Acute Toxicity Assessment of Textile Wastewater Treated with Pinus patula Biochar Using Daphnia pulex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reactants, and Textile Wastewater (TWW) Collection
2.2. Pinus patula-Derived Biochar (BC) Production and Characterization
2.3. TWW Characterization and Batch Adsorption Studies
2.4. Acute Toxicity Assessment Using D. pulex
3. Results and Discussion
3.1. P. patula-Derived BC Characterization
3.2. Efficiency of P. patula-Derived BC in the Removal of DOC from TWW
3.3. Acute Toxicity of TWW Treated with P. patula-Derived BC Using D. pulex
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Duan, C.; Wang, Y.; Wang, X.; Yin, Y.; Han, Q.; Ou, Z.; Luo, G.; Sun, M.; Li, G.; et al. Generation of H2O2 via Simultaneous Treatment of Cotton and Organic Pollutants in Textile Wastewater. Sep. Purif. Technol. 2025, 355, 129567. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Chi, M.; Eygen, G.V.; Guan, K.; Matsuyama, H. Comprehensive Review of Nanofiltration Membranes for Efficient Resource Recovery from Textile Wastewater. Chem. Eng. J. 2025, 506, 160132. [Google Scholar] [CrossRef]
- El-Kholy, S.A. Environmentally Benign Freeze-Dried Biopolymer-Based Cryogels for Textile Wastewater Treatments: A Review. Int. J. Biol. Macromol. 2024, 276, 133931. [Google Scholar] [CrossRef] [PubMed]
- Aragaw, T.A. A Review of Dye Biodegradation in Textile Wastewater, Challenges Due to Wastewater Characteristics, and the Potential of Alkaliphiles. J. Hazard. Mater. Adv. 2024, 16, 100493. [Google Scholar] [CrossRef]
- Sahu, A.; Poler, J.C. Removal and Degradation of Dyes from Textile Industry Wastewater: Benchmarking Recent Advancements, Toxicity Assessment and Cost Analysis of Treatment Processes. J. Environ. Chem. Eng. 2024, 12, 113754. [Google Scholar] [CrossRef]
- Singh, G.B.; Vinayak, A.; Mudgal, G.; Kesari, K.K. Azo Dye Bioremediation: An Interdisciplinary Path to Sustainable Fashion. Environ. Technol. Innov. 2024, 36, 103832. [Google Scholar] [CrossRef]
- Ristea, M.-E.; Zarnescu, O. Indigo Carmine: Between Necessity and Concern. J. Xenobiot. 2023, 13, 509–528. [Google Scholar] [CrossRef]
- Zarandona, A.; Salazar, H.; Insausti, M.; Lanceros-Méndez, S.; Zhang, Q. Synergistic Green Degradation of Organic Dyes Using a BiSI Catalyst: Adsorption, Sonocatalysis, and Photocatalysis. J. Water Process Eng. 2024, 58, 104731. [Google Scholar] [CrossRef]
- Yalasangi, V.; Mayilswamy, N.; Kandasubramanian, B. Biochar-Derived Adsorbents for Removal of Rhodamine B from Wastewater. Bioresour. Technol. Rep. 2024, 28, 101987. [Google Scholar] [CrossRef]
- Singh, S.; Khan, N.A.; Shehata, N.; Singh, J.; Ramamurthy, P.C. Insight into Biochar as Sustainable Biomass: Production Methods, Characteristics, and Environmental Remediation. J. Clean. Prod. 2024, 475, 143645. [Google Scholar] [CrossRef]
- Moncada, J.; Cardona, C.A.; Higuita, J.C.; Vélez, J.J.; López-Suarez, F.E. Wood Residue (Pinus patula Bark) as an Alternative Feedstock for Producing Ethanol and Furfural in Colombia: Experimental, Techno-Economic and Environmental Assessments. Chem. Eng. Sci. 2016, 140, 309–318. [Google Scholar] [CrossRef]
