Differences of Occurrence, Distribution, and Factors Influencing Antibiotic Resistance Genes Between Freshwater and Seawater in China
Abstract
:1. Introduction
2. Methods
3. ARGs Profiling in Freshwater
3.1. Major Sources
3.2. Occurrence and Distribution of ARGs in Freshwater
Region | Water System | Quantitative Method | Environmental Medium | Dominant Resistance Gene Species | Abundance of Resistance Genes | Remark | Reference |
---|---|---|---|---|---|---|---|
Tibet region | Yarlung Tsangpo River basin | Metagenomic sequencing | River surface water | bacitracins | 3.51 × 10−4~3.64 × 10−4 copies/16S rRNA gene | Total abundance | [26] |
North China | Chishui River basin | RT-qPCR | River surface water | Sulfonamides, tetracycline | 7.70 × 107 copies/L | Maximum absolute abundance | [41] |
Liaohe river basin | HT-qPCR | River surface water | Multidrug resistance genes, sulfonamides, aminoglycosides, beta-lactam | 1.48 × 10−5~9.89 × 10−2 copies/16S rRNA gene | - | [30] | |
Baiyangdian Lake-Fuhe River | RT-qPCR | Fluvial-lake sediment | sulfonamides | 1 × 10−3~6 × 10−3 copies/16S rRNA gene | sul2 abundance | [39] | |
East China | East Taihu basin | HT-qPCR | River surface water | Sulfonamides, multidrug resistance, aminoglycosides | - | - | [31] |
Lake surface water | |||||||
Fluvial sediment | |||||||
West Taihu basin | HT-qPCR | River surface water | Sulfonamides, multidrug resistance, and aminoglycosides | 3.14 ± 0.2 × 10−8~6.3 ± 0.4 × 10−2 copies/16S rRNA gene | Relative abundance range | [42] | |
Lake surface water | |||||||
Reservoir surface water | |||||||
Central China | Huaihe river basin | HT-qPCR | Fluvial sediment | Sulfonamides, aminoglycosides, beta-lactam, multidrug resistance, MLS, and tetracycline | Main stream 2.26 × 10−2 copies/16S rRNA gene Tributary 1.35 × 10−2 copies/16S rRNA gene | - | [25] |
Yellow River-Wei River-Fenhe River basin | Metagenomic sequencing | River surface water | bacitracins | 1.86 × 10−2~7.26 × 10−2 copies/16S rRNA gene | Dominant ARGs relative abundance range | [28] | |
Honghu basin | Metagenomic sequencing | Fluvial-lake surface water | Multidrug resistance, bacitracin, and rifamycin resistance | - | - | [43] | |
Fluvial-lake ground water | Multidrug resistance, and bacitracins | ||||||
South China | Minjiang River basin | HT-qPCR | River surface water | Aminoglycosides, multidrug resistant, beta-lactam, and sulfonamides | 1.76~3.76 × 10−2 copies/16S rRNA gene | Dominant ARGs relative abundance range | [27] |
Pearl River basin | RT-qPCR | River surface water | Sulfonamides sul1 and sul2 | ≥3 copies/16S rRNA gene | Dominant ARGs relative abundance range | [29] | |
Fluvial sediment | sulfonamides sul1 | ≥1 copies/16S rRNA gene | |||||
Maozhou River Basin | HT-qPCR | River groundwater | Sulfonamides, multidrug resistance, and aminoglycosides | Wet season 1.23 × 108~8.89 × 1010 copies/L Dry season 8.50 × 105~2.65 × 1010 copies/L | Total absolute abundance | [38] | |
River surface water | Sulfonamides, multidrug resistance, and aminoglycosides | 1.91 × 1010 copies/L | Maximum absolute abundance | ||||
Fluvial sediment | Multidrug resistant, sulfonamides, aminoglycosides and beta-lactam | 1.10 × 1010 copies/g | Maximum absolute abundance |
4. Sources and Distribution of ARGs in Seawater
4.1. Major Sources
4.2. Occurrence of ARGs in Seawater
Territorial Sea Area | District | Environmental Medium | Quantitative Method | Dominant Resistance Gene Species | Abundance of Resistance Genes | Reference |
---|---|---|---|---|---|---|
The Bohai Sea | Liaodong Bay, Bohai Bay, Laizhou Bay, Bohai Strait and central Bohai Sea | Sediment | HT-qPCR | Sulfonamides and tetracyclines | 1.27 × 105 copies/g~4.94 × 108 copies/g | [49] |
