Fe(III) Adsorption onto Microplastics in Aquatic Environments: Interaction Mechanism, Influencing Factors, and Adsorption Capacity Prediction
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Materials
2.1.1. Microplastics
2.1.2. Reaction Solutions
2.2. Adsorption Experiments
2.3. Analytical Methods
2.3.1. Adsorption Kinetics and Isotherm Models
2.3.2. Spearman’s Correlation Analysis
2.3.3. Machine Learning Techniques
- (1)
- Gaussian Process Regression (GPR)
- (2)
- Support Vector Machine (SVM)
- (3)
- Random Forest (RF)
- (4)
- Neural Network (NN)
- (5)
- Decision Tree (DT)
- (6)
- Bayesian Optimization (BO)
2.3.4. Shapley Additive Explanations (SHAP)
3. Results and Discussion
3.1. Adsorption Mechanisms
3.1.1. Adsorption Kinetics
3.1.2. Adsorption Isotherms
3.1.3. Interaction Mechanism
3.2. Analysis of Influencing Factors
3.2.1. Analysis of the Role of Influencing Factors
3.2.2. Correlation Analysis of Influencing Factors
3.3. Machine Learning-Based Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Wang, P.; Liu, S.; Wang, R.; Wu, Y.; Zhu, A.X.; Deng, C. Global patterns of lake microplastic pollution: Insights from regional human development levels. Sci. Total Environ. 2024, 954, 176620. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Dalvand, M.; Hamidian, A.H. Occurrence and distribution of microplastics in wetlands. Sci. Total Environ. 2023, 862, 160740. [Google Scholar] [CrossRef]
- Pothiraj, C.; Amutha Gokul, T.; Ramesh Kumar, K.; Ramasubramanian, A.; Palanichamy, A.; Venkatachalam, K.; Pastorino, P.; Barcelò, D.; Balaji, P.; Faggio, C. Vulnerability of microplastics on marine environment: A review. Ecol. Indic. 2023, 155, 111058. [Google Scholar] [CrossRef]
- Chanda, M.; Bathi, J.R.; Khan, E.; Katyal, D.; Danquah, M. Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. J. Environ. Manag. 2024, 370, 122492. [Google Scholar] [CrossRef]
- Bi, S.; Liu, S.; Liu, E.; Xiong, J.; Xu, Y.; Wu, R.; Liu, X.; Xu, J. Adsorption behavior and mechanism of heavy metals onto microplastics: A meta-analysis assisted by machine learning. Environ. Pollut. 2024, 360, 124634. [Google Scholar] [CrossRef]
- Mozafarjalali, M.; Hamidian, A.H.; Sayadi, M.H. Microplastics as carriers of iron and copper nanoparticles in aqueous solution. Chemosphere 2023, 324, 138332. [Google Scholar] [CrossRef]
- Roshan, A.; Polya, D.A.; Kumar, A.; Ghosh, A.; Glenny, A.-M.; Sedighi, M.; Reichman, S.M.; Arora, M.; Richards, L.A. Comparison of the distribution of groundwater remediation units and contaminant (arsenic, iron, fluoride) distribution in Bihar, India for improved water security and management. J. Environ. Manag. 2024, 372, 123157. [Google Scholar] [CrossRef]
- Sherif, Z.N.; Anitha, K. Efficacious sensing and elimination of iron ions from aqueous medium by polyethylenimine functionalized carbon dot. J. Environ. Chem. Eng. 2024, 12, 113595. [Google Scholar] [CrossRef]
- Fang, S.; Hua, C.; Yang, J.; Liu, F.; Wang, L.; Wu, D.; Ren, L. Combined pollution of soil by heavy metals, microplastics, and pesticides: Mechanisms and anthropogenic drivers. J. Hazard. Mater. 2025, 485, 136812. [Google Scholar] [CrossRef]
- Khalid, N.; Aqeel, M.; Noman, A.; Khan, S.M.; Akhter, N. Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environ. Pollut. 2021, 290, 118104. [Google Scholar] [CrossRef]
