Leveraging Precision Agriculture Principles for Eco-Efficiency: Performance of Common Bean Production Across Irrigation Levels and Sowing Periods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assessment Framework and Evaluation of Crop Cultivation Strategies
- Treatment FI—full irrigation at 100% crop evapotranspiration (ETc);
- Treatment RI80—moderate deficit irrigation at 80% of ETc;
- Treatment SI60—severe deficit irrigation at 60% of ETc.
- Standard sowing period (SPI) in mid-April (typical for Serbia’s climate);
- Late sowing period (SPII) at the end of May/beginning of June;
- Very late sowing period (SPIII) in the third decade of June/early July.
2.2. Energy Analysis Method
2.3. Life Cycle Assessment (LCA) Method
3. Results and Discussion
3.1. Energy Balance and Performance Indicators
3.2. Energy Performance Indicators
3.3. Analysis of Life Cycle Environmental Impacts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tepić, A.; Vujičić, B.; Vasić, M.; Lučić, A. Amino acids and phytic acid in some Serbian varieties of dry beans (Phaseolus vulgaris). In Proceedings of the 2nd International Congress on Food and Nutrition, Istanbul, Turkey, 24–26 October 2007; Book of Abstracts. p. 170. [Google Scholar]
- Bennink, M.R. Eat Beans for Good Health; Food Scien.; Michigan State University: East Lansing, MI, USA, 2005; p. 5. Available online: https://www.bic.uprm.edu/wp-content/uploads/2018/04/Nutrition.pdf (accessed on 4 December 2024).
- Hayat, I.; Ahmad, A.; Masud, T.; Ahmed, A.; Bashir, S. Nutritional and Health Perspectives of Beans (Phaseolus vulgaris L.): An Overview. Crit. Rev. Food Sci. Nutr. 2014, 54, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Los, F.G.B.; Zielinski, A.A.F.; Wojeicchowski, J.P.; Nogueira, A.; Demiate, I.M. Beans (Phaseolus vulgaris L.): Whole Seeds with Complex Chemical Composition. Curr. Opin. Food Sci. 2018, 19, 63–71. [Google Scholar] [CrossRef]
- FAO Statistical Databases (Food and Agriculture Organization of the United Nations). Available online: www.faostat.org (accessed on 15 October 2024).
- Savić, A.; Pipan, B.; Vasić, M.; Meglič, V. Genetic diversity of common bean (Phaseolus vulgaris L.) germplasm from Serbia, as revealed by single sequence repeats (SSR). Sci. Hortic. 2021, 288, 110405. [Google Scholar] [CrossRef]
- Gavrilović, D. Statistical Yearbook of the Republic of Serbia; Statistical Office of the Republic of Serbia: Belgrade, Serbia, 2022. [Google Scholar]
- Lipovac, A.; Bezdan, A.; Moravčević, D.; Djurović, N.; Ćosić, M.; Benka, P.; Stričević, R. Correlation between Ground Measurements and UAV Sensed Vegetation Indices for Yield Prediction of Common Bean Grown under Different Irrigation Treatments and Sowing Periods. Water 2022, 14, 3786. [Google Scholar] [CrossRef]
- Holzkämper, A. Varietal Adaptations Matter for Agricultural Water Use—A Simulation Study on Grain Maize in Western Switzerland. Agric. Water Manag. 2020, 237, 106202. [Google Scholar] [CrossRef]
- Vukovic, A.; Vujadinovic, M.; Rendulic, S.; Djurdjevic, V.; Ruml, M.; Babic, V.; Popovic, D. Global Warming Impact on Climate Change in Serbia for the Period 1961–2100. Therm. Sci. 2018, 2018, 2267–2280. [Google Scholar] [CrossRef]
- Đurđević, V.; Vuković, A.; Vujadinović-Mandić, M. Climate Changes Observed in Serbia and Future Climate Projections Based on Different Scenarios of Future Emissions; Project Report “Second Biennial Update Report and Third National Communication under the UNFCCC for the Republic of Serbia”; United Nations Development Programme: New York, NY, USA, 2018. [Google Scholar]
- Forzieri, G.; Feyen, L.; Russo, S.; Vousdoukas, M.; Alfieri, L.; Outten, S.; Migliavacca, M.; Bianchi, A.; Rojas, R.; Cid, A. Multi-Hazard Assessment in Europe under Climate Change. Clim. Change 2016, 137, 105–119. [Google Scholar] [CrossRef]
- Todorovic, M.; Tanasijevic, L.; Saadi, S.; Pereira, L.S.; Lionello, P. Impact of climate change on crop evapotranspiration and irrigation requirements in the Mediterranean with a special focus on the countries of former Yugoslavia. In Proceedings of the Fifth International Scientific Agricultural Symposium “Agrosym 2014”, Jahorina, Bosnia and Herzegovina, 23–26 October 2014; Available online: http://www2.agrosym.rs.ba/agrosym/agrosym_2014/documents/keynote/kn4.pdf (accessed on 15 October 2024).