Urban rivers, estuaries, Bohai Bay | Sediment | Metagenomic sequencing | Multidrug resistant, β-lactam, and aminoglycoside | - | [50] | |
Liaodong Bay, Bohai Bay, Laizhou Bay, Bohai Strait and central Bohai Sea | Surface water | RT-qPCR | Sulfonamides and tetracyclines | 2.05 × 105 copies/L~7.25 × 106 copies/L | [51] | |
Sediment | - | 4.67 × 103 ~5.41 × 105 copies/g | ||||
The Yellow Sea | The Yellow Sea | Sediment | RT-qPCR | - | 3.88 × 105~1.08 × 107 copies/g | [51] |
Surface water | Quinolones and sulfonamides | 2.11 × 104~8.00 × 106 copies/L | ||||
The East China Sea | Yangtze Estuary | Sediment | RT-qPCR | Sulfonamides (sul1), Chloramphenicol (copA) | 2.02 × 108~2.2 × 108 copies/g | [54] |
Yongjiang River | Surface water | HT-qPCR | Multidrug resistant, aminoglycosides, and sulfonamides | 3.18 × 103~2.57 × 109 copies/L | [55] | |
Hangzhou Bay | Sediment | RT-qPCR | Tetracyclines, sulfonamides, and trimethoprim | 6.25 × 10−4~1.39 × 10−2 copies/16S rRNA gene | [53] | |
Xiangshan Bay | 2.37 × 10−3~1.82 × 10−2 copies/16S rRNA gene | |||||
Taizhou Bay | 2.79 × 10−3 copies/16S rRNA gene | |||||
The South China Sea | Global area | Surface water | RT-qPCR | Tetracyclines (tetM) | 1.82 × 108~5.9 × 1012 copies/L | [44] |
Pearl River Delta | 3.87 × 1013 copies/L | |||||
East Guangdong | 2.18 × 1013 copies/L | |||||
West Guangdong | 1.90 × 1013 copies/L | |||||
Outer Lingding Island, Temple Bay island | Surface water | RT-qPCR | Sulfonamides (sul1), Quinolones (qnrD, floR) | 7.34 × 104 copies/L~1.33 × 107 copies/L | [52] | |
Dapeng Bay | Surface water | RT-qPCR | Chloramphenicol (floR, cmlA), and Sulfonamides (sul1) Chloramphenicol (floR, cmlA), and Sulfonamides (sul1) | 1.27 × 105 copies/L~1.26 × 109 copies/L | [56] | |
Sediment | 1.03 × 106 copies/g~3.47 × 107 copies/g |
Locations | Detection Method | Sample Type | Dominant Resistance Gene Species | Abundance of Resistance Genes in Aquaculture Water | Reference |
---|---|---|---|---|---|
Dongshan Bay | Metagenomic sequencing | Farm seawater | Multidrug resistant, beta-lactamases, and aminoglycosides | - | [58] |
Dalian, Tangshan, Penglai, Lianyungang, Qidong, Xiangshan, Ningde, Dongshan, Zhanjiang and Lingshui | RT-qPCR Illumina high-throughput sequencing | Farm sediment | Sulfonamides and aminoglycosides | - | [59] |
Liaoning, Shandong, Jiangsu, Zhejiang, Fujian, Guangdong, Guangxi, Hainan | HT-qPCR | Farm seawater | - | 8.52 × 107~3.58 × 1010 copies/L | [8] |
Nonfarm seawater | - | 5.56 × 106~7.34 ×109 copies/L | |||
Hainan (Province) | qPCR | Farm seawater | Sulfonamides (sul1, sul2), macrolides (ereA and aadA) | 0.09~0.39 copies/16S rRNA gene | [60] |
Farm sediment | 0.07~0.76 copies/16S rRNA gene | ||||
Grouper gills | Tetracycline and chloramphenicol | 8.5 × 10−5~1.9 copies/16S rRNA gene | |||
Grouper gut | 4.7 × 10−6~7.4 copies/16S rRNA gene |
4.3. ARGs Difference Between Freshwater and Seawater
5. Factors Affecting Fate Characteristics of ARGs in Freshwater and Seawater
5.1. Freshwater Environment
5.2. Seawater Environment
5.3. Comparison of Factors in Two Kinds of Water Bodies
6. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
MZ | MaoZhou River basin |
JL | Jiulongjiang River basin |
ETH | East Taihu Lake basin |
SZ | Jinghang Canal, Wusong River, Taipu River, Yangcheng Lake and Cao Lake |
SRR | Beiling River, Xunwu River, Reservoir Fengshuba |
MJ | Minjiang River |
HH | Huaihe River basin |
LH | Liaohe River basin |
MH | 16 Chinese estuaries from north to south |
MA | Bohai sea, Yellow sea, East China sea, South China sea |
ES | Haihe Estuary located in the west of Bohai Bay |
DD | Xixi River and Jiaojiang River in East China sea |
SV | Oujiang estuary, Aojiang estuary, and Feiyunjiang estuary in the East China sea |
