Sea-Level Rise and Saltwater Intrusion: Economic Estimates of Impacts of Nature-Based Mitigation Policies Under Uncertainty
Abstract
:1. Introduction
2. Relevant Literature
2.1. The Important Role of the Mekong Delta in the Global Rice Market
2.2. Land and Water Management Policies Context in the Mekong Delta
2.3. Drivers and Trends of Saltwater Intrusion in the Mekong Delta
3. Materials and Methods
3.1. Study Area
3.2. Modelling Procedure
3.2.1. Hydrodynamic and Advection-Dispersion Models
3.2.2. Moment Generating Function for Characterizing Distributions of SWI-Impacted Areas
3.2.3. Monte Carlo Simulation for Statistically Quantifying SWI-Impacted Areas
3.2.4. Economic Model
3.2.5. Alternate Wetting and Drying Conservation Irrigation Practice Adoption Model
3.3. Data Sources Used and Scenarios Considered in This Study
4. Results and Discussion
4.1. Model Performance
4.2. Estimated Distributions of SWI Means and Effects of Sea Level Rise on SWI Intrusion and Risk
4.3. Combined Effects of Sea Level Rise and Land-Fallowing on Saltwater Intrusion Intensity and Risk
4.4. Costs of SWI Mitigation Strategies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Proposed Nature-Based Solution for Saltwater Intrusion Control in This Study
Appendix A.2. The List of Hydrologic, Climate, and Water Demand Management Scenarios Considered
Uncertainty Classification | Source of Uncertainty | Scenario’s Description | Source |
---|---|---|---|
Statistical | Upstream flow | 27 scenarios: (based on) 27 years of historical upstream flows | [130] |
Deep | Sea level rise | Three scenarios: baseline, RCP 4.5 and RCP 8.5 | [94] |
Deep | Water demand within the MKD | Seventh scenario: (based on) seventh potential seasonal land-fallowing scenario (i.e., reducing one rice season). These scenarios include a baseline land use and six land-fallowing scenarios, which can reduce the water use by the amount being equal to the total water used for 50,000 (Q1) to 300,000 (Q6) ha of rice, with an interval of 50,000 ha. | Hypothetical land uses control scenarios introduced by the authors. |
Deep | Water demand within the MKD | Three scenarios: these scenarios are based on theoretical conservation irrigation adoption practice adoption [127,128]. As noted in Appendix A.7, the total area under the AWD irrigation technique is estimated to be equal to 0.6 million ha, which can reduce the water use by 45% compared to conventional (continuous) flooding [100,101,102,184] | Authors’ computation |
Appendix A.3. Proof Regarding the Normality of the Distribution of the Means
- where as . Then,
Appendix A.4. Calibration and Validation Results
Appendix A.5. Farm Profits
Description | Profit/Benefit (U.S. Dollar) | Source |
---|---|---|
Annual sediment benefits and lower fertilizer needs | $1,031.7/ha | [114,119,148] |
Rice production in the coastal region | $1,112.15/ha | [114,115,189] |
Water supply benefits | $36 per year per household | [56] |
Appendix A.6. Paddy Yield in the Coastal Areas of the Mekong Delta by Saline Concentration Levels
Appendix A.7. Total Water Applied for Rice Irrigation
Scenario | Reduced Rice Areas (ha) | Equivalent Flow Released to the Rivers (m3/s) for Rice Area Under Conventional Irrigation |
---|---|---|
1 | 50,000 | 27.6 |
2 | 100,000 | 55.3 |
3 | 150,000 | 83.0 |
4 | 200,000 | 110.6 |
5 | 250,000 | 138.3 |
6 | 300,000 | 165.9 |
Scenario | Ra | Ro | Cr | Equivalent Hectares Fallowed for One Rice Season (ha) |
---|---|---|---|---|
1 | 0.10 | 0.10 | 0.18 | 100,000 |
2 | 0.15 | 0.10 | 0.28 | 150,000 |
3 | 0.20 | 0.10 | 0.55 | 300,000 |
4 | 0.25 | 0.10 | 0.65 | 400,000 |
5 | 0.30 | 0.10 | 0.80 | 450,000 |
6 | 0.35 | 0.10 | 1.00 | 550,000 |
Appendix A.8. Selected Recent Saltwater Intrusion Studies in Asian Mega Deltas
References
- Dinar, A.; Tieu, A.; Huynh, H. Water Scarcity Impacts on Global Food Production; Global Food Security: Washington, DC, USA, 2019; Volume 23, pp. 212–226. [Google Scholar]
- UN. World Popopulation Projections. 2024. Available online: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100 (accessed on 18 April 2024).
- Ghirardelli, A.; Straffelini, E.; Park, E.; D’Agostino, V.; Masin, R.; Tarolli, P. Global impact of seawater intrusion on coastal agriculture. Environ. Res. Lett. 2025, 20, 013005. [Google Scholar] [CrossRef]
- Bairagi, S.K.; Mishra, A.K.; Tran, D.Q. Differential Impact of Gender of Household Head on Food Security: Empirical Evidence from Vietnam. In Proceedings of the 2020 Agricultural & Applied Economics Association Annual Meeting, Kansas City, MO, USA, 26–28 July 2020. [Google Scholar]
- Zheng, Q.; Ha, T.; Prishchepov, A.V.; Zeng, Y.; Yin, H.; Koh, L.P. The neglected role of abandoned cropland in supporting both food security and climate change mitigation. Nat. Commun. 2023, 14, 6083. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Spawn-Lee, S.A.; Radeloff, V.C.; Yin, H.; Robertson, G.P.; Lark, T.J. Cropland abandonment between 1986 and 2018 across the United States: Spatiotemporal patterns and current land uses. Environ. Res. Lett. 2024, 19, 044009. [Google Scholar] [CrossRef]
- Crawford, C.L.; Yin, H.; Radeloff, V.C.; Wilcove, D.S. Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate. Sci. Adv. 2022, 8, eabm8999. [Google Scholar] [CrossRef]
- Subedi, Y.R.; Kristiansen, P.; Cacho, O. Drivers and consequences of agricultural land abandonment and its reutilisation pathways: A systematic review. Environ. Dev. 2022, 42, 100681. [Google Scholar] [CrossRef]
- Schneider, P.; Asch, F. Rice production and food security in Asian Mega deltas—A review on characteristics, vulnerabilities and agricultural adaptation options to cope with climate change. J. Agron. Crop Sci. 2020, 206, 491–503. [Google Scholar] [CrossRef]
- Adams, K.H.; Reager, J.T.; Buzzanga, B.A.; David, C.H.; Sawyer, A.H.; Hamlington, B.D. Climate-Induced Saltwater Intrusion in 2100: Recharge-Driven Severity, Sea Level-Driven Prevalence. Geophys. Res. Lett. 2024, 51, e2024GL110359. [Google Scholar] [CrossRef]