- Limenih, B.Y.; Stoeckl, N.; O’Reilly-Wapstra, J.; Volker, P. Managing Forest Residues for Biodiversity, Bioenergy, and Smoke Reduction: Insights from a Discrete Choice Experiment in Tasmania, Australia. Energy Policy 2024, 195, 114351. [Google Scholar] [CrossRef]
- Uemura Silva, V.; Nascimento, M.F.; Resende Oliveira, P.; Panzera, T.H.; Rezende, M.O.; Silva, D.A.L.; Borges de Moura Aquino, V.; Rocco Lahr, F.A.; Christoforo, A.L. Circular vs. Linear Economy of Building Materials: A Case Study for Particleboards Made of Recycled Wood and Biopolymer vs. Conventional Particleboards. Constr. Build. Mater. 2021, 285, 122906. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Rubio-Clemente, A.; Pérez, J.F. Effect of Main Solid Biomass Commodities of Patula Pine on Biochar Properties Produced under Gasification Conditions. Ind. Crops Prod. 2021, 160, 113123. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, S.; Sharma, S.K.; Jain, A.; Shrivastava, K. Review on Recent Advancement of Adsorption Potential of Sugarcane Bagasse Biochar in Wastewater Treatment. Chem. Eng. Res. Des. 2024, 206, 428–439. [Google Scholar] [CrossRef]
- Zahoor, A.; Liu, X.; Liu, Y.; Liu, S.; Yi, W.; Sajnani, S.; Tai, L.; Tahir, N.; Abdoulaye, B.; Mahaveer; et al. Agricultural Lignocellulose Biochar Material in Wastewater Treatment: A Critical Review and Sustainability Assessment. Environ. Funct. Mater. 2025; in press. [Google Scholar] [CrossRef]
- Hong, J.; Bao, J.; Liu, Y. Removal of Methylene Blue from Simulated Wastewater Based upon Hydrothermal Carbon Activated by Phosphoric Acid. Water 2025, 17, 733. [Google Scholar] [CrossRef]
- Cavali, M.; Hennig, T.B.; Libardi Junior, N.; Kim, B.; Garnier, V.; Benbelkacem, H.; Bayard, R.; Woiciechowski, A.L.; Matias, W.G.; de Castilhos Junior, A.B. Co-Hydrothermal Carbonization of Sawdust and Sewage Sludge: Assessing the Potential of the Hydrochar as an Adsorbent and the Ecotoxicity of the Process Water. Appl. Sci. 2025, 15, 1052. [Google Scholar] [CrossRef]
- Nnadozie, E.C.; Ajibade, P.A. Isotherm, Kinetics, Thermodynamics Studies and Effects of Carbonization Temperature on Adsorption of Indigo Carmine (IC) Dye Using C. odorata Biochar. Chem. Data Collect. 2021, 33, 100673. [Google Scholar] [CrossRef]
- Pessôa, T.S.; Ferreira, L.E.d.L.; da Silva, M.P.; Pereira Neto, L.M.; do Nascimento, B.F.; Fraga, T.J.M.; Jaguaribe, E.F.; Cavalcanti, J.V.; da Motta Sobrinho, M.A. Açaí Waste Beneficing by Gasification Process and Its Employment in the Treatment of Synthetic and Raw Textile Wastewater. J. Clean. Prod. 2019, 240, 118047. [Google Scholar] [CrossRef]
- Tokay Yılmaz, F.G.; Tekin, G.; Ersöz, G.; Atalay, S. Reclamation of Real Textile Wastewater by Sequential Advanced Oxidation and Adsorption Processes Using Corn-Cob Based Materials. Environ. Pollut. 2023, 335, 122196. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, Y.; Sharma, M.; Mishra, R.K.; Sharma, A.; Joshi, J.; Gupta, A.B.; Achintya, B.; Shah, K.; Vuppaladadiyamd, A.K. Biochar Potential for Pollutant Removal during Wastewater Treatment: A Comprehensive Review of Separation Mechanisms, Technological Integration, and Process Analysis. Desalination 2025, 600, 118509. [Google Scholar] [CrossRef]