- Kulak, M.; Nemecek, T.; Frossard, E.; Gaillard, G. How Eco-Efficient Are Low-Input Cropping Systems in Western Europe, and What Can Be Done to Improve Their Eco-Efficiency? Sustainability 2013, 5, 3722–3743. [Google Scholar] [CrossRef]
- Gregory, P.J.; Ingram, J.S.I.; Andersson, R.; Betts, R.A.; Brovkin, V.; Chase, T.N.; Grace, P.R.; Gray, A.J.; Hamilton, N.; Hardy, T.B.; et al. Environmental consequences of alternative practices for intensifying crop production. Agric. Ecosyst. Environ. 2002, 88, 279–290. [Google Scholar] [CrossRef]
- Thanawong, K.; Perret, S.R.; Basset-Mens, C. Eco-efficiency of paddy rice production in Northeastern Thailand: A comparison of rain-fed and irrigated cropping systems. J. Clean. Prod. 2014, 73, 204–217. [Google Scholar] [CrossRef]
- Boschiero, M.; De Laurentiis, V.; Caldeira, C.; Sala, S. Comparison of organic and conventional cropping systems: A systematic review of life cycle assessment studies. Environ. Impact Assess. Rev. 2023, 102, 107187. [Google Scholar] [CrossRef]
- Bonnet, C.; Gaudio, N.; Alletto, L.; Raffaillac, D.; Bergez, J.E.; Debaeke, P.; Gavaland, A.; Willaume, M.; Bedoussac, L.; Justes, E. Design and multicriteria assessment of low-input cropping systems based on plant diversification in southwestern France. Agron. Sustain. Dev. 2021, 41, 65. [Google Scholar] [CrossRef]
- Verteramo Chiu, L.J.; Nicholson, C.F.; Gómez, M.I.; Mattson, N.S. A meta-analysis of yields and environmental performance of controlled-environment production systems for tomatoes, lettuce and strawberries. J. Clean. Prod. 2024, 469, 143142. [Google Scholar] [CrossRef]
- Majewski, E.; Komerska, A.; Kwiatkowski, J.; Malak-Rawlikowska, A.; Wąs, A.; Sulewski, P.; Gołaś, M.; Pogodzińska, K.; Lecoeur, J.-L.; Tocco, B.; et al. Are Short Food Supply Chains More Environmentally Sustainable than Long Chains? A Life Cycle Assessment (LCA) of the Eco-Efficiency of Food Chains in Selected EU Countries. Energies 2020, 13, 4853. [Google Scholar] [CrossRef]
- Del Borghi, A.; Strazza, C.; Magrassi, F.; Taramasso, A.C.; Gallo, M. Life Cycle Assessment for Eco-Design of Product–Package Systems in the Food Industry—The Case of Legumes. Sustain. Prod. Consum. 2018, 13, 24–36. [Google Scholar] [CrossRef]
- Gnansounou, E.; Dauriat, A.; Villegas, J.; Panichelli, L. Life Cycle Assessment of Biofuels: Energy and Greenhouse Gas Balances. Bioresour. Technol. 2009, 100, 4919–4930. [Google Scholar] [CrossRef]
- Mattsson, B.; Cederberg, C.; Blix, L. Agricultural Land Use in Life Cycle Assessment (LCA): Case Studies of Three Vegetable Oil Crops. J. Clean. Prod. 2000, 8, 283–292. [Google Scholar] [CrossRef]
- Canaj, K.; Mehmeti, A. Energy Consumption and Environmental Impacts in Western Balkan Apple Production: A Case Study of the Korça Province, Albania. Appl. Fruit Sci. 2024, 66, 417–429. [Google Scholar] [CrossRef]