MI | 92 lake water and 30 seawater in global |
References
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-W.; Cha, C.-J. Antibiotic resistome from the One-Health perspective: Understanding and controlling antimicrobial resistance transmission. Exp. Mol. Med. 2021, 53, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, S.F.; Gohar, U.F.; Tahir, S.F.; Mukhtar, H.; Pornpukdeewattana, S.; Nukthamna, P.; Moula Ali, A.M.; Bavisetty, S.C.B.; Massa, S. Antimicrobial resistance: More than 70 years of war between humans and bacteria. Crit. Rev. Microbiol. 2020, 46, 578–599. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Singh, A.P.; Kumar, S.; Giri, B.S.; Kim, K.-H. Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies. J. Clean. Prod. 2019, 234, 1484–1505. [Google Scholar] [CrossRef]
- Xu, Z.; Jia, Y.; Huang, B.; Zhao, D.; Long, X.; Hu, S.; Li, C.; Dao, G.; Chen, B.; Pan, X. Spatial distribution, pollution characteristics, and health risks of antibiotic resistance genes in China: A review. Environ. Chem. Lett. 2023, 21, 2285–2309. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, C.; Wang, Y.; Yang, Y.; Mishra, S. Occurrence, distribution and their correlation with different parameters of antibiotics and antibiotic resistance genes in lakes of China: A review. Mar. Pollut. Bull. 2023, 193, 115189. [Google Scholar] [CrossRef]
- Liu, X.; Wei, H.; Wang, H.; Zhang, Y.; Song, H.-L.; Zhang, S. A review of spatial distribution of typical antibiotic resistance genes in marine environment surrounding China. Mar. Pollut. Bull. 2024, 203, 116482. [Google Scholar] [CrossRef]
- He, L.-X.; He, L.-Y.; Gao, F.-Z.; Zhang, M.; Chen, J.; Jia, W.-L.; Ye, P.; Jia, Y.-W.; Hong, B.; Liu, S.-S.; et al. Mariculture affects antibiotic resistome and microbiome in the coastal environment. J. Hazard. Mater. 2023, 452, 131208. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Xin, R.; Zhang, Y.; Niu, Z. Variation pattern of terrestrial antibiotic resistances and bacterial communities in seawater/freshwater mixed microcosms. Chemosphere 2018, 200, 201–208. [Google Scholar] [CrossRef]
- Xu, Y.; You, G.; Zhang, M.; Peng, D.; Jiang, Z.; Qi, S.; Yang, S.; Hou, J. Antibiotic resistance genes alternation in soils modified with neutral and alkaline salts: Interplay of salinity stress and response strategies of microbes. Sci. Total Environ. 2022, 809, 152246. [Google Scholar] [CrossRef]
- Zhang, T.; Ji, Z.; Li, J.; Yu, L. Metagenomic insights into the antibiotic resistome in freshwater and seawater from an Antarctic ice-free area. Environ. Pollut. 2022, 309, 119738. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Liu, C.; Wang, D. The General Population’s Inappropriate Behaviors and Misunderstanding of Antibiotic Use in China: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 497. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Steele, J.C.; Meng, X.-Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, P.; Yang, Q. Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Sci. Total Environ. 2018, 621, 990–999. [Google Scholar] [CrossRef]
- Zhu, L.; Shuai, X.-Y.; Lin, Z.-J.; Sun, Y.-J.; Zhou, Z.-C.; Meng, L.-X.; Zhu, Y.-G.; Chen, H. Landscape of genes in hospital wastewater breaking through the defense line of last-resort antibiotics. Water Res. 2022, 209, 117907. [Google Scholar] [CrossRef]
- González-Plaza, J.J.; Blau, K.; Milaković, M.; Jurina, T.; Smalla, K.; Udiković-Kolić, N. Antibiotic-manufacturing sites are hot-spots for the release and spread of antibiotic resistance genes and mobile genetic elements in receiving aquatic environments. Environ. Int. 2019, 130, 104735. [Google Scholar] [CrossRef]
