Study of the Hydrological and Erosion Characteristics of Typical Spoil Heaps in the Yangtze River Delta of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Measurements and Methods
2.2.1. Erosion Process Determination
2.2.2. Soil Sampling and Testing
2.2.3. Measurement of Soil Erodibility
E = eP,
e = 0.119 + 0.0873 lg I, I ≤ 76,
e = 0.283, I > 76
2.3. Statistical Analysis
3. Results
3.1. Hydrological Responses of Spoil Heaps
3.2. Erosion Process of Spoil Heaps
3.3. Soil Erodibility Estimation of Spoil Heaps
3.4. Correlation Analysis
4. Discussion
4.1. Hydrological Response Characteristics of Spoil Heaps
4.2. Erosion Mechanisms of Spoil Heaps
4.3. Soil Erodibility of Spoil Heaps
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Q.K.; Qin, W.; Ning, D.H.; Shan, Z.J.; Yin, Z.; Du, P.F. Enhancement coefficient of soil erodibility factor for general disturbed land surface. Sci. Soil Water Conserv. 2019, 17, 85–92. [Google Scholar]
- Lee, E.; Eu, S.; Li, Q.W. Assessment of soil erosion potential from the disturbed surface of skid trails in small shovel harvesting system. Front. Environ. Sci. 2022, 10, 756848. [Google Scholar] [CrossRef]
- Jing, M.X.; Xie, Y.S.; Zhao, X.; Suo, G.D.; Liu, N.; Chen, L. Runoff and soil loss modeling on spoilbank with soilstone mixture. J. Soil Water Conserv. 2013, 27, 11–20. [Google Scholar]
- Ma, H.C.; Xie, Y.S.; Zhao, X.; Wu, Y.Y.; Ding, X.H.; Rong, Y.B. Defining of spoil heaps unit plot and improvement of spoil heaps erodibility factor. J. Soil Water Conserv. 2016, 10, 35–40. [Google Scholar]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef]
- Chen, P.J.; Yu, S. Mechanisms of nature–and human–Driven soil erosion by water. J. Fujian Agric. For. Univ. Nat. Sci. Ed. 2022, 51, 433–450. [Google Scholar]
- He, Y.Z.; Tian, Z.Y.; Gu, Z.J.; Wu, B.X.; Yin, L. Controlling soil erosion of tailings from rare earth mines with Paspalum wettsteinii and soil amendments. Land Degrad. Dev. 2024, 35, 5533–5548. [Google Scholar] [CrossRef]
- Guo, J.Y.; He, J.L.; Li, J.R.; Xing, E.D.; Wen, A.S.; Liu, Y.P.; Yang, G.Y. Effects of different measures on water erosion control of dump slope at opencast coal mine in typical steppey. Trans. Chin. Soc. Agric. Eng. 2015, 31, 296–303. [Google Scholar]
- Shi, D.M.; Jiang, G.Y.; Peng, X.D.; Wang, S.S.; Li, Y.X.; Jiang, P. Runoff erosion process on slope of engineering accumulation with different soil–rock ratio. Trans. Chin. Soc. Agric. Eng. 2015, 31, 152–161. [Google Scholar]
- Ding, W.B.; Shi, D.M.; He, W.J.; Jiang, G.Y.; Jiang, P.; Li, Y.X. Hydrodynamic characteristics of engineering accumulation erosion under side slope runoff erosion process in field scouring experiment. Trans. Chin. Soc. Agric. Eng. 2016, 32, 153–161. [Google Scholar]
- Wang, W.L.; Li, J.M.; Kang, H.L.; Guo, M.M.; Li, H.W. Soil erosion prediction model for spoil heaps in production and construction projects. J. Soil Water Conserv. 2023, 37, 27–34+42. [Google Scholar]
- Sun, H.; Gan, Z.M. Erosion and sediment yielding process of soil dumped by people in urbanizing construction area. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.) 1998, 26, 95–98. [Google Scholar]