- Lee, J.; Biemond, B.; de Swart, H.; Dijkstra, H.A. Increasing risks of extreme salt intrusion events across European estuaries in a warming climate. Commun. Earth Environ. 2024, 5, 60. [Google Scholar] [CrossRef]
- Mondal, P.; Walter, M.; Miller, J.; Epanchin-Niell, R.; Gedan, K.; Yawatkar, V.; Nguyen, E.; Tully, K.L. The spread and cost of saltwater intrusion in the US Mid-Atlantic. Nat. Sustain. 2023, 6, 1352–1362. [Google Scholar] [CrossRef]
- O’Donnell, K.L.; Bernhardt, E.S.; Yang, X.; Emanuel, R.E.; Ardón, M.; Lerdau, M.T.; Manda, A.K.; Braswell, A.E.; BenDor, T.K.; Edwards, E.C.; et al. Saltwater intrusion and sea level rise threatens U.S. rural coastal landscapes and communities. Anthropocene 2024, 45, 100427. [Google Scholar] [CrossRef]
- Cao, T.; Han, D.; Song, X. Past, present, and future of global seawater intrusion research: A bibliometric analysis. J. Hydrol. 2021, 603, 126844. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Paszkowski, A.; Wang, Z.; Lu, X.; Mitchell, G.; Tran, D.D.; Warner, J.; Li, J.; Chen, Y.D.; Li, N.; et al. Building resilience in Asian mega-deltas. Nat. Rev. Earth Environ. 2024, 5, 522–537. [Google Scholar] [CrossRef]
- Eslami, S.; Hoekstra, P.; Minderhoud, P.S.J.; Trung, N.N.; Hoch, J.M.; Sutanudjaja, E.H.; Dung, D.D.; Tho, T.Q.; Voepel, H.E.; Woillez, M.-N.; et al. Projections of salt intrusion in a mega-delta under climatic and anthropogenic stressors. Commun. Earth Environ. 2021, 2, 142. [Google Scholar] [CrossRef]
- Smajgl, A.; Toan, T.Q.; Nhan, D.K.; Ward, J.; Trung, N.H.; Tri, L.Q.; Tri, V.P.D.; Vu, P.T. Responding to rising sea levels in the Mekong Delta. Nat. Clim. Chang. 2015, 5, 167–174. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Schmitt, R.J.P.; Carling, P.A.; Goichot, M.; Keskinen, M.; Arias, M.E.; Bizzi, S.; Castelletti, A.; Cochrane, T.A.; Darby, S.E.; et al. Save the Mekong Delta from drowning. Science 2022, 376, 583–585. [Google Scholar] [CrossRef] [PubMed]
- Chua, S.D.X.; Yang, Y.; Kondolf, G.M.; Oeurng, C.; Sok, T.; Zhang, S.; Xixi, L. Can restoring water and sediment fluxes across a mega-dam cascade alleviate a sinking river delta? Sci. Adv. 2024, 10, eadn9731. [Google Scholar] [CrossRef]
- Akter, R.; Asik, T.Z.; Sakib, M.; Akter, M.; Sakib, M.N.; Al Azad, A.S.M.A.; Maruf, M.; Haque, A.; Rahman, M.M. The Dominant Climate Change Event for Salinity Intrusion in the GBM Delta. Climate 2019, 7, 69. [Google Scholar] [CrossRef]
- Rahman, M.M.; Haque, A.; Nicholls, R.J.; Darby, S.E.; Urmi, M.T.; Dustegir, M.M.; Dunn, F.E.; Tahsin, A.; Razzaque, S.; Horsburgh, K.; et al. Sustainability of the coastal zone of the Ganges-Brahmaputra-Meghna delta under climatic and anthropogenic stresses. Sci. Total Environ. 2022, 829, 154547. [Google Scholar] [CrossRef]
- Rahman, M.M.; Penny, G.; Mondal, M.S.; Zaman, M.H.; Kryston, A.; Salehin, M.; Nahar, Q.; Islam, M.S.; Bolster, D.; Tank, J.L.; et al. Salinization in large river deltas: Drivers, impacts and socio-hydrological feedbacks. Water Secur. 2019, 6, 100024. [Google Scholar] [CrossRef]
- Bricheno, L.M.; Wolf, J.; Sun, Y. Saline intrusion in the Ganges-Brahmaputra-Meghna megadelta. Estuar. Coast. Shelf Sci. 2021, 252, 107246. [Google Scholar] [CrossRef]
- Aeman, H.; Shu, H.; Abbas, S.; Aisha, H.; Usman, M. Sinking delta: Quantifying the impacts of saltwater intrusion in the Indus Delta of Pakistan. Sci. Total Environ. 2023, 880, 163356. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hong, B.; Gong, W. Study of an abnormally strong saltwater intrusion in the Humen Channel of the Pearl River estuary. Anthr. Coasts 2022, 5, 7. [Google Scholar] [CrossRef]
- Liu, B.; Peng, S.; Liao, Y.; Wang, H. The characteristics and causes of increasingly severe saltwater intrusion in Pearl River Estuary. Estuar. Coast. Shelf Sci. 2019, 220, 54–63. [Google Scholar] [CrossRef]
- Hong, B.; Liu, Z.; Shen, J.; Wu, H.; Gong, W.; Xu, H.; Wang, D. Potential physical impacts of sea-level rise on the Pearl River Estuary, China. J. Mar. Syst. 2020, 201, 103245. [Google Scholar] [CrossRef]
- Chen, J.; Mueller, V. Coastal climate change, soil salinity and human migration in Bangladesh. Nat. Clim. Chang. 2018, 8, 981–985. [Google Scholar] [CrossRef]
- Đạt, T.Q.; Likitdecharote, K.; Trung, N.H. Mô phỏng xâm nhập mặn Đồng bằng sông Cửu Long dưới tác động của mực nước biển dâng và sự suy giảm lưu lượng ở thượng nguồn. Tạp Chí Khoa Học Trường Đại Học Cần Thơ 2012, 21b, 141–150. [Google Scholar]
- Tran, D.Q.; Likitdecharote, K.; Srisatit, T.; Trung, N.H. Modeling the Influence of River Discharge and Sea Level Rise on Salinity Intrusion in Mekong Delta. In Proceedings of the 1st EnvironmentAsia International Conference on Environmental Supporting in Food and Energy Security: Crisis and Opportunity, Bangkok, Thailand, 23–26 March 2011; pp. 22–25. [Google Scholar]
- Thanh, T.N.; Huynh Van, H.; Vo Minh, H.; Tri, V.P.D. Salinity Intrusion Trends under the Impacts of Upstream Discharge and Sea Level Rise along the Co Chien River and Hau River in the Vietnamese Mekong Delta. Climate 2023, 11, 66. [Google Scholar] [CrossRef]
- Phung, L.M.; Đạt, T.Q.; Trí, V.P.Đ. Ứng dụng mô hình toán thủy lực một chiều đánh giá và dự báo tình hình xâm nhập mặn trên hệ thống sông chính trên địa bàn tỉnh Trà Vinh. Tạp Chí Khoa Học Đại Học Cần Thơ 2013, 25, 68–75. [Google Scholar]
- Tran, D.; Nguyen, N.N.T.; Huynh, M.V.T.; Bairagi, S.K.; Le, K.N.; Tran, T.V.; Durand-Morat, A. Modeling saltwater intrusion risk in the presence of uncertainty. Sci. Total Environ. 2024, 908, 168140. [Google Scholar] [CrossRef]
- Tran, D.Q.; Le, K.; Nguyen, N.N.; Huynh, M.V.; Durand-Morat, A.; Bairagi, S.; Tran, T.V. How Many Acres Do We Need to Fallow to Control Saltwater Intrusion in a Mega-Delta under Uncertainty? In Proceedings of the 2024 Agricultural & Applied Economics Association (AAEA) Annual Meeting, New Orleans, LA, USA, 28–30 July 2024.