- Özbek, O.; Dokumacı, K.Y.; Gökdoğan, O. Analysis of Energy Use Efficiency and Greenhouse Gas Emissions of Lemon (Citrus lemon L.) Production in Turkey. Erwerbs-Obstbau 2023, 65, 1705–1712. [Google Scholar] [CrossRef]
- Oğuz, H.İ.; Erdoğan, O.; Gökdoğan, O. Energy Use Efficiency and Economic Analysis of Nectarine (Prunus persica Var. nucipersica) Production: A Case Study from Niğde Province. Erwerbs-Obstbau 2019, 61, 323–329. [Google Scholar] [CrossRef]
- Gökduman, M.E.; Gökdoğan, O.; Yılmaz, D. Determination of Energy-Economic Balance and Greenhouse Gas (GHG): Emissions of Avocado (Persea americana Mill.) Production in Turkey. Erwerbs-Obstbau 2022, 64, 759–766. [Google Scholar] [CrossRef]
- Ghasemi-Mobtaker, H.; Kaab, A.; Rafiee, S.; Nabavi-Pelesaraei, A. A Comparative of Modeling Techniques and Life Cycle Assessment for Prediction of Output Energy, Economic Profit, and Global Warming Potential for Wheat Farms. Energy Rep. 2022, 8, 4922–4934. [Google Scholar] [CrossRef]
- Mitrovic, I.; Todorović, M.; Marković, M.; Mehmeti, A. Eco-Efficiency Analysis of Rainfed and Irrigated Maize Systems in Bosnia and Herzegovina. J. Water Clim. Change 2023, 14, 4489–4505. [Google Scholar] [CrossRef]
- Foteinis, S.; Chatzisymeon, E. Life Cycle Assessment of Organic versus Conventional Agriculture. A Case Study of Lettuce Cultivation in Greece. J. Clean. Prod. 2016, 112, 2462–2471. [Google Scholar] [CrossRef]
- Martin-Gorriz, B.; Gallego-Elvira, B.; Martínez-Alvarez, V.; Maestre-Valero, J.F. Life Cycle Assessment of Fruit and Vegetable Production in the Region of Murcia (South-East Spain) and Evaluation of Impact Mitigation Practices. J. Clean. Prod. 2020, 265, 121656. [Google Scholar] [CrossRef]
- Karlsson, H.; Ahlgren, S.; Strid, I.; Hansson, P.-A. Faba beans for biorefinery feedstock or feed? Greenhouse gas and energy balances of different applications. Agric. Syst. 2015, 141, 138–148. [Google Scholar] [CrossRef]
- Abeliotis, K.; Detsis, V.; Pappia, C. Life Cycle Assessment of Bean Production in the Prespa National Park, Greece. J. Clean. Prod. 2013, 41, 89–96. [Google Scholar] [CrossRef]
- Bamber, N.; Arulnathan, V.; Puddu, L.; Smart, A.; Ferdous, J.; Pelletier, N. Life Cycle Inventory and Assessment of Canadian Faba Bean and Dry Bean Production. Sustain. Prod. Consum. 2024, 46, 442–459. [Google Scholar] [CrossRef]
- Ilari, A.; Duca, D.; Toscano, G.; Pedretti, E.F. Evaluation of Cradle to Gate Environmental Impact of Frozen Green Bean Production by Means of Life Cycle Assessment. J. Clean. Prod. 2019, 236, 117638. [Google Scholar] [CrossRef]
- Demir, C. Determination of Energy Use Efficency and Indicators of Dry Bean (Phaseolus vulgaris L.) Production. ISPEC J. Agric. Sci. 2024, 8, 474–481. [Google Scholar] [CrossRef]
- Kazemi, H.; Shahbyki, M.; Baghbani, S. Energy Analysis for Faba Bean Production: A Case Study in Golestan Province, Iran. Sustain. Prod. Consum. 2015, 3, 15–20. [Google Scholar] [CrossRef]