- Ricks, M.D.; Wilson, W.T.; Zech, W.C.; Fang, X.; Donald, W.N. Evaluation of hydromulches as an erosion control measure using laboratory—Scale experiments. Water 2020, 12, 515. [Google Scholar] [CrossRef]
- Wu, X.Y.; Yang, S.; Yin, S.G.; Xu, H.Z.Y. Spatial—Temporal dynamic characteristics and its driving mechanism of urban built—Up area in Yangtze River Delta based on GTWR model. Resour. Environ. Yangtze Basin 2021, 30, 2594–2606. [Google Scholar]
- Fazekašová, D.; Petrovič, F.; Fazekaš, J.; Štofejová, L.; Baláž, I.; Tulis, F.; Tóth, T. Soil Contamination in the Problem Areas of Agrarian Slovakia. Land 2021, 10, 1248. [Google Scholar] [CrossRef]
- Lin, J.P.; Yang, S.; Liu, Y.H.; Zhu, Y.H.; Cai, A.N. The urban population agglomeration capacity and its impact on economic efficiency in the Yangtze River Delta Urban Agglomeration. Environ. Dev. Sustain. 2024, 26, 13739–13768. [Google Scholar] [CrossRef]
- Yang, D.; Wu, S.X.; Wang, C.; Du, M.Q.; Wu, Y.; Liu, S.J.; Zhang, B. Research progress on slope erosion of accumulation bodies in production and construction engineering. Subtrop. Soil Water Conserv. 2018, 30, 31–36. [Google Scholar]
- Liu, C.; Cao, B.Z.; Wang, J.; Ren, Y. Study on soil erosion effect of different stacking methods of engineering accumulation based on WEPP model. J. Nat. Disasters 2022, 31, 261–270. [Google Scholar]
- Guo, H.Z.; Jiang, D.; Jiang, G.Y.; Wang, S.S.; Shi, D.M. Physical Property changes and classification of types in spoil sites of production and construction projects. Technol. Soil Water Conserv. 2014, 6, 32–35. [Google Scholar]
- Zhang, Z.H.; Nie, W.T.; Xu, W.S.; Huang, J.Q.; Li, L.; Li, J.M.; Zhang, W.J.; Liu, J.G. Effects of runoff and sediment reduction on engineering accumulation slopes under different soil and water conservation temporary measures. Trans. Chin. Soc. Agric. Eng. 2022, 38, 141–150. [Google Scholar]
- Liu, C.; Sun, Y.R.; Cao, B.Z.; Guang, H.B.; Feng, R.K.; Zhang, Y.R.; Wang, J. Influence of rainfall duration dynamic changes on flow reduction and sediment reduction benefits of fine mesh net on construction spoil deposits. J. Soil Water Conserv. 2022, 37, 8–16+30. [Google Scholar]
- Rydgren, K.; Halvorsen, R.; Odland, A.; Skjerdal, G. Restoration of alpine spoil heaps: Successional rates predict vegetation recovery in 50 years. Ecol. Eng. 2011, 37, 294–301. [Google Scholar] [CrossRef]
- Nguyen, P.M.V.; Wrana, A.; Rajwa, S.; Różański, Z.; Frączek, R. Slope stability numerical analysis and landslide prevention of coal mine waste dump under the impact of rainfall—A case study of Janina mine, Poland. Energies 2022, 15, 8311. [Google Scholar] [CrossRef]
- Zhao, X.; Xie, Y.S.; Jing, M.X.; Liu, X.Y.; Xu, J. Types and characteristies of spoilbank in development construction project. Sci. Soil Water Conserv. 2013, 11, 88–94. [Google Scholar]
- He, Y.Z.; Tian, Z.Y.; Ma, R.; Liang, Y.; Zhu, X.C.; Qu, L.L. Effects of superabsorbent polymers (SAPs) incorporated with organic and inorganic fertilizer on the water and nutrient retention of soil in rare earth mine tailing areas. J. Soils Sediments 2023, 23, 3384–3395. [Google Scholar] [CrossRef]