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J.J. Antibiotic resistance genes from livestock waste: Occurrence, dissemination, and treatment. NPJ Clean Water 2020, 3, 4. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Q.E.; Zhou, X.; Wang, F.-H.; Muurinen, J.; Virta, M.P.; Brandt, K.K.; Zhu, Y.-G. Antibiotic resistome in the livestock and aquaculture industries: Status and solutions. Crit. Rev. Environ. Sci. Technol. 2020, 51, 2159–2196. [Google Scholar] [CrossRef]
- Semedo, M.; Song, B. Sediment metagenomics reveals the impacts of poultry industry wastewater on antibiotic resistance and nitrogen cycling genes in tidal creek ecosystems. Sci. Total Environ. 2023, 857, 159496. [Google Scholar] [CrossRef]
- Tang, Y.; Liang, Z.; Li, G.; Zhao, H.; An, T. Metagenomic profiles and health risks of pathogens and antibiotic resistance genes in various industrial wastewaters and the associated receiving surface water. Chemosphere 2021, 283, 131224. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Yang, Y.; Wang, Z. Antibiotic and antibiotic resistance genes in freshwater aquaculture ponds in China: A meta-analysis and assessment. J. Clean. Prod. 2021, 329, 129719. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, H.; Wu, D.; Ding, J.; Niu, Y.; Jiang, T.; Yang, X.; Liu, Y. Deciphering the antibiotic resistome and microbial community in municipal wastewater treatment plants at different elevations in eastern and western China. Water Res. 2023, 229, 119461. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson-Palme, J.; Hammaren, R.; Pal, C.; Ostman, M.; Bjorlenius, B.; Flach, C.F.; Fick, J.; Kristiansson, E.; Tysklind, M.; Larsson, D.G.J. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci. Total Environ. 2016, 572, 697–712. [Google Scholar] [CrossRef]
- Li, D.C.; Gao, J.F.; Zhang, S.J.; Gao, Y.Q.; Sun, L.X. Emergence and spread patterns of antibiotic resistance genes during two different aerobic granular sludge cultivation processes. Environ. Int. 2020, 137, 105540. [Google Scholar] [CrossRef]
- Zhang, K.; Xin, R.; Zhao, Z.; Li, W.; Wang, Y.; Wang, Q.; Niu, Z.; Zhang, Y. Mobile genetic elements are the Major driver of High antibiotic resistance genes abundance in the Upper reaches of huaihe River Basin. J. Hazard. Mater. 2021, 401, 123271. [Google Scholar] [CrossRef]
- Liu, S.; Wang, P.; Wang, C.; Wang, X.; Chen, J. Anthropogenic disturbances on antibiotic resistome along the Yarlung Tsangpo River on the Tibetan Plateau: Ecological dissemination mechanisms of antibiotic resistance genes to bacterial pathogens. Water Res. 2021, 202, 117447. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, F.; Li, Y.; Yue, C.; Zhang, Y.; Zhou, P.; Mu, J. Influence of anthropogenic disturbances on antibiotic resistance gene distributions along the Minjiang River in Southeast China. J. Environ. Manag. 2022, 323, 116154. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Li, Y.; Guo, H.; Zhou, J.; Wang, T. Metagenomic analysis revealed sources, transmission, and health risk of antibiotic resistance genes in confluence of Fenhe, Weihe, and Yellow Rivers. Sci. Total Environ. 2023, 858, 159913. [Google Scholar] [CrossRef]
- Gao, F.-Z.; He, L.-Y.; Hu, L.-X.; Chen, J.; Yang, Y.-Y.; He, L.-X.; Bai, H.; Liu, Y.-S.; Zhao, J.-L.; Ying, G.-G. The variations of antibiotics and antibiotic resistance genes in two subtropical large river basins of south China: Anthropogenic impacts and environmental risks. Environ. Pollut. 2022, 312, 119978. [Google Scholar] [CrossRef]
- Gao, H.; Zhao, F.; Li, R.; Jin, S.; Zhang, H.; Zhang, K.; Li, S.; Shu, Q.; Na, G. Occurrence and distribution of antibiotics and antibiotic resistance genes in water of Liaohe River Basin, China. J. Environ. Chem. Eng. 2022, 10, 108297. [Google Scholar] [CrossRef]