- Romero-Gámez, M.; Suárez-Rey, E.M.; Antón, A.; Castilla, N.; Soriano, T. Environmental Impact of Screenhouse and Open-Field Cultivation Using a Life Cycle Analysis: The Case Study of Green Bean Production. J. Clean. Prod. 2012, 28, 63–69. [Google Scholar] [CrossRef]
- Pérez, R.; Fernández, C.; Laca, A.; Laca, A. Evaluation of Environmental Impacts in Legume Crops: A Case Study of PGI White Bean Production in Southern Europe. Sustainability 2024, 16, 8024. [Google Scholar] [CrossRef]
- Del Borghi, A.; Tacchino, V.; Moreschi, L.; Matarazzo, A.; Gallo, M.; Arellano Vazquez, D. Environmental assessment of vegetable crops towards the water-energy-food nexus: A combination of precision agriculture and life cycle assessment. Ecol. Indic. 2022, 140, 109015. [Google Scholar] [CrossRef]
- Araujo, J.; Urbano, B.; González-Andrés, F. Comparative environmental life cycle and agronomic performance assessments of nitrogen fixing rhizobia and mineral nitrogen fertiliser applications for pulses in the Caribbean region. J. Clean. Prod. 2020, 267, 122065. [Google Scholar] [CrossRef]
- Moresi, M.; Cimini, A. A Comprehensive Study from Cradle-to-Grave on the Environmental Profile of Malted Legumes. Foods 2024, 13, 655. [Google Scholar] [CrossRef]
- Canaj, K.; Mehmeti, A. Analyzing the water-energy-environment nexus of irrigated wheat and maize production in Albania. Energy Nexus 2022, 7, 100100. [Google Scholar] [CrossRef]
- Todorović, M.; Mehmeti, A.; Cantore, V. Impact of different water and nitrogen inputs on the eco-efficiency of durum wheat cultivation in Mediterranean environments. J. Clean. Prod. 2018, 183, 1276–1288. [Google Scholar] [CrossRef]
- Zahedi, M.; Mondani, F.; Eshghizadeh, H.R. Analyzing the Energy Balances of Double-Cropped Cereals in an Arid Region. Energy Rep. 2015, 1, 43–49. [Google Scholar] [CrossRef]
- Lipovac, A.; Stricevic, R.; Cosic, M.; Durovic, N. Productive and Non-Productive Use of Water of Common Bean under Full and Deficit Irrigation. Acta Hortic. 2022, 1335, 635–641. [Google Scholar] [CrossRef]
- ALCAS. AusLCI—The Australian Life Cycle Inventory Database Initiative. AusLCI Project. 2017. Available online: http://auslci.com.au/index.php/datasets/Agriculture (accessed on 15 September 2024).
- Ecoinvent Centre. Ecoinvent Database3.1. 2014. Available online: https://support.ecoinvent.org/ecoinvent-version-3.1 (accessed on 1 October 2024).
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventory; IPCC/IGES: Hayama, Japan, 2006. [Google Scholar]
- Environdec Product Category Rules for Arable and Vegetable Crops; Product Category Classification: UN CPC 011, 012, 014, 017, 0191. PCR 2020-07 (VERSION 1.0); EPD International: Stockholm, Sweden, 2020.
- Agez, M.; Patouillard, L.; Muller, E. IMPACT World+/a Globally Regionalized Method for Life Cycle Impact Assessment. Zenodo 2023. [Google Scholar] [CrossRef]
- OpenLCA 2.0, GreenDelta. Available online: https://www.openlca.org/download/ (accessed on 1 October 2024).
