Appl. Water Eng. Res. 2024, 12, 323–338. [Google Scholar] [CrossRef]
- Khatun, S.; Jamal, M.; Adil, R.M.; Ghosh, A.; Sen, D. Investigation of river bank protection using riprap under drawdown condition. Indian Geotech. J. 2024; in press. [Google Scholar] [CrossRef]
- Tian, Z.H.; Chi, F.H.; Xiao, Y.; Li, T. Construction technology for deep-water revetment with sandbags in the Nanjing section of the Yangtze River. Constr. Technol. 2013, 42, 47–50. (In Chinese) [Google Scholar]
- Yang, Y.H.; Yang, S.Q.; Wang, X.; Wang, C.; Wang, J. Study on the influence of ecological vegetation revetment on river flow and sediment environment. Water Supply 2020, 20, 3141–3155. [Google Scholar] [CrossRef]
- Niu, Y.Y.; Tsao, J.C. Numerical evaluation of erosion in curved ducts. Numer. Heat Transf. Part A Appl. 2002, 41, 341–356. [Google Scholar] [CrossRef]
- Chen, J.; Tang, H.W.; Li, Z.; Dai, W.H. Multi-approach analysis of maximum riverbed scour depth above subway tunnel. Water Sci. Eng. 2010, 3, 431–442. [Google Scholar]
- Abbaspour, A.; Parvini, S.; Dalir, A.H. Effect of buried plates on scour profiles downstream of hydraulic jump in open channels with horizontal and reverse bed slopes. Water Sci. Eng. 2016, 9, 329–335. [Google Scholar] [CrossRef]
- Khosravinia, P.; Malekpour, A.; Hosseinzadehdalir, A.; Farsadizadeh, D. Effect of trapezoidal collars as a scour countermeasure around wing-wall abutments. Water Sci. Eng. 2018, 11, 53–60. [Google Scholar] [CrossRef]
- Ataie-Ashtiani, B.; Beheshti, A.A. Experimental investigation of clear-water local scour at pile groups. J. Hydraul. Eng. 2002, 132, 1100–1104. [Google Scholar] [CrossRef]
- Ballio, F.; Teruzzi, A.; Radice, A. Constriction effects in clear-water scour at abutments. J. Hydraul. Eng. 2009, 135, 140–145. [Google Scholar] [CrossRef]
- Ataie-Ashtiani, B.; Baratian-Ghorghi, Z.; Beheshti, A.A. Experimental investigation of clear-water local scour of compound piers. J. Hydraul. Eng. 2010, 136, 343–351. [Google Scholar] [CrossRef]
- Zhang, X.L.; Jiao, J. The application of wide tail piers and energy dissipators in the Bandao Hydropower Station. Northwest Hydropower 2008, 4, 24–26+48. (In Chinese) [Google Scholar]
- Yao, S.M.; Lu, J.Y. Experimental study on the application of two kinds of new materials to bank protection. J. Sediment. Res. 2006, 2, 17–21. [Google Scholar]
- Kong, L.L.; Wang, X.M.; Guo, W.C.; Zhang, Y.C. Effects of municipal solid waste on planting properties and scouring resistance of vegetation concrete. Int. J. Environ. Res. Public Health 2022, 19, 8143. [Google Scholar] [CrossRef]
- Wang, C.; Yu, X.; Liang, F.Y. A preliminary design of apparatus for scour resistance test in riverbed sediments. In Proceedings of the IFCEE 2018: Recent Developments in Geotechnical Engineering Practice, Orlando, FL, USA, 5–10 March 2018; Volume 294, pp. 746–757. [Google Scholar]
- Yu, W.C.; Zhang, Z.L. Evolution trend of basic channel scour and morphological adjustment in Yangtze River estuary from 2002 to 2018. J. Change River Sci. Res. Inst. 2021, 38, 1–8. [Google Scholar]
- Stout, J.C.; Belmont, P.; Schottler, S.P.; Willenbring, J.K. Identifying sediment sources and sinks in the root river, southeastern Minnesota. Ann. Assoc. Am. Geogr. 2014, 104, 20–39. [Google Scholar] [CrossRef]