- Yang, J.; Xiang, J.; Xie, Y.; Yu, K.; Gin, K.Y.-H.; Zhang, B.; He, Y. Dynamic distribution and driving mechanisms of antibiotic resistance genes in a human-intensive watershed. Water Res. 2022, 222, 118841. [Google Scholar] [CrossRef] [PubMed]
- Zainab, S.M.; Junaid, M.; Xu, N.; Malik, R.N. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020, 187, 116455. [Google Scholar] [CrossRef] [PubMed]
- Kampouris, I.D.; Alygizakis, N.; Klümper, U.; Agrawal, S.; Lackner, S.; Cacace, D.; Kunze, S.; Thomaidis, N.S.; Slobdonik, J.; Berendonk, T.U. Elevated levels of antibiotic resistance in groundwater during treated wastewater irrigation associated with infiltration and accumulation of antibiotic residues. J. Hazard. Mater. 2022, 423, 127155. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Guo, Z.; Wang, X.; Xiang, S.; Sun, T.; Zhao, R.; He, J.; Liu, F. Transfer route and driving forces of antibiotic resistance genes from reclaimed water to groundwater. Environ. Pollut. 2023, 330, 121800. [Google Scholar] [CrossRef]
- Huang, F.-Y.; Zhou, S.-Y.-D.; Zhao, Y.; Zhou, X.-Y.; Li, H.; Zhang, X.; Su, J.-Q. Dissemination of antibiotic resistance genes from landfill leachate to groundwater. J. Hazard. Mater. 2022, 440, 129763. [Google Scholar] [CrossRef]
- Zou, H.-Y.; He, L.-Y.; Gao, F.-Z.; Zhang, M.; Chen, S.; Wu, D.-L.; Liu, Y.-S.; He, L.-X.; Bai, H.; Ying, G.-G. Antibiotic resistance genes in surface water and groundwater from mining affected environments. Sci. Total Environ. 2021, 772, 145516. [Google Scholar] [CrossRef]
- Liu, C.; Chen, J.; Shan, X.; Yang, Y.; Song, L.; Teng, Y.; Chen, H. Meta-analysis addressing the characterization and risk identification of antibiotics and antibiotic resistance genes in global groundwater. Sci. Total Environ. 2023, 860, 160513. [Google Scholar] [CrossRef]
- Wu, D.-L.; Zhang, M.; He, L.-X.; Zou, H.-Y.; Liu, Y.-S.; Li, B.-B.; Yang, Y.-Y.; Liu, C.; He, L.-Y.; Ying, G.-G. Contamination profile of antibiotic resistance genes in ground water in comparison with surface water. Sci. Total Environ. 2020, 715, 136975. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, C.; Jiang, L.; Wu, D.; Shi, H.; Xiao, G.; Guan, Y.; Kang, X. Occurrence and distribution of antibiotic resistant bacteria and genes in the Fuhe urban river and its driving mechanism. Sci. Total Environ. 2022, 825, 153950. [Google Scholar] [CrossRef]
- Stange, C.; Yin, D.; Xu, T.; Guo, X.; Schafer, C.; Tiehm, A. Distribution of clinically relevant antibiotic resistance genes in Lake Tai, China. Sci. Total Environ. 2019, 655, 337–346. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Y.; Wang, B.; Chen, C.; Cheng, Z.; Li, Y.; Wang, B.; Li, J. Antibiotic resistance genes in Chishui River, a tributary of the Yangtze River, China: Occurrence, seasonal variation and its relationships with antibiotics, heavy metals and microbial communities. Sci. Total Environ. 2022, 846, 157472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, G.; Hu, S.; He, Y.; Li, P.; Zhang, B. Deciphering of antibiotic resistance genes (ARGs) and potential abiotic indicators for the emergence of ARGs in an interconnected lake-river-reservoir system. J. Hazard. Mater. 2021, 410, 124552. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ji, L.; Liu, X.; Zhu, X.; Ning, K.; Wang, Z. Linkage and driving mechanisms of antibiotic resistome in surface and ground water: Their responses to land use and seasonal variation. Water Res. 2022, 215, 118279. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Wang, J.; Gong, H.; Li, Y.; Zhou, L.; Yan, M. Occurrence of antibiotics and their associations with antibiotic resistance genes and bacterial communities in Guangdong coastal areas. Ecotoxicol. Environ. Saf. 2019, 186, 109796. [Google Scholar] [CrossRef]