- Sabry, H.A.; Salaah, S.M.; El-Naggar, M.M.; Ali, E.H.A.; Khalil, M.T.; Ibrahim, A.A.E.; Mostafa, A.B. Nanocomposite Treatment of Hospital Wastewater; Prophylaxis Toxicity in the Freshwater Crayfish Muscles and Hepatopancreas. Sci. Afr. 2025, 27, e02567. [Google Scholar] [CrossRef]
- Soltanighias, T.; Umar, A.; Abdullahi, M.; Abdallah, M.A.-E.; Orsini, L. Combined Toxicity of Perfluoroalkyl Substances and Microplastics on the Sentinel Species Daphnia magna: Implications for Freshwater Ecosystems. Environ. Pollut. 2024, 363, 125133. [Google Scholar] [CrossRef]
- Jones, S.J.; Lassiter, M.G. Chapter 26—Environmental Toxicology: Aquatic. In Information Resources in Toxicology, 5th ed.; Wexler, P., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 263–278. [Google Scholar] [CrossRef]
- Pikuda, O.; Roubeau Dumont, E.; Chen, Q.; Macairan, J.-R.; Robinson, S.A.; Berk, D.; Tufenkji, N. Toxicity of Microplastics and Nanoplastics to Daphnia magna: Current Status, Knowledge Gaps and Future Directions. TrAC Trends Anal. Chem. 2023, 167, 117208. [Google Scholar] [CrossRef]
- Clark-Wolf, T.J.; Holt, K.A.; Johansson, E.; Nisi, A.C.; Rafiq, K.; West, L.; Boersma, P.D.; Hazen, E.L.; Moore, S.E.; Abrahms, B. The Capacity of Sentinel Species to Detect Changes in Environmental Conditions and Ecosystem Structure. J. Appl. Ecol. 2024, 61, 1638–1648. [Google Scholar] [CrossRef]
- Bancel, S.; Cachot, J.; Bon, C.; Rochard, É.; Geffard, O. A Critical Review of Pollution Active Biomonitoring Using Sentinel Fish: Challenges and Opportunities. Environ. Pollut. 2024, 360, 124661. [Google Scholar] [CrossRef]
- Foudhaili, T.; Jaidi, R.; Neculita, C.M.; Rosa, E.; Triffault-Bouchet, G.; Veilleux, É.; Coudert, L.; Lefebvre, O. Effect of the Electrocoagulation Process on the Toxicity of Gold Mine Effluents: A Comparative Assessment of Daphnia magna and Daphnia pulex. Sci. Total Environ. 2020, 708, 134739. [Google Scholar] [CrossRef]
- Ebert, D. Daphnia as a Versatile Model System in Ecology and Evolution. EvoDevo 2022, 13, 16. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, B.; Gao, B.; Cheng, N.; Feng, Q.; Chen, M.; Wang, S. Degradation of Organic Pollutants from Water by Biochar-Assisted Advanced Oxidation Processes: Mechanisms and Applications. J. Hazard. Mater. 2023, 442, 130075. [Google Scholar] [CrossRef]
- Rubio-Clemente, A.; Gutiérrez, J.; Henao, H.; Melo, A.M.; Pérez, J.F.; Chica, E. Adsorption Capacity of the Biochar Obtained from Pinus patula Wood Micro-Gasification for the Treatment of Polluted Water Containing Malachite Green Dye. J. King Saud Univ. Eng. Sci. 2021, 35, 431–441. [Google Scholar] [CrossRef]
- Gallego-Ramírez, C.; Chica, E.; Rubio-Clemente, A. Elimination of Indigo Carmine in Water by Pinus patula Biochar: Adsorption Process Optimization, Kinetics and Isotherms. J. Environ. Chem. Eng. 2024, 12, 112425. [Google Scholar] [CrossRef]
- Dendy, D.; Lestari, W.W.; Anshori, I.; Surawijaya, A.; Handayani, M.; Wahyuningsih, S.; Saraswati, T.E.; Ridho Suharbiansah, R.S. Enhanced Indigo Carmine Adsorption Using Ethylenediamine-Modified MIL-101(Cr) Materials. Mater. Chem. Phys. 2025, 334, 130465. [Google Scholar] [CrossRef]
- EPA. Whole Effluent Toxicity Methods; Reports and Assessments. 2025. Available online: https://www.epa.gov/cwa-methods/whole-effluent-toxicity-methods (accessed on 3 April 2024).