- McCarney-Castle, K.; Childress, T.M.; Heaton, C.R. Sediment source identification and load prediction in a mixed-use Piedmont watershed, South Carolina. J. Environ. Manag. 2017, 185, 60–69. [Google Scholar] [CrossRef]
- Liu, W.T.; Li, Y.Y. Three dimensional numerical analyses of bridge piled-raft foundation under riverbed erosion. In Proceedings of the 2nd International Conference on Civil Engineering, Architecture and Building Materials (CEABM 2012), Yantai, China, 25–27 May 2012; Volume 1802, pp. 2373–2377. [Google Scholar]
- Harasti, A.; Gilja, G.; Potocki, K.; Lacko, M. Scour at bridge piers protected by the riprap sloping structure: A review. Water 2021, 13, 3606. [Google Scholar] [CrossRef]
- Sun, H.G.; Hong, L.Z.; Wang, M.M.; Wang, L. Benefit analysis of different ecological throw pillow protection based on CFD-DPM modeling. J. Chang River Sci. Res. Inst. 2025, 42, 19–26. (In Chinese) [Google Scholar]
- Andreini, A.; Bianchini, C.; Puggelli, S.; Demoulin, F.X. Development of a turbulent liquid flux model for Eulerian-Eulerian multiphase flow simulations. Int. J. Multiph. Flow 2016, 81, 88–103. [Google Scholar] [CrossRef]
- Nagawkar, B.R.; Passalacqua, A.; Subramaniam, S. A study on the scale dependence of mixing indices for Eulerian multiphase models. AiChe J 2024, 70, e18589. [Google Scholar] [CrossRef]
- Wang, X.P. Pareto genetic algorithm for multi-objective optimization design. Syst. Eng. Electron. 2003, 25, 1558–1561. (In Chinese) [Google Scholar]
- Kim, H.; Yoo, H.; Paik, K.; Kim, D.-H. Qualitative assessment model for longitudinal riverbed erosion and deposition based on suspended sediment impacts and hydraulic geometry relationship. J. Hydrol. 2025, 657, 133049. [Google Scholar] [CrossRef]
- Fan, C.; Dong, M.; Xu, M.; Mou, J.; Han, P. Visualization experiment of solid-liquid two-phase flow transportation in a jet pump. J. Phys. Conf. Ser. 2024, 2854, 012056. [Google Scholar]
- Ranjbari, P.; Ebrahimi, M.; Ein-Mozaffari, F.; Upreti, S.; Lohi, A. A critical review of the coupled CFD-DEM method for the simulation of two-phase liquid-solid systems. Powder Technol. 2025, 454, 120677. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Kuang, S.B.; Chu, K.W.; Yu, A.B. Discrete particle simulation of particle-fluid flow: Model formulations and their applicability. J. Fluid Mech. 2010, 661, 482–510. [Google Scholar] [CrossRef]
- Ge, J.K.; Qiu, Y.H.; Wu, C.M.; Pu, G.L. Summary of genetic algorithms research. Appl. Res. Comput. 2008, 25, 2911–2916. (In Chinese) [Google Scholar]
- Fonseca, C.M.; Fleming, P.J. Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part II: Application example. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 1998, 28, 38–47. [Google Scholar] [CrossRef]
- Hackney, C.; Best, J.; Leyland, J.; Darby, S.E.; Parsons, D.; Aalto, R.; Nicholas, A. Modulation of outer bank erosion by slump blocks: Disentangling the protective and destructive role of failed material on the three-dimensional flow structure. Geophys. Res. Lett. 2015, 42, 10663–10670. [Google Scholar] [CrossRef]
- Qin, L.; Lu, X.X.; Li, L.; Han, H.; Chai, M.; Yan, X.; Chen, S.; Wang, H.; Ma, W. Optimization of G1 micromixer structure in two-fluid mixing based on CFD and response surface methodology. Processes 2024, 12, 122. [Google Scholar] [CrossRef]