- Li, R.D.; Wang, W.L.; Lou, Y.B.; Bai, Y.; Kang, H.L.; Cui, Z.Q.; Lu, Z.J. Effects of gravel content on runoff and sediment yield on Lou soil engineering accumulation slopes under simulated rainfall conditions. Chin. J. Appl. Ecol. 2022, 33, 3027–3036. [Google Scholar]
- Lv, J.R.; Luo, H.; Xie, Y.S. Effects of rock fragment content, size and cover on soil erosion dynamics of spoil heaps through multiple rainfall events. Catena 2019, 172, 179–189. [Google Scholar] [CrossRef]
- Guo, W.Z.; Kang, H.L.; Yu, X.; Wang, W.L.; Tian, P. Influences of rock fragments on the hydraulics and erosion of concentrated runoff in steep spoil heaps on the Loess Plateau of China. Int. J. Sediment Res. 2022, 37, 553–562. [Google Scholar] [CrossRef]
- Lv, J.R.; Luo, H.; Hu, J.S.; Xie, Y.S. The effects of rock fragment content on the erosion processes of spoil heaps: A laboratory scouring experiment with two soils. J. Soils Sediments 2019, 19, 2089–2102. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Wang, Z.Y.; Wang, X.W.; Luo, H.; Zhang, J.Y. Relationship among runoff, soil erosion, and rill morphology on slopes of overburdened stockpiles under simulated rainfall. J. Hydrol. 2024, 633, 130991. [Google Scholar] [CrossRef]
- Nie, H.Y.; Wang, W.L.; Guo, M.M.; Kang, H.L.; Li, J.M.; Bai, Y. Runoff—Sediment relationship and erosion dynamic characteristics for two types of engineering deposits under rainfall condition. Chin. J. Appl. Ecol. 2020, 31, 3141–3153. [Google Scholar]
- Sha, X.Y.; Wang, W.L.; Lou, Y.B.; Kang, H.L. The dynamic difference of runoff erosion on slope surface of different soil engineering accumulation bodies. J. Nat. Disasters 2022, 31, 191–199. [Google Scholar]
- Li, J.M.; Niu, J.; Wang, W.L.; Zhang, P.C.; Cheng, D.B.; Wang, Y.F.; Zhang, G.H.; Guo, M.M. Differences in characteristics of runoff and sediment yielding from spoil heaps with different soil textures. Trans. Chin. Soc. Agric. Eng. 2016, 32, 187–194. [Google Scholar]
- Fan, T.T.; Wang, D.M.; Zhang, Z.Z.; Zhang, P.; Liu, X.Y. Characteristics of runoff, sediment and nitrogen and phosphorus output of steep slope of abandoned soil deposits under scouring flow. J. Soil Water Conserv. 2023, 37, 101–109+117. [Google Scholar]
- Guo, P.L.; Wang, W.L.; Li, J.M.; Kang, H.L.; Lou, Y.B.; Wei, S.H. Responses of runoff and sediment yield to slope length and gravel content of Lou soil engineering accumulation slope in Guanzhong region, Northwest China. Chin. J. Appl. Ecol. 2024, 35, 749–758. [Google Scholar]
- Feng, Z.Q.; Lou, Y.C.; Qi, X.Y.; Gao, Z.L.; Li, Y.H.; Zhang, S. Influence of flow intensity, slope and soil particle fractal dimension on slope erosion of engineering accumulation body. J. Soil Water Conserv. 2021, 35, 127–134. [Google Scholar]
- Li, K.; Wang, W.L.; Li, J.M. Response of velocity and sediment production characteristics of spoil heaps to slope length and gravel action. J. Soil Water Conserv. 2023, 37, 48–56+102. [Google Scholar]