- Perrin, A.; Basset-Mens, C.; Gabrielle, B. Life Cycle Assessment of Vegetable Products: A Review Focusing on Cropping Systems Diversity and the Estimation of Field Emissions. Int. J. Life Cycle Assess. 2014, 19, 1247–1263. [Google Scholar] [CrossRef]
- Šarauskis, E.; Romaneckas, K.; Jasinskas, A.; Kimbirauskienė, R.; Naujokienė, V. Improving energy efficiency and environmental mitigation through tillage management in faba bean production. Energy 2020, 209, 118453. [Google Scholar] [CrossRef]
- Baum, R.; Bieńkowski, J. Eco-Efficiency in Measuring the Sustainable Production of Agricultural Crops. Sustainability 2020, 12, 1418. [Google Scholar] [CrossRef]
- Xiong, L.; Shah, F.; Zhao, Y.; Li, Z.; Zha, X.; Ye, M.; Wu, W. Sustainability analysis of irrigated and rainfed wheat production systems under varying levels of nitrogen fertilizer through coupling of emergy accounting and life cycle assessment. J. Clean. Prod. 2024, 447, 141423. [Google Scholar] [CrossRef]
- Weltin, M.; Hüttel, S. Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency? Environ. Resour. Econ. 2023, 84, 315–342. [Google Scholar] [CrossRef]
- Malki, M.; Bouchaou, L.; Hirich, A.; Ait Brahim, Y.; Choukr-Allah, R. Impact of agricultural practices on groundwater quality in intensive irrigated area of Chtouka-Massa, Morocco. Sci. Total Environ. 2017, 574, 760–770. [Google Scholar] [CrossRef]
Code | Sowing Period | Irrigation Level |
---|---|---|
SPI-FI | Standard (mid-April) | Full irrigation (100% ETc) |
SPII-FI | Late (end May/early June) | Full irrigation (100% ETc) |
SPIII-FI | Very late (late June/early July) | Full irrigation (100% ETc) |
SPI-RI80 | Standard (mid-April) | Moderate deficit (80% ETc) |
SPII-RI80 | Late (end May/early June) | Moderate deficit (80% ETc) |
SPIII-RI80 | Very late (late June/early July) | Moderate deficit (80% ETc) |
SPI-SI60 | Standard (mid-April) | Severe deficit (60% ETc) |
SPII-SI60 | Late (end May/early June) | Severe deficit (60% ETc) |
SPIII-SI60 | Very late (late June/early July) | Severe deficit (60% ETc) |
Parameter | Energy Equivalents | Unit | Type of Energy | Source of Energy | Reference |
---|---|---|---|---|---|
Human labor | 1.96 | MJ h−1 | Direct | Renewable | [24,29,43] |
Seeds bean | 14.7 | MJ kg−1 | Indirect | Renewable | [45] |
Pesticide, unspecified | 193 | MJ kg−1 | Indirect | Non-renewable | [24,29,43] |
Herbicide | 238 | MJ kg−1 | Indirect | Non-renewable | [24,29,43] |
Diesel fuel | 56.31 | MJ l−1 | Direct | Non-renewable | [24,29,43] |
Nitrogen (N) | 66.14 | MJ kg−1 | Indirect | Non-renewable | [24,29,43] |
Phosphorus (P) | 12.44 | MJ kg−1 | Indirect | Non-renewable | [24,29,43] |
Potassium (K) | 11.15 | MJ kg−1 | Indirect | Non-renewable | [24,29,43] |
Tractor machinery | 62.7 | MJ kg−1 | Indirect | Non-renewable | [24,29,43] |