- Shao, S.; Zhang, R.; Liu, Q.; Guo, G. Acute Toxicity of Binary and Ternary Mixtures of La, Ce and Dy on Daphnia magna: Toxicity Patterns Depend on the Ratios of the Components and the Concentration Gradient. Sci. Total Environ. 2024, 956, 177305. [Google Scholar] [CrossRef]
- Méndez-Hernández, J.E.; Ramírez-Vives, F.; Sobrino-Figueroa, A.S.; Garza-López, P.M.; Loera, O. Ecotoxicological Evaluation and Treatment of a Denim-Laundry Wastewater. Water Air Soil Pollut. 2022, 233, 27. [Google Scholar] [CrossRef]
- Yuzer, B.; Guida, M.; Ciner, F.; Aktan, B.; Aydin, M.I.; Meric, S.; Selcuk, H. A Multifaceted Aggregation and Toxicity Assessment Study of Sol–Gel-Based TiO2 Nanoparticles during Textile Wastewater Treatment. Desalination Water Treat. 2016, 57, 4966–4973. [Google Scholar] [CrossRef]
- Saghir, S.; Pu, C.; Fu, E.; Wang, Y.; Xiao, Z. Synthesis of High Surface Area Porous Biochar Obtained from Pistachio Shells for the Efficient Adsorption of Organic Dyes from Polluted Water. Surf. Interfaces 2022, 34, 102357. [Google Scholar] [CrossRef]
- Ullah, F.; Ul Haq Khan, Z.; Sabahat, S.; Aftab, M.; Sun, J.; Samad Shah, N.; Rahim, A.; Abdullah, M.M.S.; Imran, M. Synergistic Degradation of Toxic Azo Dyes Using Mn-CuO@Biochar: An Efficient Adsorptive and Photocatalytic Approach for Wastewater Treatment. Chem. Eng. Sci. 2025, 302, 120844. [Google Scholar] [CrossRef]
- Schmidt, M.P.; Ashworth, D.J.; Celis, N.; Ibekwe, A.M. Optimizing Date Palm Leaf and Pistachio Shell Biochar Properties for Antibiotic Adsorption by Varying Pyrolysis Temperature. Bioresour. Technol. Rep. 2023, 21, 101325. [Google Scholar] [CrossRef]
- Ullah, F.; Ji, G.; Irfan, M.; Gao, Y.; Shafiq, F.; Sun, Y.; Ain, Q.U.; Li, A. Adsorption Performance and Mechanism of Cationic and Anionic Dyes by KOH Activated Biochar Derived from Medical Waste Pyrolysis. Environ. Pollut. 2022, 314, 120271. [Google Scholar] [CrossRef]
- Lin, S.-L.; Zhang, H.; Chen, W.-H.; Song, M.; Kwon, E.E. Low-Temperature Biochar Production from Torrefaction for Wastewater Treatment: A Review. Bioresour. Technol. 2023, 387, 129588. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yuan, X.; Li, X.; Jiang, L.; Wang, H. Burgeoning Prospects of Biochar and Its Composite in Persulfate-Advanced Oxidation Process. J. Hazard. Mater. 2021, 409, 124893. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Olsen, M.N.P.; Moni, C.; Dieguez-Alonso, A.; de la Rosa, J.M.; Stenrød, M.; Liu, X.; Mao, L. Comparison of Properties of Biochar Produced from Different Types of Lignocellulosic Biomass by Slow Pyrolysis at 600 °C. Appl. Energy Combust. Sci. 2022, 12, 100090. [Google Scholar] [CrossRef]