- Wang, J.-H.; Lu, J.; Wu, J.; Zhang, Y.; Zhang, C. Proliferation of antibiotic resistance genes in coastal recirculating mariculture system. Environ. Pollut. 2019, 248, 462–470. [Google Scholar] [CrossRef]
- Jo, H.; Raza, S.; Farooq, A.; Kim, J.; Unno, T. Fish farm effluents as a source of antibiotic resistance gene dissemination on Jeju Island, South Korea. Environ. Pollut. 2021, 276, 116764. [Google Scholar] [CrossRef]
- Carney, R.L.; Labbate, M.; Siboni, N.; Tagg, K.A.; Mitrovic, S.M.; Seymour, J.R. Urban beaches are environmental hotspots for antibiotic resistance following rainfall. Water Res. 2019, 167, 115081. [Google Scholar] [CrossRef]
- Zheng, D.; Yin, G.; Liu, M.; Chen, C.; Jiang, Y.; Hou, L.; Zheng, Y. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Sci. Total Environ. 2021, 777, 146009. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, J.; Wu, J.; Wang, J.; Lin, Y. Occurrence and distribution of antibiotic resistance genes in sediments in a semi-enclosed continental shelf sea. Sci. Total Environ. 2020, 720, 137712. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, G.; Zhang, K.; Sun, J.; Cui, Z.; Guo, Y.; Liu, H.; Xu, W. Strong variation in sedimental antibiotic resistomes among urban rivers, estuaries and coastal oceans: Evidence from a river-connected coastal water ecosystem in northern China. J. Environ. Manag. 2023, 342, 118132. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y.; Wu, J.; Wang, J.; Zhang, C.; Lin, Y. Occurrence and spatial distribution of antibiotic resistance genes in the Bohai Sea and Yellow Sea areas, China. Environ. Pollut. 2019, 252, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Su, H.; Pan, Y.F.; Xu, X.R. Spatial and seasonal variations of antibiotics and antibiotic resistance genes and ecological risks in the coral reef regions adjacent to two typical islands in South China Sea. Mar. Pollut. Bull. 2020, 158, 111424. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Su, Z.; Dai, T.; Huang, B.; Mu, Q.; Zhang, Y.; Wen, D. Occurrence and distribution of antibiotic resistance genes in the sediments of the East China Sea bays. J. Environ. Sci. 2019, 81, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-P.; Zhao, S.; Chen, Y.-R.; Yang, J.; Hou, L.-J.; Liu, M.; Yang, Y. Antibiotic resistance genes in sediments of the Yangtze Estuary: From 2007 to 2019. Sci. Total Environ. 2020, 744, 140713. [Google Scholar] [CrossRef]
- Zheng, C.-L.; Zhu, D.; Xu, Y.-Y. Co-driving factors of tidal effect on the abundance and distribution of antibiotic resistance genes in the Yongjiang Estuary, China. Environ. Res. 2022, 213, 113649. [Google Scholar] [CrossRef]
- Li, W.; Su, H.; Cao, Y.; Wang, L.; Hu, X.; Xu, W.; Xu, Y.; Li, Z.; Wen, G. Antibiotic resistance genes and bacterial community dynamics in the seawater environment of Dapeng Cove, South China. Sci. Total Environ. 2020, 723, 137027. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Y.; Zheng, Y.; Meng, F. Antibiotics in mariculture systems: A review of occurrence, environmental behavior, and ecological effects. Environ. Pollut. 2022, 293, 118541. [Google Scholar] [CrossRef]
- Cui, G.; Liu, Z.; Xu, W.; Gao, Y.; Yang, S.; Grossart, H.-P.; Li, M.; Luo, Z. Metagenomic exploration of antibiotic resistance genes and their hosts in aquaculture waters of the semi-closed Dongshan Bay (China). Sci. Total Environ. 2022, 838, 155784. [Google Scholar] [CrossRef]
- Gao, Q.; Li, Y.; Qi, Z.; Yue, Y.; Min, M.; Peng, S.; Shi, Z.; Gao, Y. Diverse and abundant antibiotic resistance genes from mariculture sites of China’s coastline. Sci. Total Environ. 2018, 630, 117–125. [Google Scholar] [CrossRef]