- Beullens, J.; Van de Velde, D.; Nyssen, J. Impact of slope aspect on hydrological rainfall and on the magnitude of rill erosion in Belgium and northern France. Catena 2014, 114, 129–139. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, Z.L.; Li, Y.H.; Sun, G.F.; Lou, Y.C.; Yang, S.Y.; Wu, T. Soil erosion characteristics of engineering deposits under continuous runoff scouring. Bull. Soil Water Conserv. 2022, 42, 61–67. [Google Scholar]
- Niu, Y.B.; Wu, X.; Ciao, Z.L.; Li, Y.H. Characteristics of soil erosion on engineering accumulation slope under the rainfall and inflow conditions. Trans. Chin. Soc. Agric. Eng. 2020, 36, 69–77. [Google Scholar]
- Lou, Y.C.; Wu, T.; Sun, G.F.; Cen, Y.F.; Su, B.N.; Gao, Z.L. Effect of combined rainfall and inflow on soil erosion of spoil tips. J. Soils Sediments 2022, 22, 2229–2245. [Google Scholar] [CrossRef]
- Zhang, L.T.; Gao, Z.L.; Li, Z.B.; Tian, H.W. Downslope runoff and erosion response of typical engineered landform to variable inflow rate patterns from upslope. Nat. Hazards 2016, 80, 775–796. [Google Scholar] [CrossRef]
- Zhang, S.J.; Gao, Z.L.; Li, Y.H.; Zhang, L.T.; Liu, Z.Z. Study on characteristics of runoff and sediment yield on steep slope of engineering accumulation body. J. Soil Water Conserv. 2016, 30, 107–110. [Google Scholar]
- Wang, Y.F.; Xu, Y.P.; Tabari, H.; Wang, J.; Wang, Q.; Song, S.; Hu, Z.L. Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, Eastern China. Atmos. Res. 2020, 231, 104673. [Google Scholar] [CrossRef]
- Fang, Q.; Zhao, L.S.; Fan, C.H.; Li, K.F.; Fang, F.Y.; Qian, X.H. Influencing factors of rainwater transformation and soil erosion in thin soil hillslope of rock desertification regions. Trans. Chin. Soc. Agric. Eng. 2022, 38, 88–97. [Google Scholar]
- Luo, H.; Zhao, T.N.; Peng, X.F.; Guo, Y.; Liang, C. Effectiveness of soil and water conservation of greening mulch of roadside slope. Trans. Chin. Soc. Agric. Eng. 2013, 29, 63–70. [Google Scholar]
- Wu, L.; Xu, Y.P.; Wang, Q.; Xu, Y.; Gao, B. Evolution and non stationary characteristics of summer precipitation structure over the Yangtze River Delta. Adv. Water Sci. 2022, 33, 730–742. [Google Scholar]
- Yang, B.; Ma, X.W.; Jiao, J.Y.; Zhao, W.T.; Ling, Q.; Li, J.J.; Zhang, X.H. Magnitude and hotspots of soil erosion types during heavy rainstorm events on the Loess Plateau: Implications for watershed management. Catena 2024, 246, 108365. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.H.; Dong, Y.Y.; Liu, Y.H.; Jidai, J.Q.; Jiao, J.Y.; Liu, B.Y.; Chen, H.; Han, J.Q. Regional difference and prevention strategy of farmland erosion induced by extreme rainstorms in the Loess area and Rocky mountain area of Northern China. Earth Surf. Process. Landforms 2024, 49, 2704–2722. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhang, X.R.; Jiao, F.X.; Li, G.L. The relationship between soil crust and infiltration under simulated continuous and intermittent precipitation. J. Soil Water Conserv. 2024, 38, 64–72+81. [Google Scholar]