- Grimm, A.; Conrad, S.; Gentili, F.G.; Mikkola, J.-P.; Hu, T.; Lassi, U.; Silva, L.F.O.; Lima, E.C.; dos Reis, G.S. Highly Efficient Boron/Sulfur-Modified Activated Biochar for Removal of Reactive Dyes from Water: Kinetics, Isotherms, Thermodynamics, and Regeneration Studies. Colloids Surf. A Physicochem. Eng. Asp. 2025, 713, 136486. [Google Scholar] [CrossRef]
- Tran, T.K.C.; Truong, T.T.T.; Le, A.L.; Do, D.A.M.; Nguyen, T.G.; Tran, T.D.; Pham, T.D. Synthesis, Characterization of Novel Protein-Modified Rice Husk Biochar and Their Applications for Highly Adsorptive Removal Azo Dye in Water. Environ. Technol. Innov. 2025, 37, 104037. [Google Scholar] [CrossRef]
- Xie, S.; Yu, Z.; Chen, L.; Du, J.; Li, J.; Yuan, W.; Li, X.; Lin, J. Thin-Film Composite Electro-Nanofiltration Membrane for One-Step and Efficient Fractionation of Dyes and Salts in High-Salinity Textile Wastewater. Desalination 2024, 591, 118056. [Google Scholar] [CrossRef]
- GilPavas, E.; Correa-Sánchez, S. Optimization of the Heterogeneous Electro-Fenton Process Assisted by Scrap Zero-Valent Iron for Treating Textile Wastewater: Assessment of Toxicity and Biodegradability. J. Water Process Eng. 2019, 32, 100924. [Google Scholar] [CrossRef]
- Gallego Ramírez, C.; Chica, E.; Rubio-Clemente, A. Study of the Feasibility of Pinus patula Biochar: Regeneration of the Indigo Carmine-Loaded Biochar and Efficiency for Real Textile Wastewater Treatment. Processes 2024, 12, 939. [Google Scholar] [CrossRef]
- Yáñez-Ángeles, M.J.; González-Nava, V.J.; Castro-Fernández, J.A.; García-Estrada, R.; Espejel-Ayala, F.; Reyes-Vidal, Y.; Rivera-Iturbe, F.F.; Cárdenas, J.; Bustos, E. Textile-Washing Wastewater Treatment Using Ozonolysis, Electro-Coagulation, and Electro-Oxidation. Electrochim. Acta 2025, 512, 145473. [Google Scholar] [CrossRef]
- Chowdhury, M.F.; Khandaker, S.; Sarker, F.; Islam, A.; Rahman, M.T.; Awual, M.R. Current Treatment Technologies and Mechanisms for Removal of Indigo Carmine Dyes from Wastewater: A Review. J. Mol. Liq. 2020, 318, 114061. [Google Scholar] [CrossRef]
- Sarkar, D.; Panicker, T.F.; Kumar Mishra, R.; Srinivas Kini, M. A Comprehensive Review of Production and Characterization of Biochar for Removal of Organic Pollutants from Water and Wastewater. Water-Energy Nexus 2024, 7, 243–265. [Google Scholar] [CrossRef]
- El-Kammah, M.; Elkhatib, E.; Gouveia, S.; Cameselle, C.; Aboukila, E. Enhanced Removal of Indigo Carmine Dye from Textile Effluent Using Green Cost-Efficient Nanomaterial: Adsorption, Kinetics, Thermodynamics and Mechanisms. Sustain. Chem. Pharm. 2022, 29, 100753. [Google Scholar] [CrossRef]