- Tran, D.Q.; Le, K.N.; Durand-Morat, A.; Nguyen, N.N.T.; Bairagi, S.K.; Huynh, M.V.T.; Tran, T.V. Is it worth it? Land-fallowing and saltwater intrusion control under uncertainty. Sci. Total Environ. 2025, 966, 178711. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Lavane, K.; Ty, T.V.; Downes, N.K.; Hong, T.T.K.; Kumar, P. Evaluation of the Impact of Drought and Saline Water Intrusion on Rice Yields in the Mekong Delta, Vietnam. Water 2022, 14, 3499. [Google Scholar] [CrossRef]
- Tran, D.Q.; Likitdecharote, K. Effect of Sea Level Rise and Low Flow on Salinity Intrusion in Mekong Delta. In Proceedings of the 2010 GMSTECH: International Conference for a Sustainable Greater Mekong Sub-region, Bangkok, Thailand, 26–27 August 2010. [Google Scholar]
- Lam, Y.; Winch, P.J.; Nizame, F.A.; Broaddus-Shea, E.T.; Harun, M.G.D.; Surkan, P.J. Salinity and food security in southwest coastal Bangladesh: Impacts on household food production and strategies for adaptation. Food Secur. 2022, 14, 229–248. [Google Scholar] [CrossRef]
- Tran, D.D.; Thi Bich Thuc, P.; Park, E.; Thi Thanh Hang, P.; Ba Man, D.; Wang, J. Extent of saltwater intrusion and freshwater exploitability in the coastal Vietnamese Mekong Delta assessed by gauging records and numerical simulations. J. Hydrol. 2024, 630, 130655. [Google Scholar] [CrossRef]
- Changklom, J.; Lamchuan, P.; Pornprommin, A. Salinity Forecasting on Raw Water for Water Supply in the Chao Phraya River. Water 2022, 14, 741. [Google Scholar] [CrossRef]
- Tomkratoke, S.; Kongkulsiri, S.; Narenpitak, P.; Sirisup, S. Drought and Salinity Intrusion in the Lower Chao Phraya River: Variability Analysis and Modeling Mitigation Approaches. EGUsphere 2025, 2025, 1–34. [Google Scholar]
- Pokavanich, T.; Guo, X. Saltwater intrusion in Chao Phraya Estuary: A long, narrow and meandering partially mixed estuary influenced by water regulation and abstraction. J. Hydrol. Reg. Stud. 2024, 52, 101686. [Google Scholar] [CrossRef]
- Sakai, T.; Omori, K.; Oo, A.N.; Zaw, Y.N. Monitoring saline intrusion in the Ayeyarwady Delta, Myanmar, using data from the Sentinel-2 satellite mission. Paddy Water Environ. 2021, 19, 283–294. [Google Scholar] [CrossRef]
- Panthi, J.; Pradhanang, S.M.; Nolte, A.; Boving, T.B. Saltwater intrusion into coastal aquifers in the contiguous United States—A systematic review of investigation approaches and monitoring networks. Sci. Total Environ. 2022, 836, 155641. [Google Scholar] [CrossRef]
- Su, Q.; Kambale, R.D.; Tzeng, J.-H.; Amy, G.L.; Ladner, D.A.; Karthikeyan, R. The growing trend of saltwater intrusion and its impact on coastal agriculture: Challenges and opportunities. Sci. Total Environ. 2025, 966, 178701. [Google Scholar] [CrossRef]
- Stanton, M.C.B.; Roelich, K. Decision making under deep uncertainties: A review of the applicability of methods in practice. Technol. Forecast. Soc. Change 2021, 171, 120939. [Google Scholar] [CrossRef]
- Haasnoot, M.; Di Fant, V.; Kwakkel, J.; Lawrence, J. Lessons from a decade of adaptive pathways studies for climate adaptation. Glob. Environ. Change 2024, 88, 102907. [Google Scholar] [CrossRef]
- Kwakkel, J.H.; Haasnoot, M.; Walker, W.E. Comparing Robust Decision-Making and Dynamic Adaptive Policy Pathways for model-based decision support under deep uncertainty. Environ. Model. Softw. 2016, 86, 168–183. [Google Scholar] [CrossRef]
- Kalra, N.; Hallegatte, S.; Lempert, R.; Brown, C.; Fozzard, A.; Gill, S.; Shah, A. Agreeing on Robust Decisions: New Processes for Decision Making Under Deep Uncertainty; Research Working Paper; World Bank Policy: Washington, DC, USA, 2014. [Google Scholar]
- Trindade, B.C.; Reed, P.M.; Characklis, G.W. Deeply uncertain pathways: Integrated multi-city regional water supply infrastructure investment and portfolio management. Adv. Water Resour. 2019, 134, 103442. [Google Scholar] [CrossRef]
- Kwakkel, J.H.; Haasnoot, M.; Walker, W.E. Developing dynamic adaptive policy pathways: A computer-assisted approach for developing adaptive strategies for a deeply uncertain world. Clim. Chang. 2015, 132, 373–386. [Google Scholar] [CrossRef]
- Harou, J.J.; Matthews, J.H.; Smith, D.M.; McDonnell, R.A.; Borgomeo, E.; Sara, J.J.; Braeckman, J.P.; Matthews, N.; Dalton, J.; Young, M.D.; et al. Water at COP25: Resilience enables climate change adaptation through better planning, governance and finance. In Proceedings of the Institution of Civil Engineers—Water Management; Thomas Telford Ltd.: London, UK, 2020; Volume 173, pp. 55–58. [Google Scholar]
- Pachos, K.; Huskova, I.; Matrosov, E.; Erfani, T.; Harou, J.J. Trade-off informed adaptive and robust real options water resources planning. Adv. Water Resour. 2022, 161, 104117. [Google Scholar] [CrossRef]
- Loc, H.H.; Low Lixian, M.; Park, E.; Dung, T.D.; Shrestha, S.; Yoon, Y.-J. How the saline water intrusion has reshaped the agricultural landscape of the Vietnamese Mekong Delta, a review. Sci. Total Environ. 2021, 794, 148651. [Google Scholar] [CrossRef]
- Whitehead, J.C.; Anderson Jr., W.P.; Guignet, D.; Landry, C.E.; Morgan, O.A. Sea-Level Rise, Drinking Water Quality and the Economic Value of Coastal Tourism in North Carolina. Water Resour. Res. 2024, 60, e2023WR036440. [Google Scholar] [CrossRef]
- Khong, D.; Michael, D.Y.; Adam, L.; Jayanthi, T. Mekong River Delta farm-household willingness to pay for salinity intrusion risk reduction. Agric. Water Manag. 2018, 200, 80–89. [Google Scholar] [CrossRef]
- Alameddine, I.; Tarhini, R.; El-Fadel, M. Household economic burden from seawater intrusion in coastal urban areas. Water Int. 2018, 43, 217–236. [Google Scholar] [CrossRef]
- Yu, W.; Baù, D.; Mayer, A.S.; Mancewicz, L.; Geranmehr, M. Investigating the Impact of Seawater Intrusion on the Operation Cost of Groundwater Supply in Island Aquifers. Water Resour. Res. 2023, 59, e2023WR034798. [Google Scholar] [CrossRef]
- Tan Yen, B.; Quyen, N.H.; Duong, T.H.; Van Kham, D.; Amjath-Babu, T.S.; Sebastian, L. Modeling ENSO impact on rice production in the Mekong River Delta. PLoS ONE 2019, 14, e0223884. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, R.; Minderhoud, P. Data, knowledge, and modeling challenges for science-informed management of river deltas. One Earth 2023, 6, 216–235. [Google Scholar] [CrossRef]
- Wassmann, R.; Phong, N.D.; Tho, T.Q.; Hoanh, C.T.; Khoi, N.H.; Hien, N.X.; Vo, T.B.T.; Tuong, T.P. High-resolution mapping of flood and salinity risks for rice production in the Vietnamese Mekong Delta. Field Crops Res. 2019, 236, 111–120. [Google Scholar] [CrossRef]
- Klassen, J.; Allen, D.M. Assessing the risk of saltwater intrusion in coastal aquifers. J. Hydrol. 2017, 551, 730–745. [Google Scholar] [CrossRef]
- IPCC. Special Report: Special Report on the Ocean and Cryosphere in a Changing Climate: Summary for Policymakers. 2023. Available online: https://www.ipcc.ch/srocc/chapter/summary-for-policymakers/ (accessed on 1 June 2023).