- Yu, R.C.; Yuan, W.H.; Li, J. The asymmetry of rainfall process. Chin. Sci. Bull. 2013, 58, 1850–1856. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Yao, R.; Zhu, Z.Z.; Jin, H.X.; Zhang, S.L. Spatiotemporal evolution of population exposure to multi—Scenario rainstorms in the Yangtze River delta urban agglomeration. J. Geogr. Sci. 2024, 4, 654–680. [Google Scholar] [CrossRef]
- Chen, Y.R.X.; Wang, X.F.; Huang, L.; Luo, Y.L. Spatial and temporal characteristics of abrupt heavy rainfall events over Southwest China during 1981–2017. Int. J. Climatol. 2021, 41, 3286–3299. [Google Scholar] [CrossRef]
- Olsen, T.C.; Wischmeier, W.H. Soil erodibility evaluations for soils on the runoff and erosion stations. Soil Sci. Soc. Am. Proc. 1963, 27, 590–592. [Google Scholar] [CrossRef]
- Liu, B.Y.; Zhang, K.L.; Xie, Y. An Empirical Soil Loss Equation. In Proceedings of the 12th ISCO Conference, Process of Erosion and its Environmental Effects, Beijing, China, 26 May 2002; Volume l, pp. 21–25. [Google Scholar]
- Palmira, B.H.; Seidou, O. Empirical and physical modelling of soil erosion in agricultural hillslopes. J. Hydrol. Hydromech. 2024, 72, 279–291. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture Science and Education Administration: Washington, DC, USA, 1978; p. 537. [Google Scholar]
- Li, H.W.; Wang, W.L.; Huang, P.F.; Bai, Y. Experimental study of soil erodibility fator of earth–ock engineering accumulation in loess areas. J. Sediment. Res. 2014, 2, 49–54. [Google Scholar]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Li, J.M.; Wang, W.L.; Huang, P.F.; Li, H.W. Impact on erosion and sediment yield by gravel in pile body of development on struction in Loess Area. J. Sediment. Res. 2014, 4, 10–17. [Google Scholar]
- Zhang, L.T.; Gao, Z.L.; Yang, S.W.; Li, Y.H.; Tian, H.W. Dynamic processes of soil erosion by runoff on engineered landforms derived from expressway construction: A case study of typical steep spoil heap. Catena 2015, 128, 108–121. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Wei, Y.C.; Li, Z.; Luo, H.; Xie, Y.S. Response of runoff and sediment yield to gravel content in engineered deposit slopes under continuous rainfall conditions. Bull. Soil Water Conserv. 2024, 44, 91–100. [Google Scholar]
- Ji, L.J.; Wang, W.L.; Kang, H.L.; Zhao, M.; Guo, M.M.; Bai, Y.; Su, H.; Nie, H.Y. Differences in hydraulic erosion processes of the earth and earth–rock Lou soil engineering accumulation in the Loess Region. Chin. J. Appl. Ecol. 2020, 31, 1587–1598. [Google Scholar]
- Zheng, T.H.; Zhou, W.; Liu, T.; Yang, Y.C.; Mo, B. Characteristics sediment yield and runoff on the slope surface of gravel accumulation in Karst area under continuous simulated rainfall. J. Soil Water Conserv. 2020, 34, 55–60. [Google Scholar]
- Peng, X.D.; Shi, D.M.; Jiang, D.; Wang, S.S.; Li, Y.X. Runoff erosion process on different underlying surfaces from disturbed soils in the Three Gorges Reservoir Area, China. Catena 2014, 123, 215–224. [Google Scholar] [CrossRef]