- Ling, X.; Yan, Z.; Lu, G. Vertical transport and retention behavior of polystyrene nanoplastics in simulated hyporheic zone. Water Res. 2022, 219, 118609. [Google Scholar] [CrossRef]
- Shi, M.; Xie, Q.; Li, Z.L.; Pan, Y.F.; Yuan, Z.; Lin, L.; Xu, X.-R.; Li, H.X. Adsorption of heavy metals on biodegradable and conventional microplastics in the pearl river estuary, China. Environ. Pollut. 2023, 322, 121158. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Song, Z.; Qiu, W. As (III) adsorption onto different-sized polystyrene microplastic particles and its mechanism. Chemosphere 2020, 239, 124792. [Google Scholar] [CrossRef]
- Fu, Q.; Tan, X.; Ye, S.; Ma, L.; Gu, Y.; Zhang, P.; Chen, Q.; Yang, Y.; Tang, Y. Mechanism analysis of heavy metal lead captured by natural-aged microplastics. Chemosphere 2021, 270, 128624. [Google Scholar] [CrossRef]
- Shi, C.; Niu, F.; Xie, Y.; Zhang, Z.; Geng, J.; Wang, C. Mechanism of dynamic interaction between aging microplastics and heavy metal ions under different hydrodynamic environments. J. Water Process Eng. 2025, 71, 107232. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, H.; Chen, J.; Guo, B.; Zhao, X.; Lin, H.; Li, W.; Zhao, X.; Lv, S.; Huang, C. Adsorption mechanism of trace heavy metals on microplastics and simulating their effect on microalgae in river. Environ. Res. 2022, 214, 113777. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Su, F.; Wang, Y.; Peng, L.; Liu, D. Adsorption behaviour of microplastics on the heavy metal Cr(VI) before and after ageing. Chemosphere 2022, 302, 134865. [Google Scholar] [CrossRef]
- Liu, S.; Huang, J.; Zhang, W.; Shi, L.; Yi, K.; Zhang, C.; Pang, H.; Li, J.; Li, S. Investigation of the adsorption behavior of Pb(II) onto natural-aged microplastics as affected by salt ions. J. Hazard. Mater. 2022, 431, 128643. [Google Scholar] [CrossRef]
- Chen, C.C.; Zhu, X.; Xu, H.; Chen, F.; Ma, J.; Pan, K. Copper adsorption to microplastics and natural particles in seawater: A comparison of kinetics, isotherms, and bioavailability. Environ. Sci. Technol. 2021, 55, 13923–13931. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, W.; Yang, S.; Fan, Y.; Lu, L. Freshwater microplastics governance and sustainable development: Pollution status, interactions, policies, and prospective studies. Desalination Water Treat. 2024, 320, 100704. [Google Scholar] [CrossRef]
- Han, X.; Wang, S.; Yu, X.; Vogt, R.D.; Feng, J.; Zhai, L.; Ma, W.; Zhu, L.; Lu, X. Kinetics and size effects on adsorption of CU(II), CR(III), and PB(II) onto polyethylene, polypropylene, and polyethylene terephthalate microplastic particles. Front. Mar. Sci. 2021, 8, 785146. [Google Scholar] [CrossRef]
- Godoy, V.; Blázquez, G.; Calero, M.; Quesada, L.; Martín-Lara, M.A. The potential of microplastics as carriers of metals. Environ. Pollut. 2019, 255, 113363. [Google Scholar] [CrossRef]
- Muthuraja, R.; Ou, B.; Thangavelu, M.; Narhayanan, T.N.; Chittamart, N.; Janjaroen, D. Effects of particle size and aging on heavy metal adsorption by polypropylene and polystyrene microplastics under varying environmental conditions. Chemosphere 2024, 369, 143843. [Google Scholar] [CrossRef]