Water, irrigation | 1.03 | MJ m−3 | Direct | Renewable | [24,29,43] |
Bean, yield | 20 | MJ kg−1 | - | - | [45] |
Parameter | Seeds | Irrigation | Electric Pump | Diesel | Tractor | Plant Protection | Human Labor | Crop Yield | |
---|---|---|---|---|---|---|---|---|---|
Unit | kg ha−1 | m3 ha−1 | MJ ha−1 | l ha−1 | h ha−1 | kg ha−1 | h ha−1 | kg ha−1 | |
Treatments | SPI-FI | 150 | 1770 | 31.87 | 80.33 | 10.33 | 0.80 | 60.00 | 4783.3 |
SPII-FI | 158 | 1330 | 39.30 | 84.67 | 12.00 | 1.80 | 40.00 | 4480.0 | |
SPIII-FI | 157 | 1880 | 56.37 | 85.33 | 12.33 | 2.60 | 46.67 | 3463.3 | |
SPI-RI80 | 150 | 1365 | 24.57 | 80.33 | 10.33 | 0.80 | 60.00 | 4530.0 | |
SPII-RI80 | 158 | 930 | 27.73 | 84.67 | 12.00 | 1.80 | 40.00 | 4090.0 | |
SPIII-RI80 | 157 | 1380 | 41.33 | 85.33 | 12.33 | 2.60 | 46.67 | 3416.7 | |
SPI-SI60 | 150 | 1095 | 19.70 | 80.33 | 10.33 | 0.80 | 60.00 | 4333.3 | |
SPII-SI60 | 158 | 770 | 22.70 | 84.67 | 12.00 | 1.80 | 40.00 | 3626.7 | |
SPIII-SI60 | 157 | 1040 | 30.97 | 85.33 | 12.33 | 2.60 | 46.67 | 2793.3 |
Strategy/Treatment | Energy Input (MJ ha−1) | Energy Output (MJ ha−1) | Net Energy Gain (MJ ha−1) |
---|---|---|---|
SPI-FI | 18,167.70 | 95,666.60 | 77,498.90 |
SPII-FI | 17,424.30 | 89,600.00 | 72,175.60 |
SPIII-FI | 18,868.10 | 69,266.60 | 50,398.50 |
SPI-RI80 | 17,149.20 | 90,600.00 | 73,450.70 |
SPII-RI80 | 16,418.40 | 81,800.00 | 65,381.50 |
SPIII-RI80 | 17,610.70 | 68,333.30 | 50,722.50 |
SPI-SI60 | 16,470.10 | 86,666.60 | 70,196.40 |
SPII-SI60 | 16,016.00 | 72,533.30 | 56,517.20 |
SPIII-SI60 | 16,755.70 | 55,866.60 | 39,110.90 |
Treatment | LCA Single Score €/ha | LCA Single Score €/ton |
---|---|---|
SPI-FI | 99,262.2 | 20,751.7 |
SPII-FI | 90,163.0 | 20,125.7 |
SPIII-FI | 102,081.1 | 29,474.8 |
SPI-RI80 | 90,837.5 | 20,052.4 |
SPII-RI80 | 81,842.3 | 20,010.3 |
SPIII-RI80 | 91,680.2 | 26,833.2 |
SPI-SI60 | 85,219.6 | 19,666.1 |
SPII-SI60 | 78,514.0 | 21,649.1 |
SPIII-SI60 | 84,607.5 | 30,289.1 |
Name | Unit | SPI-FI | SPII-FI | SPIII-FI | SPI-RI80 | SPII-R80 | SPIII-R80 | SPI-S60 | SPII-S60 | SPIII-S60 |
---|---|---|---|---|---|---|---|---|---|---|
Climate change, long term | kg CO2 eq (long) | 4798.63 | 4037.73 | 5016.32 | 4082.93 | 3330.87 | 4132.74 | 3605.79 | 3048.12 | 3531.91 |
Climate change, short term | kg CO2 eq (short) | 4990.43 | 4217.01 | 5211.97 | 4262.96 | 3498.51 | 4313.85 | 3777.95 | 3211.11 | 3703.12 |
Fossil and nuclear energy use | MJ deprived | 62,813.43 | 50,962.62 | 66,138.73 | 51,727.4 | 40,013.5 | 52,452.3 | 44,336.6 | 35,633.9 | 43,145.6 |
Freshwater acidification | kg SO2 eq | 27.17 | 22.57 | 28.44 | 22.89 | 18.34 | 23.15 | 20.03 | 16.64 | 19.55 |
Freshwater ecotoxicity | CTUe | 271,201.0 | 238,274.6 | 282,007.3 | 239,705. | 207,167 | 243,123 | 218,703 | 194,724 | 216,682 |
Freshwater eutrophication | kg PO4 P-lim eq | 6.64 | 6.55 | 6.66 | 6.56 | 6.47 | 6.56 | 6.50 | 6.44 | 6.49 |