- Strnad, F.; Moravec, V.; Markonis, Y.; Máca, P.; Masner, J.; Stočes, M.; Hanel, M. An index-flood statistical model for hydrological drought assessment. Water 2020, 12, 1213. [Google Scholar] [CrossRef]
- Biswas, P.; Barbhuiya, A.K. Scour at river bend: A parametric study. Iran. J. Sci. Technol. Trans. Civ. Eng. 2020, 44, 1001–1021. [Google Scholar] [CrossRef]
- Sylvester, Z.; Durkin, P.R.; Hubbard, S.M.; Mohrig, D. Autogenic translation and counter point bar deposition in meandering rivers. GSA Bull. 2021, 133, 2439–2456. [Google Scholar] [CrossRef]
- Zhu, X.J.; Qi, H.S.; Lei, G.; Cai, F.; Zhao, S.; Liu, G.; Chen, C. The study of the difference of beach response under sediment supply in southeast of Xiamen Island. Mar. Geol. Quat. Geol. 2022, 42, 96–108. [Google Scholar]
- He, Z.; Jiang, Q.Y. Discussion on the stability analysis and prevention measures of slop engineering. Mine Eng. 2021, 9, 210–213. (In Chinese) [Google Scholar] [CrossRef]
Phase | Title | Boundary Conditions | Values |
---|---|---|---|
river | inlet | velocity inlet | v = 1 m/s |
outlet | pressure outlet | Pr = 0 Pa | |
top surface | zero-gradient boundary | / | |
bottom and banks on both sides | wall boundary | / | |
particle | inlet | velocity inlet | v = 1 m/s |
outlet | escape | / | |
other surface | reflection | / |
Cases | Angle (°) | Net Sediment Flux (kg/s) | Spacing Distance (m) | Velocity (m/s) | Net Sediment Flux (kg/s) |
---|---|---|---|---|---|
1 | 155 | 4.7886 | 43.438 | 1.0625 | 2.0885 |
2 | 185 | 1.4286 | 68.438 | 1.1875 | 1.5980 |
3 | 75 | 1.6493 | 21.563 | 1.9375 | 4.0976 |
4 | 175 | 3.6329 | 30.938 | 2.4375 | 3.3102 |
5 | 85 | 1.8369 | 55.938 | 1.3125 | 2.0567 |
6 | 225 | 0.2529 | 45.563 | 0.5625 | 0.2216 |
7 | 165 | 1.4197 | 52.813 | 1.8125 | 8.8269 |
8 | 215 | 0.4969 | 49.688 | 2.3125 | 3.1601 |
9 | 115 | 1.5353 | 59.063 | 0.8125 | 1.4570 |
10 | 105 | 5.1837 | 65.313 | 1.6875 | 3.3078 |
11 | 135 | 3.4486 | 27.813 | 1.4375 | 3.038 |
12 | 95 | 3.5091 | 40.313 | 1.5625 | 7.6727 |
13 | 145 | 2.9669 | 62.188 | 2.1875 | 3.2738 |
14 | 195 | 1.1925 | 34.063 | 0.6875 | 1.0304 |
15 | 125 | 2.0966 | 24.688 | 0.9375 | 1.4280 |
16 | 205 | 1.5069 | 37.188 | 2.0625 | 3.1864 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Hong, L.; Wang, H.; Wang, L.; Sun, H.; Cai, J. Optimizing the Arrangement of Semi-Cylindrical Structures for Bank Protection Effectiveness Using the Multi-Objective Genetic Algorithm. Water 2025, 17, 1360. https://doi.org/10.3390/w17091360
Wang M, Hong L, Wang H, Wang L, Sun H, Cai J. Optimizing the Arrangement of Semi-Cylindrical Structures for Bank Protection Effectiveness Using the Multi-Objective Genetic Algorithm. Water. 2025; 17(9):1360. https://doi.org/10.3390/w17091360
Chicago/Turabian StyleWang, Maomei, Liangzhen Hong, Hongwei Wang, Lian Wang, Hongguang Sun, and Jun Cai. 2025. "Optimizing the Arrangement of Semi-Cylindrical Structures for Bank Protection Effectiveness Using the Multi-Objective Genetic Algorithm" Water 17, no. 9: 1360. https://doi.org/10.3390/w17091360
APA StyleWang, M., Hong, L., Wang, H., Wang, L., Sun, H., & Cai, J. (2025). Optimizing the Arrangement of Semi-Cylindrical Structures for Bank Protection Effectiveness Using the Multi-Objective Genetic Algorithm. Water, 17(9), 1360. https://doi.org/10.3390/w17091360