- Cao, G.; Sun, J.; Chen, M.; Sun, H.; Zhang, G. Co-transport of ball-milled biochar and Cd2+ in saturated porous media. J. Hazard. Mater. 2021, 416, 125725. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, Z.; Zhang, T.; Zhang, P. Predicting aqueous sorption of organic pollutants on microplastics with machine learning. Water Res. 2023, 244, 120503. [Google Scholar] [CrossRef]
- Fu, H.; He, H.; Usman, M.; Chen, Q.; Laipan, M.; Yang, Y.; Zhu, R.; Cai, L. Facile synthesis of Al/Fe bimetallic (oxyhydr)oxide-coated magnetite for efficient removal of fluoride from water. Environ. Technol. 2020, 41, 2625–2636. [Google Scholar] [CrossRef]
- Al Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Chung, H.K.; Kim, W.H.; Park, J.; Cho, J.; Jeong, T.Y.; Park, P.K. Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. J. Ind. Eng. Chem. 2015, 28, 241–246. [Google Scholar] [CrossRef]
- Kalaronis, D.; Evgenidou, E.; Kyzas, G.Z.; Bikiaris, D.N.; Lambropoulou, D.A. Investigation on the adsorption mechanism of a mixture of seven pharmaceutical compounds on virgin and aged biodegradable microplastics. Colloid Surf. A 2024, 702, 135019. [Google Scholar] [CrossRef]
- Shahi, N.K.; Kim, J.Y.; Dockko, S. Process analysis of microplastic aging during the photochemical oxidation process and its effect on the adsorption behavior of dissolved organic matter. Chemosphere 2023, 341, 139980. [Google Scholar] [CrossRef]
- Tenea, A.G.; Dinu, C.; Rus, P.A.; Ionescu, I.A.; Gheorghe, S.; Iancu, V.I.; Vasile, G.G.; Pascu, L.F.; Chiriac, F.L. Exploring adsorption dynamics of heavy metals onto varied commercial microplastic substrates: Isothermal models and kinetics analysis. Heliyon 2024, 10, e35364. [Google Scholar] [CrossRef]
- Xu, Y.; Li, P.; Zhang, M.; Xiao, L.; Wang, B.; Zhang, X.; Wang, Y.; Shi, P. Quantifying Seasonal Variations in Pollution Sources with Machine Learning-Enhanced Positive Matrix Factorization. Ecol. Indic. 2024, 166, 112543. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, Y. Revealing the Synergistic Spatial Effects in Soil Heavy Metal Pollution with Explainable Machine Learning Models. J. Hazard. Mater. 2025, 482, 136578. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, J.; Du, J.; Peng, S.; Tan, S.; Zhang, W.; Yan, X.; Wang, H.; Lin, Z. Machine Learning Predicts Heavy Metal Adsorption on Iron (Oxyhydr)Oxides: A Combined Insight into the Adsorption Efficiency and Binding Configuration. Sci. Total Environ. 2024, 950, 175370. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. Projecting the sorption capacity of heavy metal ions onto microplastics in global aquatic environments using Artificial Neural Networks. J. Hazard. Mater. 2021, 402, 123709. [Google Scholar] [CrossRef]
- Bai, Y.; Zeng, B.; Li, C.; Zhang, J. An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting. Chemosphere 2019, 222, 286–294. [Google Scholar] [CrossRef]
- Bahrami, M.; Amiri, M.J.; Rajabi, S.; Mahmoudi, M. The removal of methylene blue from aqueous solutions by polyethylene microplastics: Modeling batch adsorption using random forest regression. Alex. Eng. J. 2024, 95, 101–113. [Google Scholar] [CrossRef]
- Tong, S.; Li, H.; Tudi, M.; Yuan, X.; Yang, L. Comparison of characteristics, water quality and health risk assessment of trace elements in surface water and groundwater in China. Ecotoxicol. Environ. Saf. 2021, 219, 112283. [Google Scholar] [CrossRef]