- He, L.-X.; He, L.-Y.; Gao, F.-Z.; Wu, D.-L.; Ye, P.; Cheng, Y.-X.; Chen, Z.-Y.; Hu, L.-X.; Liu, Y.-S.; Chen, J.; et al. Antibiotics, antibiotic resistance genes and microbial community in grouper mariculture. Sci. Total Environ. 2022, 808, 152042. [Google Scholar] [CrossRef]
- Ghachi, M.E.; Bouhss, A.; Blanot, D.; Mengin-Lecreulx, D. The bacA Gene of Escherichia coli Encodes an Undecaprenyl Pyrophosphate Phosphatase Activity. J. Biol. Chem. 2004, 279, 30106–30113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-M.; Liu, X.; Wang, S.-L.; Fang, L.-X.; Sun, J.; Liu, Y.-H.; Liao, X.-P. Distribution patterns of antibiotic resistance genes and their bacterial hosts in pig farm wastewater treatment systems and soil fertilized with pig manure. Sci. Total Environ. 2021, 758, 143654. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.L.; Spring, L.; Collins, L.; Miller, L.P.; Heifets, L.B.; Gangadharam, P.R.J.; Gillis, T.P. Contribution of rpoB mutations to Development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 1998, 42, 1853–1857. [Google Scholar] [CrossRef] [PubMed]
- Zaw, M.T.; Emran, N.A.; Lin, Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. J. Infect. Public Health 2018, 11, 605–610. [Google Scholar] [CrossRef]
- Koch, A.; Mizrahi, V.; Warner, D.F. The impact of drug resistance on Mycobacterium tuberculosis physiology: What can we learn from rifampicin? Emerg. Microbes Infect. 2019, 3, 1–11. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, P.; Gong, J.; Huang, S.; Chen, W.; Fu, B.; Zhao, Z.; Huang, X. Metagenomic profiles of the resistome in subtropical estuaries: Co-occurrence patterns, indicative genes, and driving factors. Sci. Total Environ. 2022, 810, 152263. [Google Scholar] [CrossRef]
- Chen, Y.; Su, J.-Q.; Zhang, J.; Li, P.; Chen, H.; Zhang, B.; Gin, K.Y.-H.; He, Y. High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system. Water Res. 2019, 149, 179–189. [Google Scholar] [CrossRef]
- Lu, X.-M.; Lu, P.-Z. Seasonal variations in antibiotic resistance genes in estuarine sediments and the driving mechanisms. J. Hazard. Mater. 2020, 383, 121164. [Google Scholar] [CrossRef]
- Lu, X.-M.; Peng, X.; Xue, F.; Qin, S.; Ye, S.; Dai, L.-B. Distance dilution of antibiotic resistance genes of sediments in an estuary system in relation to coastal cities. Environ. Pollut. 2021, 281, 116980. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Song, W.; Du, L.; Ye, C.; Zhao, B.; Liu, W.; Deng, D.; Pan, Y.; Lin, H.; et al. Metagenomic insights into the abundance and composition of resistance genes in aquatic environments: Influence of stratification and geography. Environ. Int. 2019, 127, 371–380. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, K.; Wu, N.; Li, W.; Xu, W.; Zhang, Y.; Niu, Z. Estuarine sediments are key hotspots of intracellular and extracellular antibiotic resistance genes: A high-throughput analysis in Haihe Estuary in China. Environ. Int. 2020, 135, 105385. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Yin, G.; Liu, M.; Hou, L.; Yang, Y.; Liu, X.; Jiang, Y.; Chen, C.; Wu, H. Metagenomics highlights the impact of climate and human activities on antibiotic resistance genes in China’s estuaries. Environ. Pollut. 2022, 301, 119015. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.-Y.-D.; Huang, F.-Y.; Zhou, X.-Y.; Lin, C.; Jin, M.-K.; Neilson, R.; Li, H.; Su, J.-Q. Conurbation size drives antibiotic resistance along the river. Sci. Total Environ. 2022, 823, 153822. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Qin, L.; Guan, C.; Wilson, M.E.; Li, X.; Cheng, D.; Ma, J.; Liu, H.; Gong, F. Antibiotic resistance gene profiling in response to antibiotic usage and environmental factors in the surface water and groundwater of Honghu Lake, China. Environ. Sci. Pollut. 2020, 27, 31995–32005. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, T.; Yan, R.; Wang, R.; Yi, Q.; Shi, W.; Gao, Y.; Zhang, Y. Environmental filtering dominated the antibiotic resistome assembly in river networks. Sci. Total Environ. 2022, 834, 155293. [Google Scholar] [CrossRef]