- Candela, T.; Koster, K. The many faces of anthropogenic subsidence. Science 2022, 376, 1381–1382. [Google Scholar] [CrossRef]
- Passalacqua, P.; Moodie, A.J. Delta-scale solutions for human-scale needs. Science 2022, 376, 916–917. [Google Scholar] [CrossRef]
- Becker, M.; Seeger, K.; Paszkowski, A.; Marcos, M.; Papa, F.; Almar, R.; Bates, P.; France-Lanord, C.; Hossain, M.S.; Khan, M.J.U.; et al. Coastal Flooding in Asian Megadeltas: Recent Advances, Persistent Challenges, and Call for Actions Amidst Local and Global Changes. Rev. Geophys. 2024, 62, e2024RG000846. [Google Scholar] [CrossRef]
- Dunn, F.E.; Minderhoud, P.S.J. Sedimentation strategies provide effective but limited mitigation of relative sea-level rise in the Mekong delta. Commun. Earth Environ. 2022, 3, 2. [Google Scholar] [CrossRef]
- Gneezy, U.; Meier, S.; Rey-Biel, P. When and Why Incentives (Don’t) Work to Modify Behavior. J. Econ. Perspect. 2011, 25, 191–210. [Google Scholar] [CrossRef]
- Thong, T.; Tortajada, C. Responding to transboundary water challenges in the Vietnamese Mekong Delta: In search of institutional fit. Environ. Policy Gov. 2022, 32, 331–347. [Google Scholar]
- Dung, D.T.; Park, E.; Wang, J.; Loc, H.H.; Lee, J.; Zhan, S.; Kantoush, S.A. Environmental pressures on livelihood transformation in the Vietnamese Mekong Delta: Implications and adaptive pathways. J. Environ. Manag. 2025, 377, 124597. [Google Scholar]
- Vu, H.T.D.; Vu, H.L.; Oberle, P.; Andreas, S.; Nguyen, P.C.; Tran, D.D. Datasets of land use change and flood dynamics in the vietnamese mekong delta. Data Brief 2022, 42, 108268. [Google Scholar] [CrossRef] [PubMed]
- GSO. Area, Population and Population Density by Province. 2025. Available online: https://www.gso.gov.vn/en/population/ (accessed on 1 September 2023).
- FAO-STAT. FAO Rice Market Monitor. 2025. Available online: https://www.fao.org/markets-and-trade/commodities/rice/rmm/en/ (accessed on 1 November 2024).
- Fukagawa, N.K.; Ziska, L.H. Rice: Importance for Global Nutrition. J. Nutr. Sci. Vitaminol. 2019, 65, S2–S3. [Google Scholar] [CrossRef]
- Minderhoud, P.S.J.; Coumou, L.; Erkens, G.; Middelkoop, H.; Stouthamer, E. Mekong delta much lower than previously assumed in sea-level rise impact assessments. Nat. Commun. 2019, 10, 3847. [Google Scholar] [CrossRef]
- Hooijer, A.; Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nat. Commun. 2021, 12, 3592. [Google Scholar] [CrossRef]
- Schmitt, R.J.P.; Giuliani, M.; Bizzi, S.; Kondolf, G.M.; Daily, G.C.; Castelletti, A. Strategic basin and delta planning increases the resilience of the Mekong Delta under future uncertainty. Proc. Natl. Acad. Sci. USA 2021, 118, e2026127118. [Google Scholar] [CrossRef]
- Minderhoud, P.S.J.; Middelkoop, H.; Erkens, G.; Stouthamer, E. Groundwater extraction may drown mega-delta: Projections of extraction-induced subsidence and elevation of the Mekong delta for the 21st century. Environ. Res. Commun. 2020, 2, 011005. [Google Scholar] [CrossRef]
- Nittrouer, J.A.; Viparelli, E. Sand as a stable and sustainable resource for nourishing the Mississippi River delta. Nat. Geosci. 2014, 7, 350–354. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Furuya, J.; Kobayashi, S.; Yamauchi, K. Impacts of climate change on rice market and production capacity in the Lower Mekong Basin. Paddy Water Environ. 2014, 12, 255–274. [Google Scholar] [CrossRef]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Minh, H.V.T.; Avtar, R.; Kumar, P.; Tran, D.Q.; Ty, T.V.; Behera, H.C.; Kurasaki, M. Groundwater quality assessment using fuzzy-AHP in An Giang Province of Vietnam. Geosciences 2019, 9, 330. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Kurasaki, M.; Ty, T.V.; Tran, D.Q.; Le, K.N.; Avtar, R.; Rahman, M.M.; Osaki, M. Effects of multi-dike protection systems on surface water quality in the Vietnamese Mekong Delta. Water 2019, 11, 1010. [Google Scholar] [CrossRef]
- Käkönen, M. Mekong Delta at the Crossroads: More Control or Adaptation? Ambio 2008, 37, 205–212. [Google Scholar] [CrossRef]
- Loc, H.H.; Van Binh, D.; Park, E.; Shrestha, S.; Dung, T.D.; Son, V.H.; Truc, N.H.T.; Mai, N.P.; Seijger, C. Intensifying saline water intrusion and drought in the Mekong Delta: From physical evidence to policy outlooks. Sci. Total Environ. 2021, 757, 143919. [Google Scholar] [CrossRef]
- Seijger, C.; Ellen, G.J.; Janssen, S.; Verheijen, E.; Erkens, G. Sinking deltas: Trapped in a dual lock-in of technology and institutions. Prometheus 2017, 35, 193–213. [Google Scholar] [CrossRef]
- Tong, Y.D. Rice Intensive Cropping and Balanced Cropping in the Mekong Delta, Vietnam—Economic and Ecological Considerations. Ecol. Econ. 2017, 132, 205–212. [Google Scholar] [CrossRef]
- Dung, T.D.; van Halsema, G.; Hellegers, P.; Hoang, L.; Ludwig, F. Long-term sustainability of the Vietnamese Mekong Delta in question: An economic assessment of water management alternatives. Agric. Water Manag. 2019, 223, 105703. [Google Scholar]
- VNG. Resolution No.120/NQ-CP on Climate Resilient and Sustainable Development of the Mekong Delta to 2050 with a Vision to 2010; Vietnam Government: Ha Noi, Vietnam, 2017. [Google Scholar]
- VNG. Mekong Delta Coordinating Council for 2020–2025; VNG: Ha Noi, Vietnam, 2023. [Google Scholar]
- Long, H.; Lauri, H.; Kummu, M.; Koponen, J.; van Vliet, M.T.H.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F. Mekong River flow and hydrological extremes under climate change. Hydrol. Earth Syst. Sci. 2016, 20, 3027–3041. [Google Scholar]
- Long, H.; van Vliet, M.T.H.; Kummu, M.; Lauri, H.; Koponen, J.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F. The Mekong’s future flows under multiple drivers: How climate change, hydropower developments and irrigation expansions drive hydrological changes. Sci. Total Environ. 2019, 649, 601–609. [Google Scholar]
- MONRE. Climate Change and Sea Level Rise Scenarios for Vietnam. 2016. Available online: www.vncold.vn/Modules/CMS/Upload/10/TuLieu/110224/KichBan%20BDKH.pdf (accessed on 2 June 2020).