- Yi, H.; Cui, J.; Sun, J.; Zhou, X.; Ye, T.; Gan, S.; Chen, J.; Yang, Y.; Liang, W.; Guo, P.; et al. Key drivers regulating arsenic enrichment in shallow groundwater of the Pearl River Delta: Comprehensive analyses of iron, competitive anions, and dissolved organic matter. Appl. Geochem. 2023, 151, 105602. [Google Scholar] [CrossRef]
- Wang, L.; Guo, C.; Qian, Q.; Lang, D.; Wu, R.; Abliz, S.; Wang, W.; Wang, J. Adsorption behavior of UV aged microplastics on the heavy metals Pb(II) and Cu(II) in aqueous solutions. Chemosphere 2023, 313, 137439. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Sun, Y.; Wang, Y.; Yu, F.; Ma, J. Adsorption behavior of Cu(II) and Cr(VI) on aged microplastics in antibiotics-heavy metals coexisting system. Chemosphere 2022, 291, 132794. [Google Scholar] [CrossRef]
- Tang, S.; Ma, S.; Lin, L.; Ding, Y.; Zhang, X.; Wu, X.; Zhang, Q.; Pervez Md, N.; Cao, C.; Zhao, Y. Carrier effects of face mask-derived microplastics on metal ions: Enhanced adsorption by photoaging combined with biofilms, exemplified with Pb(II). J. Hazard. Mater. 2024, 477, 135311. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Han, R.; Han, R.; Xu, D.; Li, F. Binding between Cu2+/Zn2+ and aged polyethylene and polyethylene terephthalate microplastics in swine wastewaters: Adsorption behavior, and mechanism insights. Environ. Pollut. 2024, 360, 124685. [Google Scholar] [CrossRef]
- Zhao, Y.; Wan, S.; Xu, M.; Wu, G.; Wang, D.; Yi, C.; Cui, L. Effect of aging on the properties of microplastics and their adsorption behavior of norfloxacin. J. Water Process Eng. 2025, 70, 107021. [Google Scholar] [CrossRef]
- Gao, X.; Hassan, I.; Peng, Y.; Huo, S.; Ling, L. Behaviors and influencing factors of the heavy metals adsorption onto microplastics: A review. J. Clean. Prod. 2021, 319, 128777. [Google Scholar] [CrossRef]
- Lei, C.; Chengkai, M.; Shanning, Y.; Xianjuan, P.; Huanhuan, L.; Xiangyu, C.; Haiyang, S.; Minghong, W. Comparison of aging behavior and adsorption processes of biodegradable and conventional microplastics. Chem. Eng. J. 2024, 502, 157915. [Google Scholar] [CrossRef]
- Chen, X.; Hossain, M.F.; Duan, C.; Lu, J.; Tsang, Y.F.; Islam, M.S.; Zhou, Y. Isotherm models for adsorption of heavy metals from water—A review. Chemosphere 2022, 307, 135545. [Google Scholar] [CrossRef]
- Haritwal, D.K.; Singh, P.; Ramana, G.V.; Datta, M. Advanced characterisation of groundwater contamination at a dumpsite: Methodology and assessment—Case study of a municipal solid waste dumpsite in India. Sci. Total Environ. 2024, 957, 177642. [Google Scholar] [CrossRef]
- Jin, Z.; Chen, K.; Zhu, Q.; Hu, X.; Tian, S.; Xiang, A.; Sun, Y.; Yuan, M.; Yao, H. Non-degradable microplastic promote microbial colonization: A meta-analysis comparing the effects of microplastic properties and environmental factors. Environ. Res. 2025, 270, 121053. [Google Scholar] [CrossRef]
- Morshed, S.R.; Fattah, M.A.; Kafy, A.A.; Alsulamy, S.; Almulhim, A.I.; Shohan, A.A.A.; Khedher, K.M. Decoding seasonal variability of air pollutants with climate factors: A geostatistical approach using multimodal regression models for informed climate change mitigation. Environ. Pollut. 2024, 345, 123463. [Google Scholar] [CrossRef] [PubMed]
- Ozabor, F.; Onyemenam, P.I.; Wekpe, V.O.; Obisesan, A. Determinants of housing demands and residential rent costs in an emerging city in southern Nigeria. Urban Gov. 2024, 4, 232–244. [Google Scholar] [CrossRef]