- Corno, G.; Yang, Y.; Eckert, E.M.; Fontaneto, D.; Fiorentino, A.; Galafassi, S.; Zhang, T.; Di Cesare, A. Effluents of wastewater treatment plants promote the rapid stabilization of the antibiotic resistome in receiving freshwater bodies. Water Res. 2019, 158, 72–81. [Google Scholar] [CrossRef]
- Elder, F.C.T.; Proctor, K.; Barden, R.; Gaze, W.H.; Snape, J.; Feil, E.J.; Kasprzyk-Hordern, B. Spatiotemporal profiling of antibiotics and resistance genes in a river catchment: Human population as the main driver of antibiotic and antibiotic resistance gene presence in the environment. Water Res. 2021, 203, 117533. [Google Scholar] [CrossRef]
- Zhang, L.; Ju, Z.; Su, Z.; Fu, Y.; Zhao, B.; Song, Y.; Wen, D.; Zhao, Y.; Cui, J. The antibiotic resistance and risk heterogeneity between urban and rural rivers in a pharmaceutical industry dominated city in China: The importance of social-economic factors. Sci. Total Environ. 2022, 852, 158530. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J.; Wu, J.; Feng, Y. Seasonal distribution of antibiotic resistance genes under the influence of land-ocean interaction in a semi-enclosed bay. Chemosphere 2022, 301, 134718. [Google Scholar] [CrossRef]
- Jeong, S.H.; Kwon, J.Y.; Shin, S.B.; Choi, W.S.; Lee, J.H.; Kim, S.-J.; Ha, K.S. Antibiotic resistance in shellfish and major inland pollution sources in the drainage basin of Kamak Bay, Republic of Korea. Environ. Monit. Assess. 2021, 193, 471. [Google Scholar] [CrossRef]
- Suzuki, S.; Nakanishi, S.; Tamminen, M.; Yokokawa, T.; Sato-Takabe, Y.; Ohta, K.; Chou, H.-Y.; Muziasari, W.I.; Virta, M. Occurrence of sul and tet (M) genes in bacterial community in Japanese marine aquaculture environment throughout the year: Profile comparison with Taiwanese and Finnish aquaculture waters. Sci. Total Environ. 2019, 669, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Hou, L.; Zhu, Y.; Zhang, C.; Li, W.; Lai, X.; Yang, J.; Li, S.; Shu, H. Composition and distribution of bacterial communities and antibiotic resistance genes in fish of four mariculture systems. Environ. Pollut. 2022, 311, 119934. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Liu, H.; Zhao, N.; Deng, Q.; Zhu, C.; Zhang, B. Distribution and Transfer of Antibiotic Resistance Genes in Coastal Aquatic Ecosystems of Bohai Bay. Water 2022, 14, 938. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, P.; Chang, J.; Xia, Y.; Li, X.; Li, L.; Liu, X.; Fang, L. Differences of Occurrence, Distribution, and Factors Influencing Antibiotic Resistance Genes Between Freshwater and Seawater in China. Water 2025, 17, 1282. https://doi.org/10.3390/w17091282
Jiang P, Chang J, Xia Y, Li X, Li L, Liu X, Fang L. Differences of Occurrence, Distribution, and Factors Influencing Antibiotic Resistance Genes Between Freshwater and Seawater in China. Water. 2025; 17(9):1282. https://doi.org/10.3390/w17091282
Chicago/Turabian StyleJiang, Pei, Jiali Chang, Yu Xia, Xia Li, Liping Li, Xinhui Liu, and Le Fang. 2025. "Differences of Occurrence, Distribution, and Factors Influencing Antibiotic Resistance Genes Between Freshwater and Seawater in China" Water 17, no. 9: 1282. https://doi.org/10.3390/w17091282
APA StyleJiang, P., Chang, J., Xia, Y., Li, X., Li, L., Liu, X., & Fang, L. (2025). Differences of Occurrence, Distribution, and Factors Influencing Antibiotic Resistance Genes Between Freshwater and Seawater in China. Water, 17(9), 1282. https://doi.org/10.3390/w17091282