- MRC. Hydropower; MRC: Vientiane, Laos, 2023. [Google Scholar]
- IPCC. Summary for Policymakers in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtne, H.-O., Ed.; IPPC: Rome, Italy, 2019; pp. 3–35. [Google Scholar]
- Binh, D.V.; Kantoush, S.A.; Sumi, T.; Mai, N.P.; Ngoc, T.A.; Trung, L.V.; An, T.D. Effects of riverbed incision on the hydrology of the Vietnamese Mekong Delta. Hydrol. Process. 2021, 35, e14030. [Google Scholar] [CrossRef]
- Chua, S.D.X.; Lu, X.X.; Oeurng, C.; Sok, T.; Grundy-Warr, C. Drastic decline of flood pulse in the Cambodian floodplains (Mekong River and Tonle Sap system). Hydrol. Earth Syst. Sci. 2022, 26, 609–625. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Binh, D.V.; Kantoush, S.A.; Park, E.; Doan, N.L.P.; Tuan, L.A.; Dinh, V.N.; Vu, T.H.; Nguyen, B.Q.; Ngoc, T.A.; et al. Intensified susceptibility to riverbed incisions under sand mining impacts in the Vietnamese Mekong Delta: A long-term spatiotemporal analysis. Geomorphology 2025, 470, 109535. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A.M. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- Arai, H. Increased rice yield and reduced greenhouse gas emissions through alternate wetting and drying in a triple-cropped rice field in the Mekong Delta. Sci. Total Environ. 2022, 842, 156958. [Google Scholar] [CrossRef]
- Leon, A.; Izumi, T. Impacts of alternate wetting and drying on rice farmers’ profits and life cycle greenhouse gas emissions in An Giang Province in Vietnam. J. Clean. Prod. 2022, 354, 131621. [Google Scholar] [CrossRef]
- Hecht, J.S.; Lacombe, G.; Arias, M.E.; Dang, T.D.; Piman, T. Hydropower dams of the Mekong River basin: A review of their hydrological impacts. J. Hydrol. 2019, 568, 285–300. [Google Scholar] [CrossRef]
- Vu, D.T.; Yamada, T.; Ishidaira, H. Assessing the impact of sea level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam. Water Sci. Technol. 2018, 77, 1632–1639. [Google Scholar] [CrossRef]
- Duong, A.T.; Hoang, L.P.; Bui, M.D.; Rutschmann, P. Simulating Future Flows and Salinity Intrusion Using Combined One- and Two-Dimensional Hydrodynamic Modelling—The Case of Hau River, Vietnamese Mekong Delta. Water 2018, 10, 897. [Google Scholar] [CrossRef]
- Eslami, S.; Hoekstra, P.; Kernkamp, H.; Nguyen Trung, N.; Do Duc, D.; Tran Quang, T.; Februarianto, M.; Van Dam, A.; van der Vegt, M. Flow division dynamics in the mekong delta: Application of a 1D-2D coupled model. Water 2019, 11, 837. [Google Scholar] [CrossRef]
- Eslami, S.; Hoekstra, P.; Nguyen Trung, N.; Ahmed Kantoush, S.; Van Binh, D.; Duc Dung, D.; Tran Quang, T.; van der Vegt, M. Tidal amplification and salt intrusion in the Mekong Delta driven by anthropogenic sediment starvation. Sci. Rep. 2019, 9, 18746. [Google Scholar] [CrossRef] [PubMed]
- Eslami, S.; Hoekstra, P.; Kernkamp, H.W.J.; Nguyen Trung, N.; Do Duc, D.; Nguyen Nghia, H.; Tran Quang, T.; van Dam, A.; Darby, S.E.; Parsons, D.R.; et al. Dynamics of salt intrusion in the Mekong Delta: Results of field observations and integrated coastal–inland modelling. Earth Surf. Dynam. 2021, 9, 953–976. [Google Scholar] [CrossRef]
- Vu, M.-T.; Luu, C.; Bui, D.-Q.; Vu, Q.-H.; Pham, M.-Q. Simulation of hydrodynamic changes and salinity intrusion in the lower Vietnamese Mekong Delta under climate change-induced sea level rise and upstream river discharge. Reg. Stud. Mar. Sci. 2024, 78, 103749. [Google Scholar]
- Mueller, W.; Zamrsky, D.; Essink, G.O.; Fleming, L.E.; Deshpande, A.; Makris, K.C.; Wheeler, B.W.; Newton, J.N.; Narayan, K.M.V.; Naser, A.M.; et al. Saltwater intrusion and human health risks for coastal populations under 2050 climate scenarios. Sci. Rep. 2024, 14, 15881. [Google Scholar] [CrossRef]
- Triet, N.V.K.; Dung, N.V.; Fujii, H.; Kummu, M.; Merz, B.; Apel, H. Has dyke development in the Vietnamese Mekong Delta shifted flood hazard downstream? Hydrol. Earth Syst. Sci. 2017, 21, 3991–4010. [Google Scholar] [CrossRef]
- Nguyen, M.N.; Nguyen, P.T.B.; Van, T.P.D.; Phan, V.H.; Nguyen, B.T.; Pham, V.T.; Nguyen, T.H. An understanding of water governance systems in responding to extreme droughts in the Vietnamese Mekong Delta. Int. J. Water Resour. Dev. 2021, 37, 256–277. [Google Scholar] [CrossRef]
- Tran, D.; van Halsema, G.; Hellegers, P.J.G.J.; Ludwig, F.; Wyatt, A. Questioning triple rice intensification on the Vietnamese Tran delta Tran: An environmental and economic analysis of current land-use trends and alternatives. J. Environ. Manag. 2018, 217, 429–441. [Google Scholar] [CrossRef]
- Berg, H.; Ekman Söderholm, A.; Söderström, A.-S.; Tam, N.T. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong Delta, Vietnam. Sustain. Sci. 2017, 12, 137–154. [Google Scholar] [CrossRef]
- Danh, V.; Khai, H. Using a risk cost-benefit analysis for a sea dike to adapt to the sea level in the Vietnamese Mekong River Delta. Climate 2014, 2, 78–102. [Google Scholar] [CrossRef]
- Nhan, D.K.; Phap, V.A.; Phuc, T.H.; Trung, N.H. Rice production response and technological measures to adapt to salinity intrusion in the coastal Mekong delta. Can Tho Can Tho Univ. 2012. [Google Scholar]
- Hillen, M.; Jonkman, S.N.; Stive, M.; Nicholls, R. Coastal Defence Cost Estimates; A Case Study of the Netherlands, Vietnam and New Orleans; Delft University of Technology: Delft, The Netherlands, 2010. [Google Scholar]
- Mai, C.; Gelder, P.H.A.J.M.; Vrijling, J.; Mai, T. Risk analysis of coastal flood defences—A Vietnam case. In Proceedings of the 4th International Symposium on Flood Defence: Managing Flood Risk, Reliability and Vulnerability, Toronto, ON, Canada, 6–8 May 2008. [Google Scholar]
- Chapman, A.D.; Darby, S.E.; Hồng, H.M.; Tompkins, E.L.; Van, T.P.D. Adaptation and development trade-offs: Fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta. Clim. Chang. 2016, 137, 593–608. [Google Scholar] [CrossRef] [PubMed]
- VNG. Mekong Delta Water Resources Planning in the Period of 2012_2020 and a Vision to 2050 Under the Projected Climate Change and Sea Level Rise; VNG: Ha Noi, Vietnam, 2012. (In Vietnamese) [Google Scholar]
- Manh, N.V.; Dung, N.V.; Hung, N.N.; Kummu, M.; Merz, B.; Apel, H. Future sediment dynamics in the Mekong Delta floodplains: Impacts of hydropower development, climate change and sea level rise. Glob. Planet. Chang. 2015, 127, 22–33. [Google Scholar] [CrossRef]
- DHI. A Modelling System for Rivers and Channels. 2017. Available online: https://manuals.mikepoweredbydhi.help/2017/Water_Resources/Mike_11_ref.pdf (accessed on 12 June 2019).