Human toxicity cancer | CTUh | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Human toxicity non cancer | CTUh | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ionizing radiations | Bq C-14 eq | 36,343.33 | 30,656.79 | 38,001.92 | 31,007.4 | 25,386.7 | 31,414.4 | 27,449.9 | 23,278.7 | 26,934.8 |
Land occupation, biodiversity | m2 arable land eq·yr | 561.21 | 581.59 | 581.20 | 559.53 | 579.93 | 579.12 | 558.41 | 579.26 | 577.71 |
Land transformation, biodiversity | m2 arable land eq | 39.14 | 38.94 | 39.20 | 38.95 | 38.76 | 38.97 | 38.83 | 38.69 | 38.81 |
Marine eutrophication | kg N N-lim eq | 3.86 | 3.57 | 3.93 | 3.60 | 3.32 | 3.61 | 3.43 | 3.22 | 3.39 |
Mineral resources use | kg deprived | 70.53 | 60.40 | 74.35 | 60.43 | 50.42 | 61.88 | 53.70 | 46.43 | 53.40 |
Ozone layer depletion | kg CFC-11 eq | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Particulate matter formation | kg PM2.5 eq | 5.76 | 4.78 | 6.04 | 4.84 | 3.88 | 4.90 | 4.23 | 3.51 | 4.13 |
Photochemical oxidant formation | kg NMVOC eq | 50.16 | 39.74 | 53.10 | 40.36 | 30.07 | 41.00 | 33.83 | 26.20 | 32.78 |
Terrestrial acidification | kg SO2 eq | 48.67 | 43.49 | 50.09 | 43.85 | 38.73 | 44.14 | 40.63 | 36.83 | 40.09 |
Water scarcity | m3 world-eq | 138,781.5 | 118,783.1 | 144,486.1 | 120,331 | 100,560 | 121,707 | 108,028. | 93,271.3 | 106,218 |
Human health | DALY | 1.33 | 1.21 | 1.37 | 1.22 | 1.10 | 1.23 | 1.14 | 1.05 | 1.13 |
Ecosystem | PDF·m2·yr | 6314.85 | 5662.57 | 6496.36 | 5702.37 | 5057.65 | 5740.21 | 5294.05 | 4815.69 | 5226.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipovac, A.; Canaj, K.; Mehmeti, A.; Todorovic, M.; Ćosić, M.; Djurović, N.; Stričević, R. Leveraging Precision Agriculture Principles for Eco-Efficiency: Performance of Common Bean Production Across Irrigation Levels and Sowing Periods. Water 2025, 17, 1312. https://doi.org/10.3390/w17091312
Lipovac A, Canaj K, Mehmeti A, Todorovic M, Ćosić M, Djurović N, Stričević R. Leveraging Precision Agriculture Principles for Eco-Efficiency: Performance of Common Bean Production Across Irrigation Levels and Sowing Periods. Water. 2025; 17(9):1312. https://doi.org/10.3390/w17091312
Chicago/Turabian StyleLipovac, Aleksa, Kledja Canaj, Andi Mehmeti, Mladen Todorovic, Marija Ćosić, Nevenka Djurović, and Ružica Stričević. 2025. "Leveraging Precision Agriculture Principles for Eco-Efficiency: Performance of Common Bean Production Across Irrigation Levels and Sowing Periods" Water 17, no. 9: 1312. https://doi.org/10.3390/w17091312
APA StyleLipovac, A., Canaj, K., Mehmeti, A., Todorovic, M., Ćosić, M., Djurović, N., & Stričević, R. (2025). Leveraging Precision Agriculture Principles for Eco-Efficiency: Performance of Common Bean Production Across Irrigation Levels and Sowing Periods. Water, 17(9), 1312. https://doi.org/10.3390/w17091312