- Kang, H.L.; Wang, W.L.; Xue, Z.D.; Guo, M.M.; Li, J.M.; Bai, Y.; Deng, L.Q.; Li, Y.F. Experimental study on runoff and sediment yield from engineering deposition with gravel in the northern windy–sandy region, Shaanxi. Adv. Water Sci. 2016, 27, 256–265. [Google Scholar]
- Rui, M.G.; Zhou, Y.C. Study on the dynamic hydrodynamic characteristics of runoff on the slope of red soil engineering accumulation. Res. Soil Water Conserv. 2024, 31, 143–152+159. [Google Scholar]
- Lv, J.R.; Xie, Y.S.; Luo, H. Erosion process and temporal variations in the soil surface roughness of spoil heaps under multi–day rainfall simulation. Remote Sens. 2020, 12, 2192. [Google Scholar] [CrossRef]
- Chen, D.K.; Lv, J.R.; Luo, H.; Xie, Y.S. Evolution of surface drainage network for spoil heaps under simulated rainfall. Water 2021, 13, 3475. [Google Scholar] [CrossRef]
- Tian, Z.Y.; Zhao, Y.; Cao, L.X.; Zhao, Y.; Liang, Y. Assessing the declining trend in soil erodibility across China: A comparison of conventional and digital K–factor maps. Int. Soil Water Conserv. Res. 2025, 13, 15–26. [Google Scholar] [CrossRef]
- Zhang, K.L.; Peng, W.Y.; Yang, H.L. Soil erodibility and its estimation for agricultural soil in china. Acta Pedol. Sin. 2007, 44, 7–13. [Google Scholar] [CrossRef]
- Liang, Y.; Shi, X.Z. Soil erodiable K in east hillyfields of the southern Yangtze River. Res. Soil Water Conserv. 1999, 6, 48–53. [Google Scholar]
- Liang, Y.; Liu, X.C.; Cao, L.X.; Zheng, F.L.; Zhang, P.C.; Shi, M.C.; Cao, Q.Y.; Yuan, J.Q. Soil erodibility factor (K) calculation and distribution on water erosion areas in China. Chin. J. Soil Water Conserv. 2013, 1, 35–40. [Google Scholar]
- Yang, X.; Guo, Q.K.; Wang, A.J.; Liu, B.Y.; Zhang, M.N.; Chang, Q.Q. Calculation of soil erodibility factor under different soil types based on runoff plot data. Bull. Soil Water Conserv. 2019, 39, 114–119. [Google Scholar]
Sample Site | Site A | Site B | Site C | Site D |
---|---|---|---|---|
Spoil heap sources | Real estate construction site | Railway construction site | Railway station construction site | Spoil site |
Location | Qingpu, Shanghai | Wujiang, Jiangsu Province | Wujiang, Jiangsu Province | Jiashan, Zhejiang Province |
Stacking time | 1 month | 3 month | 1 month | 5 month |
Digging depth (m) | 0–2 | 0.4–10 | 0–2 | / |
Sand (%) | 44 | 26 | 29 | 42 |
Silt (%) | 51 | 69 | 64 | 52 |
Clay (%) | 5 | 5 | 7 | 6 |
Gravel content (%) | 0.6 | 0.8 | 3.6 | 1.9 |
Soil organic matter (g·kg−1) | 3.3 | 1.1 | 5.0 | 1.5 |
Soil pH | 7.8 | 7.8 | 7.0 | 7.1 |
Soil bulk density (g·cm−3) | 1.15 | 1.19 | 1.34 | 0.92 |
Soil water content (%) | 28 | 7 | 16 | 14 |
Test plot dimensions | 2 m × 1 m, 40° | 1.7 m × 1 m, 33° | 1.73 m × 1 m, 25° | 1.68 m × 1 m, 43° |
No. | P 1/mm | T 2/min | I 3/mm·h−1 | I30 4/mm·h−1 | Rainfall Process | Sample Site 5 |
---|---|---|---|---|---|---|
1 | 8.9 6 | 30 | 17.7 | 17.7 | Continuous | A |
2 | 8.9 6 | 30 | 17.7 | 17.7 | Continuous | A |
3 | 32.5 6 | 110 | 17.7 | 17.7 | Continuous | A |
4 | 37.0 | 110 | 20.2 | 20.2 | Continuous | A |
5 | 28.0 | 110 | 15.3 | 15.3 | Continuous | A |
6 | 50.2 | 242 | 12.5 | 17.7 | Intermittent 7 | A |
7 | 65.0 | 333 | 11.7 | 17.7 | Intermittent | A |