- Helsel, D.R.; Hirsch, R.M.; Ryberg, K.R.; Archfield, S.A.; Gilroy, E.J. Statistical Methods in Water Resources, in Techniques and Methods; USGS: Reston, VA, USA, 2020; p. 484. [Google Scholar]
- Ross, S.M. Chapter 6—Distributions of sampling statistics, in Introduction to Probability and Statistics for Engineers and Scientists, 6th ed.; Ross, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 221–244. [Google Scholar]
- Good, P.I. Resampling Methods: A Practical Guide to Data Analysis; Spinger: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Team, R.C. The R Project for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Griliches, Z. Hybrid Corn: An Exploration in the Economics of Technological Change. Econometrica 1957, 25, 501–522. [Google Scholar] [CrossRef]
- Anderson, D.P.; Wilson, P.N.; Thompson, G.D. The Adoption and Diffusion of Level Fields and Basins. J. Agric. Resour. Econ. 1999, 24, 186–203. [Google Scholar]
- SIWRR. Annual Saltwater Intrusion Forecasting for Vietnamese Mekong Delta. 2019. Available online: http://www.siwrr.org.vn/docs/2018/files/VKHTLMN_DB_man_nguonnuoc_DBSCL_Ngay30_11_2019.pdf (accessed on 19 June 2020).
- MRC. MRC Data and Information Services. 2020. Available online: https://portal.mrcmekong.org/ (accessed on 23 April 2025).
- Vermeulen, P.; Nguyen, H.-Q.; Nam, N.; Pham, H.; Nguyen Tien, T.; Thanh, T.; Dam, R. Groundwater Modeling for the Mekong Delta using IMOD. In Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013. [Google Scholar]
- Nam, N.; Goto, A.; Osawa, K. Groundwater Modeling for Groundwater Management in the Coastal Area of Mekong Delta, Vietnam. J-Stage 2017, 85, I_93–I_103. [Google Scholar]
- Erban, L.E.; SGorelick, M.; Zebker, H.A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ. Res. Lett. 2014, 9, 084010. [Google Scholar] [CrossRef]
- Hung, N.N.; Delgado, J.M.; Güntner, A.; Merz, B.; Bárdossy, A.; Apel, H. Sedimentation in the floodplains of the Mekong Delta, Vietnam Part II: Deposition and erosion. Hydrol. Process. 2014, 28, 3145–3160. [Google Scholar] [CrossRef]
- Hung, N.N.; Delgado, J.M.; Güntner, A.; Merz, B.; Bárdossy, A.; Apel, H. Sedimentation in the floodplains of the Mekong Delta, Vietnam. Part I: Suspended sediment dynamics. Hydrol. Process. 2014, 28, 3132–3144. [Google Scholar] [CrossRef]
- Tong, Y.D.; Clarke, H. Economic analysis of development policies with reference to large-scale water control infrastructures and rural intensification in the Mekong River Delta: A case study from Vietnam. J. Asia Pac. Econ. 2020, 25, 124–155. [Google Scholar] [CrossRef]
- GSO. National Statistics Office, Vietnam. 2025. Available online: https://www.gso.gov.vn/ (accessed on 1 September 2023).
- Cao, B.T.; Tchale, H.; Chandrasekharan Behr, D.; Nguyen, P.H.A.; Jaffee, S.M. Agricultural Land Use and Sustainable Livelihoods in the Mekong Delta: Alternative Scenarios and Policy Implications; The World Bank, 2022. Available online: https://documents.worldbank.org/en/publication/documents-reports/ (accessed on 12 December 2023).
- Chen, C.-C.; McCarl, B.; Chang, C.-C. Climate change, sea level rise and rice: Global market implications. Clim. Chang. 2012, 110, 543–560. [Google Scholar] [CrossRef]
- Cochrane, T.A.; Arias, M.E.; Piman, T. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system. Hydrol. Earth Syst. Sci. 2014, 18, 4529–4541. [Google Scholar] [CrossRef]
- Park, E.; Loc, H.H.; Van Binh, D.; Kantoush, S. The worst 2020 saline water intrusion disaster of the past century in the Mekong Delta: Impacts, causes, and management implications. Ambio 2022, 51, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Binh, D.V.; Kantoush, S.A.; Saber, M.; Mai, N.P.; Maskey, S.; Phong, D.T.; Sumi, T. Long-term alterations of flow regimes of the Mekong River and adaptation strategies for the Vietnamese Mekong Delta. J. Hydrol. Reg. Stud. 2020, 32, 100742. [Google Scholar]
- Tran, T.A.; Dang, T.D.; Nguyen, T.H.; Pham, V.H.T. Moving towards sustainable coastal adaptation: Analysis of hydrological drivers of saltwater intrusion in the Vietnamese Mekong Delta. Sci. Total Environ. 2021, 770, 145125. [Google Scholar]
- Tran, T.A.; Cook, B.R. Water retention for agricultural resilience in the Vietnamese Mekong Delta: Towards integrated ‘grey–green’ solutions. Int. J. Water Resour. Dev. 2024, 40, 532–553. [Google Scholar] [CrossRef]
- Vietnam, U. Vietnam Drought and Saltwater Intrusion: Transitioning from Emergency to Recovery; UNDP (United Nations Development Programme): Ha Noi, Vietnam, 2016. [Google Scholar]
- Phan, V.H.; Dinh, V.T.; Su, Z. Trends in Long-Term Drought Changes in the Mekong River Delta of Vietnam. Remote Sens. 2020, 12, 2974. [Google Scholar] [CrossRef]
- Lee, S.K.; Dang, T.A. Spatio-temporal variations in meteorology drought over the Mekong River Delta of Vietnam in the recent decades. Paddy Water Environ. 2019, 17, 35–44. [Google Scholar]
- Chapman, A.D.; Darby, S.E. Dams and the economic value of sediment in the Vietnamese Mekong Delta. Ecosyst. Serv. 2018, 32, 110–111. [Google Scholar] [CrossRef]
- Kaveney, B.; Barrett-Lennard, E.; Chau Minh, K.; Dang Duy, M.; Nguyen Thi, K.P.; Kristiansen, P.; Orgill, S.; Stewart-Koster, B.; Condon, J. Inland dry season saline intrusion in the Vietnamese Mekong River Delta is driving the identification and implementation of alternative crops to rice. Agric. Syst. 2023, 207, 103632. [Google Scholar] [CrossRef]
- Lovell, R.J. Identifying Alternative Wetting and Drying (AWD) Adoption in the Vietnamese Mekong River Delta: A Change Detection Approach. ISPRS Int. J. Geo-Inf. 2019, 8, 312. [Google Scholar] [CrossRef]
- Tran, D.Q.; Kurkalova, L.A. Estimation of the changes in the dynamics of tillage choices in Iowa, 1992–2008. In Proceedings of the 2017 Annual Meeting, Chicago, IL, USA, 30 July–1 August 2017. [Google Scholar]
- Kurkalova, L.A.; Tran, D.Q. Is the use of no-till continuous or rotational? Quantifying tillage dynamics from time-ordered spatially aggregated data. J. Soil Water Conserv. 2017, 72, 131–138. [Google Scholar] [CrossRef]
- Tran, D.Q.; Kurkalova, L.A. Testing for complementarity between the use of continuous no-till and cover crops: An application of Entropy approach. In Proceedings of the 2017 Annual Meeting, Chicago, IL, USA, 30 July–1 August 2017; Agricultural and Applied Economics Association: Milwaukee, WI, USA, 2017. [Google Scholar]
- Kurkalova, L.A.; Tran, D.Q. Impact of stover collection on Iowa land use. In Land Allocation for Biomass Crops: Challenges and Opportunities with Changing Land Use; Springer: Berlin/Heidelberg, Germany, 2018; pp. 145–157. [Google Scholar]