- Lyu, C.; Liu, X.; Mihaylova, L. Review of recent advances in gaussian process regression methods. In Advances in Computational Intelligence Systems Contributions Presented at the 21st UK Workshop on Computational Intelligence, September 7–9, 2022, Sheffield, UK; Panoutsos, G., Mahfouf, M., Mihaylova, L.S., Eds.; Springer International Publishing Ag: Cham, Switzerland, 2024; Volume 1454, pp. 226–237. [Google Scholar]
- Wang, J. An intuitive tutorial to Gaussian Process Regression. Comput. Sci. Eng. 2023, 25, 4–11. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Cervantes, J.; Garcia-Lamont, F.; Rodriguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Halabaku, E.; Bytyçi, E. Overfitting in machine learning: A comparative analysis of decision trees and random forests. Intell. Autom. Soft Comput. 2024, 39, 987–1006. [Google Scholar] [CrossRef]
- Kohonen, T. An introduction to neural computing. Neural Netw. 1988, 1, 3–16. [Google Scholar] [CrossRef]
- Mienye, I.D.; Jere, N. A Survey of Decision Trees: Concepts, Algorithms, and Applications. IEEE Access 2024, 12, 86716–86727. [Google Scholar] [CrossRef]
- Furnkranz, J. Pruning Algorithms for Rule Learning. Mach. Learn. 1997, 27, 139–171. [Google Scholar] [CrossRef]
- Khan, M.E.; Nielsen, D. Fast yet simple natural-gradient descent for variational inference in complex models. In Proceedings of the 2018 International Symposium on Information Theory and Its Applications (ISITA), Singapore, 28–31 October 2018; IEEE: New York, NY, USA, 2018; pp. 31–35. [Google Scholar]
- Turner, R.; Eriksson, D.; McCourt, M.; Kiili, J.; Laaksonen, E.; Xu, Z.; Guyon, I. Bayesian optimization is superior to random search for machine learning hyperparameter tuning: Analysis of the black-box optimization challenge 2020. In Proceedings of the NeurIPS 2020 Competition and Demonstration Track, Vancouver, BC, Canada, 6–12 December 2020; Escalante, H.J., Hofmann, K., Eds.; JMLR-Journal Machine Learning Research: Cambridge, MA, USA, 2020; Volume 133, pp. 3–26. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Duan, L.; Qin, Y.; Meng, X.; Liu, Y.; Zhang, T.; Chen, W. Sulfide and UV-induced aging differentially affect contaminant-binding properties of microplastics derived from commercial plastic products. Sci. Total Environ. 2023, 869, 161800. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Yang, X.; Zhang, T.; Qin, Y.; Cao, C.; Shi, H.; Zhao, Y. Adsorption mechanisms of metal ions (Pb, Cd, Cu) onto polyamide 6 microplastics: New insight into environmental risks in comparison with natural media in different water matrices. Gondwana Res. 2022, 110, 214–225. [Google Scholar] [CrossRef]
- Tang, S.; Sun, P.; Ma, S.; Jin, W.; Zhao, Y. The interfacial behaviors of different arsenic species on polyethylene mulching film microplastics: Roles of the plastic additives. J. Hazard. Mater. 2023, 442, 130037. [Google Scholar] [CrossRef]
- Fan, X.; Zou, Y.; Geng, N.; Liu, J.; Hou, J.; Li, D.; Yang, C.; Li, Y. Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process. J. Hazard. Mater. 2021, 401, 123363. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, J.; Shi, L.; He, W.; Zhang, W.; Li, E.; Zhang, C.; Pang, H.; Tan, X. Interaction of Pb(II) with Microplastic-Sediment complexes: Critical effect of surfactant. Environ. Pollut. 2024, 361, 124815. [Google Scholar] [CrossRef]