8 | 37.3 | 110 | 20.4 | 20.4 | Continuous | B |
9 | 64.8 | 110 | 35.3 | 35.3 | Continuous | B |
10 | 102.1 | 315 | 19.5 | 27.9 | Intermittent | B |
11 | 69.2 | 110 | 37.8 | 37.8 | Continuous | C |
12 | 46.5 | 110 | 25.4 | 25.4 | Continuous | C |
13 | 115.7 | 341 | 20.4 | 31.6 | Intermittent | C |
14 | 64.5 | 110 | 35.2 | 35.2 | Continuous | D |
15 | 72.5 | 110 | 39.6 | 39.6 | Continuous | D |
16 | 137.0 | 334 | 24.6 | 37.4 | Intermittent | D |
No. | R 2/MJ·mm·ha−1·h−1 | L × S 3 | A 4/t·ha−1 | K 5/t·ha·h·ha−1·MJ−1·mm−1 | Sample Site 6 | Linear Fitting Results |
---|---|---|---|---|---|---|
1 1 | 35.83 | 0.71 | 0.04 | 0.0014 | Site A | A = 0.0029 × RLS − 0.0275, R2 = 0.95 |
2 | 35.83 | 0.71 | 0.01 | 0.0004 | ||
3 | 131.36 | 0.71 | 0.32 | 0.0034 | ||
4 | 173.93 | 0.71 | 0.31 | 0.0025 | ||
5 | 95.09 | 0.71 | 0.18 | 0.0027 | ||
6 | 203.02 | 0.71 | 0.36 | 0.0025 | ||
7 | 262.73 | 0.71 | 0.49 | 0.0026 | ||
8 | 177.34 | 0.52 | 4.12 | 0.0450 | Site B | A = 0.1164 × RLS − 6.1816, R2 = 0.99 |
9 | 582.06 | 0.52 | 30.36 | 0.1011 | ||
10 | 697.33 | 0.52 | 34.48 | 0.0958 | ||
11 | 671.04 | 0.37 | 48.41 | 0.1962 | Site C | A = 0.1974 × RLS + 12.028, R2 = 0.82 |
12 | 284.93 | 0.37 | 37.46 | 0.3575 | ||
13 | 912.76 | 0.37 | 85.87 | 0.2558 | ||
14 | 576.37 | 0.71 | 60.25 | 0.1464 | Site D | A = 0.0989 × RLS + 6.9101, R2 = 0.77 |
15 | 740.92 | 0.71 | 42.90 | 0.0811 | ||
16 | 1311.82 | 0.71 | 103.15 | 0.1102 |
Index 1 | Runoff Coefficient | Soil Loss | Interflow | K | P | T | I | I30 | R |
---|---|---|---|---|---|---|---|---|---|
Runoff coefficient | 1 | ||||||||
Soil loss | 0.937 ** 2 | 1 | |||||||
Interflow | 0.609 * | 0.617 * | 1 | ||||||
K | 0.924 ** | 0.833 ** | 0.398 | 1 | |||||
P | 0.620 * | 0.653 ** | 0.693 * | 0.458 | 1 | ||||
T | 0.264 | 0.248 | 0.37 | 0.215 | 0.831 ** | 1 | |||
I | 0.680 ** | 0.747 ** | 0.262 | 0.473 | 0.279 | −0.191 | 1 | ||
I30 | 0.809 ** | 0.880 ** | 0.593 * | 0.593 * | 0.700 ** | 0.245 | 0.873 ** | 1 | |
R | 0.709 ** | 0.774 ** | 0.766 ** | 0.489 | 0.943 ** | 0.607 ** | 0.509 * | 0.857 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Du, J.; Gu, Z.; Li, Y.; Ni, J.; Wu, J.; Liao, G.; Zeng, M. Study of the Hydrological and Erosion Characteristics of Typical Spoil Heaps in the Yangtze River Delta of China. Water 2025, 17, 1220. https://doi.org/10.3390/w17081220
He Y, Du J, Gu Z, Li Y, Ni J, Wu J, Liao G, Zeng M. Study of the Hydrological and Erosion Characteristics of Typical Spoil Heaps in the Yangtze River Delta of China. Water. 2025; 17(8):1220. https://doi.org/10.3390/w17081220
Chicago/Turabian StyleHe, Yanzi, Jing Du, Zhujun Gu, Yunhao Li, Jin Ni, Jiasheng Wu, Guanghui Liao, and Maimai Zeng. 2025. "Study of the Hydrological and Erosion Characteristics of Typical Spoil Heaps in the Yangtze River Delta of China" Water 17, no. 8: 1220. https://doi.org/10.3390/w17081220
APA StyleHe, Y., Du, J., Gu, Z., Li, Y., Ni, J., Wu, J., Liao, G., & Zeng, M. (2025). Study of the Hydrological and Erosion Characteristics of Typical Spoil Heaps in the Yangtze River Delta of China. Water, 17(8), 1220. https://doi.org/10.3390/w17081220