- Le, K.N.; Jha, M.K.; Jeong, J.; Gassman, P.W.; Reyes, M.R.; Doro, L.; Tran, D.Q.; Hok, L. Evaluation of long-term SOC and crop productivity within conservation systems using GFDL CM2. 1 and EPIC. Sustainability 2018, 10, 2665. [Google Scholar]
- Tran, D.Q.; Kurkalova, L.A. Testing for complementarity between the use of continuous no-till and cover crops: An application of Entropy approach. Soil Secur. 2023, 13, 100118. [Google Scholar]
- Tran, D.Q.; Kurkalova, L.A. Persistence in tillage decisions: Aggregate data analysis. Int. Soil Water Conserv. Res. 2019, 7, 109–118. [Google Scholar]
- Suter, J.F.; Poe, G.L.; Bills, N.L. Do Landowners Respond to Land Retirement Incentives? Evidence from the Conservation Reserve Enhancement Program. Land Econ. 2008, 84, 17–30. [Google Scholar]
- Pathak, S.; Wang, H.; Tran, D.Q.; Adusumilli, N.C. Persistence and disadoption of sustainable agricultural practices in the Mississippi Delta region. Agron. J. 2024, 116, 765–776. [Google Scholar]
- Cortés Arbués, I.; Chatzivasileiadis, T.; Ivanova, O.; Storm, S.; Bosello, F.; Filatova, T. Distribution of economic damages due to climate-driven sea-level rise across European regions and sectors. Sci. Rep. 2024, 14, 126. [Google Scholar] [CrossRef]
- Neumann, J.E.; Emanuel, K.; Ravela, S.; Ludwig, L.; Kirshen, P.; Bosma, K.; Martinich, J. Joint effects of storm surge and sea-level rise on US Coasts: New economic estimates of impacts, adaptation, and benefits of mitigation policy. Clim. Chang. 2015, 129, 337–349. [Google Scholar]
- Depsky, N.; Bolliger, I.; Allen, D.; Choi, J.H.; Delgado, M.; Greenstone, M.; Hamidi, A.; Houser, T.; Kopp, R.E.; Hsiang, S. DSCIM-Coastal v1.1: An open-source modeling platform for global impacts of sea level rise. Geosci. Model Dev. 2023, 16, 4331–4366. [Google Scholar]
- Kirezci, E.; Young, I.R.; Ranasinghe, R.; Muis, S.; Nicholls, R.J.; Lincke, D.; Hinkel, J. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 2020, 10, 11629. [Google Scholar]
- Wagenaar, D.J.; de Bruijn, K.M.; Bouwer, L.M.; de Moel, H. Uncertainty in flood damage estimates and its potential effect on investment decisions. Nat. Hazards Earth Syst. Sci. 2016, 16, 1–14. [Google Scholar] [CrossRef]
- Yuen, K.W.; Park, E.; Tran, D.D.; Loc, H.H.; Feng, L.; Wang, J.; Gruel, C.-R.; Switzer, A.D. Extent of illegal sand mining in the Mekong Delta. Commun. Earth Environ. 2024, 5, 31. [Google Scholar] [CrossRef]
- Tran, D.Q.; Borisova, T. Forecasting Expenditures to Meet Regional Water Demand. In Proceedings of the 2024 Agricutural & Applied Economics Association Annual Meeting, New Orleans, LA, USA, 28–30 July 2024. [Google Scholar]
- Nemati, M.; Tran, D.; Schwabe, K. Residential water conservation and the rebound effect: A temporal decomposition and investigation. Water Resour. Res. 2023, 59, e2022WR032169. [Google Scholar] [CrossRef]
- Tran, D.; Borisova, T.; Beggs, K. The cost of alternative water supply and efficiency options under uncertainty: An application of modern portfolio theory and Chebyshev’s inequality. Earth 2023, 4, 40–65. [Google Scholar] [CrossRef]
- Nemati, M.; Tran, D. The Impact of COVID-19 on Urban Water Consumption in the United States. Water 2022, 14, 3096. [Google Scholar] [CrossRef]
- Kovacs, K.; Tran, D.Q. Irrigation choice through water supply augmentation in the presence of climate risk and uncertainty. In Proceedings of the 2023 Agricultural & Applied Economics Association Annual Meeting, Washington, DC, USA, 23–25 July 2023. [Google Scholar]
- Ali, A.A.; Tran, D.Q.; Kovacs, K.F.; Dahlke, H.E. Hydro-economic modeling of managed aquifer recharge in the lower Mississippi. JAWRA J. Am. Water Resour. Assoc. 2023, 59, 1413–1434. [Google Scholar] [CrossRef]
- Tran, D.Q.; Kovacs, K.F. Climate uncertainty and optimal groundwater augmentation. Water Resour. Res. 2021, 57, e2021WR030114. [Google Scholar] [CrossRef]
- Tran, D.Q.; Kovacs, K.F.; West, G.H. Spatial economic predictions of managed aquifer recharge for an agricultural landscape. Agric. Water Manag. 2020, 241, 106337. [Google Scholar] [CrossRef]
- Tran, D.Q.; Kovacs, K.; Wallander, S. Optimal groundwater augmentation through managed aquifer recharge and on-farm reservoir under uncertainty and risk. In Proceedings of the 2020 Agricultural & Applied Economics Association Annual Meeting, Kansas City, MO, USA, 10–11 August 2020. [Google Scholar]
- Tran, D.Q.; Kovacs, K.; Wallander, S. Water conservation with managed aquifer recharge under increased drought risk. Environ. Manag. 2020, 66, 664–682. [Google Scholar] [CrossRef]
- Tran, D.; Kovacs, K.; Wallander, S. Long run optimization of landscape level irrigation through managed aquifer recharge or expanded surface reservoirs. J. Hydrol. 2019, 579, 124220. [Google Scholar] [CrossRef]
- Le, K.N.; Jeong, J.; Reyes, M.R.; Jha, M.K.; Gassman, P.W.; Doro, L.; Hok, L.; Boulakia, S. Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia. Agric. Syst. 2018, 166, 90–100. [Google Scholar] [CrossRef]
- Le, K.N.; Jha, M.K.; Reyes, M.R.; Jeong, J.; Doro, L.; Gassman, P.W.; Hok, L.; de Moraes Sá, J.C.; Boulakia, S. Evaluating carbon sequestration for conservation agriculture and tillage systems in Cambodia using the EPIC model. Agric. Ecosyst. Environ. 2018, 251, 37–47. [Google Scholar] [CrossRef]
- Carroll, S.R.; Le, K.N.; Moreno-García, B.; Runkle, B.R.K. Simulating Soybean–Rice Rotation and Irrigation Strategies in Arkansas, USA Using APEX. Sustainability 2020, 12, 6822. [Google Scholar] [CrossRef]
- Feng, H.; Kurkalova, L.A.; Kling, C.L.; Gassman, P.W. Environmental conservation in agriculture: Land retirement vs. changing practices on working land. J. Environ. Econ. Manag. 2006, 52, 600–614. [Google Scholar] [CrossRef]
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D.; et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Edwards, T.L.; Nowicki, S.; Marzeion, B.; Hock, R.; Goelzer, H.; Seroussi, H.; Jourdain, N.C.; Slatger, D.A.; Turner, F.E.; Smith, C.J.; et al. Projected land ice contributions to twenty-first-century sea level rise. Nature 2021, 593, 74–82. [Google Scholar] [CrossRef]
- DeConto, R.M.; Pollard, D.; Alley, R.B.; Velicogna, I.; Gasson, E.; Gomez, N.; Sadai, S.; Gilford, D.M.; Ahse, E.L.; Kopp, D.; et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 2021, 593, 83–89. [Google Scholar] [CrossRef]
- Pham, V.B. Investing in internet of things technology: Case studies of smart alternate wetting and drying irrigation. IOP Conf. Ser. Earth Environ. Sci. 2023, 1155, 012029. [Google Scholar] [CrossRef]
- Minderhoud, P.S.J.; Erkens, G.; Pham, V.H.; Bui, V.T.; Erban, L.; Kooi, H.; Stouthamer, E. Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environ. Res. Lett. 2017, 12, 064006. [Google Scholar] [CrossRef]