- Tang, S.; Lin, L.; Wang, X.; Feng, A.; Yu, A. Pb(II) uptake onto nylon microplastics: Interaction Mechanism and Adsorption Performance. J. Hazard. Mater. 2020, 386, 121960. [Google Scholar] [CrossRef]
- Niraimathee, V.A.; Subha, V.; Ravindran, R.S.E.; Renganathan, S. Green synthesis of iron oxide nanoparticles from mimosa pudica root extract. Int. J. Environ. Sustain. Dev. 2016, 15, 227–240. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Song, Z.; Qiu, W. Adsorption mechanism of As(III) on polytetrafluoroethylene particles of different size. Environ. Pollut. 2019, 254, 112950. [Google Scholar] [CrossRef]
- Tang, S.; Lin, L.; Wang, X.; Yu, A.; Sun, X. Interfacial interactions between collected nylon microplastics and three divalent metal ions (Cu(II), Ni(II), Zn(II)) in aqueous solutions. J. Hazard. Mater. 2021, 403, 123548. [Google Scholar] [CrossRef]
- Chen, P.W.; Hsiao, M.N.; Xiao, L.W.; Liu, Z.S. Adsorption behavior of heavy metals onto microplastics derived from conventional and biodegradable commercial plastic products. Sci. Total Environ. 2024, 951, 175537. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, J.; Zhu, J.; Lei, M.; Huang, C.; Xu, H.; Liu, Z.; Wang, P. The interfacial interaction between typical microplastics and Pb2+ and their combined toxicity to Chlorella pyrenoidosa. Sci. Total Environ. 2024, 918, 170591. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.B.; Ho, T.B.C.; Huang, C.P.; Chen, C.W.; Chen, W.H.; Hsieh, S.; Hsieh, S.L.; Dong, C.D. Adsorption of lead(II) onto PE microplastics as a function of particle size: Influencing factors and adsorption mechanism. Chemosphere 2022, 304, 135276. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xie, N.; Yuan, S.; Shao, H. Adsorption mechanism of hexavalent chromium on electron beam-irradiated aged microplastics: Novel aging processes and environmental factors. Chemosphere 2024, 363, 142741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, Z.; Wu, J.; Su, M.; Zheng, L.; Xie, M.; Hong, H.; Huang, X.; Lu, H. High salinity restrains microplastic transport and increases the risk of pollution in coastal wetlands. Water Res. 2024, 267, 122463. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, X.; Luo, S.; Yang, Y.; Zhou, Q. Fe(III) Adsorption onto Microplastics in Aquatic Environments: Interaction Mechanism, Influencing Factors, and Adsorption Capacity Prediction. Water 2025, 17, 1316. https://doi.org/10.3390/w17091316
Gong X, Luo S, Yang Y, Zhou Q. Fe(III) Adsorption onto Microplastics in Aquatic Environments: Interaction Mechanism, Influencing Factors, and Adsorption Capacity Prediction. Water. 2025; 17(9):1316. https://doi.org/10.3390/w17091316
Chicago/Turabian StyleGong, Xing, Suxin Luo, Yuanyuan Yang, and Qianqian Zhou. 2025. "Fe(III) Adsorption onto Microplastics in Aquatic Environments: Interaction Mechanism, Influencing Factors, and Adsorption Capacity Prediction" Water 17, no. 9: 1316. https://doi.org/10.3390/w17091316
APA StyleGong, X., Luo, S., Yang, Y., & Zhou, Q. (2025). Fe(III) Adsorption onto Microplastics in Aquatic Environments: Interaction Mechanism, Influencing Factors, and Adsorption Capacity Prediction. Water, 17(9), 1316. https://doi.org/10.3390/w17091316