- Tran, D.D.; Thien, N.D.; Yuen, K.W.; Lau, R.Y.S.; Wang, J.; Park, E. Uncovering the lack of awareness of sand mining impacts on riverbank erosion among Mekong Delta residents: Insights from a comprehensive survey. Sci. Rep. 2023, 13, 15937. [Google Scholar] [CrossRef]
- Rice, J.A.; Rice, J.A. Mathematical Statistics and Data Analysis; Thomson/Brooks/Cole: Belmont, CA, USA, 2007; Volume 371. [Google Scholar]
- Paik, S.; Le, D.T.P.; Nhu, L.T.; Mills, B.F. Salt-tolerant rice variety adoption in the Mekong River Delta: Farmer adaptation to sea-level rise. PLoS ONE 2020, 15, e0229464. [Google Scholar] [CrossRef]
- Danh, V.T. Adaptation to sea level rise in the Vietnamese Mekong River Delta: Should a sea dike be built? In Cost-Benefit Studies of Natural Resource Management in Southeast Asia; EEPSEA, IDRC Regional Office for Southeast and East Asia: Singapore, 2012; pp. 345–367. [Google Scholar]
- Chau, H. Water Use for Major Crops in Southern Vietnam; Thuy Loi University: Hanoi, Vietnam, 2001. (In Vietnamese) [Google Scholar]
- Hu, Q.; Yang, Y.; Han, S.; Yang, Y.; Ai, Z.; Wang, J.; Ma, F. Identifying changes in irrigation return flow with gradually intensified water-saving technology using HYDRUS for regional water resources management. Agric. Water Manag. 2017, 194, 33–47. [Google Scholar] [CrossRef]
Drivers | Effects | Sources |
---|---|---|
Rising sea levels | Average SLR of 3–5 mm/year SLR could affect 75% of land area and 70% of the population inundated ** | [63,75,94,96] |
Upstream flow variations | Upstream hydrological dams have altered natural sediment and river flow, making them less predictable. | [16,97,98,99] |
Water use within the MKD and water policies | AWD could reduce water use by 45% compared to conventional (flooding) irrigation. Fallowed land can be used to store water in wet seasons, and then the stored water can be used to control SWI in subsequent dry seasons. | [100,101,102] |
Study | Approach and Data Year | Key Findings |
---|---|---|
[34] | 1-D model (MIKE 11); scenario-based approach. 1998 and 2005 | SLR could creep up by 15 km further Tien and Hau Rivers due to SLR and discharge anomalies by 2039 |
[29] | 1-D model (MIKE 11); scenario-based approach; 1998 and 2005 | SLR could creep up by 5–10 km further of main rivers in the MKD due to SLR and changes in discharge by 2039 |
[30,39] | 1-D model (MIKE 11); scenario-based approach; 1998 and 2005 | Saltwater wedge could move up 30 km further to main rivers in the MKD by 2039 |
[17] | 1-D model (MIKE 11); scenario-based approach; 1998 and 2011 | 5 km additional SWI intrusion due to SLR and changes in discharge driven by hydropower dams upstream of the Mekong River until 2036–2065 |
[105] | 1D-MIKE 11 and 2D-MIKE 21 models; scenario-based approach; 2007 | Saltwater wedge could move up 10 km due to SLR until 2050 |
[104] | 1-D model (MIKE 11); scenario-based approach; 1998 | Saltwater wedge could move up further upstream by 80 km by 2050. |
[16] | 3-D model (Delft3D-FM); scenario-based approach; 2008 and 2018 | SWI intensity could increase substantially due to SLR, land subsidence, riverbed incision, and discharge anomalies. |
[36] | 1-D model (MIKE 11), 2-D (MIKE 21) and 3-D model (MIKE 3); scenario-based approach; 1998, 2005 and 2016 | Saltwater wedge could move 60 km up further upstream until 2100 |
[109] | 3-D model (MIKE 21); scenario-based approach; 2018 | 15 km additional SWI in the main rivers of the MKD due to SLR and discharge anomalies until 2039 |
This study | 1-D model (MIKE 11) coupled with a statistical model (Moment Generating Function), Monte Carlo Simulation, and analytical crop yield models; 1961–1970, 1998, 2005, and 2010–2024 | The 50% likelihood of the costs of SLR-induced SWI is estimated to be between $100.03–$176.67 million annually under the SLR of 22 cm. |
Step | Approach | Description | Sources |
---|---|---|---|
Step 1: saltwater intrusion-affected areas across scenarios considered | Hydrodynamic and advection-dispersion models in the MIKE+ Rivers modeling Package *. | We simulate 462 scenarios based on scenarios of SLR, land and irrigation use, and the flow of the Mekong River. | Authors’ calculations based on number scenarios of SLR, river flow, land-fallowing, and AWD conservation irrigation |
Step 2: Saltwater intrusion risk | Statistical model | The likelihoods of saltwater intrusion-affected areas by scenario are inferred by the Moment Generating Functions and Monte-Carlo Simulation. | Authors’ calculations |
Step 3: Rice farming profitability calculations to evaluate the trade-offs | Economic model | Linear equations analytically reflect the relationship between crop yields and SWI level. These relationships are then combined with production costs and prices to compute farm profit losses. | Authors’ calculations and [17,89,114,115,116,117,118,119,120,121] |
Scenario | Ra | Ro | Cr | Equivalent Hectares Fallowed for One Rice Season a Year (ha) |
---|---|---|---|---|
1 | 0.10 | 0.10 | 0.18 | 100,000 |
2 | 0.15 | 0.10 | 0.28 | 150,000 |
3 | 0.20 | 0.10 | 0.55 | 300,000 |
4 | 0.25 | 0.10 | 0.65 | 400,000 |
5 | 0.30 | 0.10 | 0.80 | 450,000 |
6 | 0.35 | 0.10 | 1.00 | 550,000 |
Scenario | Cumulative Probability | ||
---|---|---|---|
0.05 | 0.5 | 0.95 | |
Baseline | 186.43 | 193.23 | 200.65 |
22 cm | 193.01 | 200.64 | 208.57 |
53 cm | 203.75 | 211.31 | 218.87 |
The difference between the baseline and SLR 22 cm | +4.75 | +7.35 | +10.37 |
The difference between the baseline and SLR 53 cm | +15.45 | +18.02 | +20.86 |
Scenario | Cumulative Probability | ||
---|---|---|---|
0.05 | 0.5 | 0.95 | |
SLR 22 cm without mitigation (no land use change) | $52.81 | $81.78 | $115.37 |
SLR 22 cm with mitigation by fallowing 100,000 ha | $74.14 | $100.03 | $129.17 |
SLR 22 cm with mitigation by fallowing 150,000 ha | $143.35 | $176.67 | $213.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, D.Q.; Le, K.N. Sea-Level Rise and Saltwater Intrusion: Economic Estimates of Impacts of Nature-Based Mitigation Policies Under Uncertainty. Water 2025, 17, 1355. https://doi.org/10.3390/w17091355
Tran DQ, Le KN. Sea-Level Rise and Saltwater Intrusion: Economic Estimates of Impacts of Nature-Based Mitigation Policies Under Uncertainty. Water. 2025; 17(9):1355. https://doi.org/10.3390/w17091355
Chicago/Turabian StyleTran, Dat Q., and Kieu N. Le. 2025. "Sea-Level Rise and Saltwater Intrusion: Economic Estimates of Impacts of Nature-Based Mitigation Policies Under Uncertainty" Water 17, no. 9: 1355. https://doi.org/10.3390/w17091355
APA StyleTran, D. Q., & Le, K. N. (2025). Sea-Level Rise and Saltwater Intrusion: Economic Estimates of Impacts of Nature-Based Mitigation Policies Under Uncertainty. Water, 17(9), 1355. https://doi.org/10.3390/w17091355