- Plentz Gomes Vasconcelos, L.; Almeida Albuquerque, A.; Roberta Cabral Ribeiro, K.; Beatriz Oliveira Palmeira, M.; Thalis Vaz da Costa Capistrano, R.; Inácio Soletti, J.; Helena Vieira Carvalho, S.; Daltro Bispo, M. Comparison of Adsorption Potential of Methylene Blue and 17β-Stradiol on Biochar, Activated Biochar and Catalytic Biochar from Lignocellulosic Waste. J. Ind. Eng. Chem. 2025, 144, 585–595. [Google Scholar] [CrossRef]
- Ali Alshehri, M.; Pugazhendhi, A. Biochar for Wastewater Treatment: Addressing Contaminants and Enhancing Sustainability: Challenges and Solutions. J. Hazard. Mater. Adv. 2024, 16, 100504. [Google Scholar] [CrossRef]
- Foong, S.Y.; Chin, B.L.F.; Lock, S.S.M.; Yiin, C.L.; Tan, Y.H.; Zheng, G.; Ge, S.; Liew, R.K.; Lam, S.S. Enhancing Wastewater Treatment with Engineered Biochar from Microwave-Assisted Approach—A Comprehensive Review. Environ. Technol. Innov. 2024, 36, 103835. [Google Scholar] [CrossRef]
- Liu, X.; Yue, Y. Phosphate Adsorption from Phosphorus-Polluted Wastewater by Peanut Hull-Derived Biochar Functionalized with Eggshell-Based Calcium Chloride: Preparation, Adsorption Performance and Mechanism. Desalination Water Treat. 2024, 320, 100880. [Google Scholar] [CrossRef]
- Ayaz, M.; Khan, A.H.A.; Song, K.; Ali, A.; Yousaf, S.; Kazmi, A.; Rashid, A. Integration of Physio-Biological Methods for Remediation of Dyes and Toxic Metals from Textile Wastewater. Bioresour. Technol. Rep. 2025, 29, 102044. [Google Scholar] [CrossRef]
- GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M.-Á. Efficient Treatment for Textile Wastewater through Sequential Electrocoagulation, Electrochemical Oxidation and Adsorption Processes: Optimization and Toxicity Assessment. J. Electroanal. Chem. 2020, 878, 114578. [Google Scholar] [CrossRef]
- Methneni, N.; Morales-González, J.A.; Jaziri, A.; Mansour, H.B.; Fernandez-Serrano, M. Persistent Organic and Inorganic Pollutants in the Effluents from the Textile Dyeing Industries: Ecotoxicology Appraisal via a Battery of Biotests. Environ. Res. 2021, 196, 110956. [Google Scholar] [CrossRef]
- Kiani, R.; Mirzaei, F.; Ghanbari, F.; Feizi, R.; Mehdipour, F. Real Textile Wastewater Treatment by a Sulfate Radicals-Advanced Oxidation Process: Peroxydisulfate Decomposition Using Copper Oxide (CuO) Supported onto Activated Carbon. J. Water Process Eng. 2020, 38, 101623. [Google Scholar] [CrossRef]
- Castro, A.M.; Nogueira, V.; Lopes, I.; Rocha-Santos, T.; Pereira, R. Evaluation of the Potential Toxicity of Effluents from the Textile Industry before and after Treatment. Appl. Sci. 2019, 9, 3804. [Google Scholar] [CrossRef]
- de Alkimin, G.D.; Paisio, C.; Agostini, E.; Nunes, B. Phytoremediation Processes of Domestic and Textile Effluents: Evaluation of the Efficacy and Toxicological Effects in Lemna minor and Daphnia magna. Environ. Sci. Pollut. Res. 2020, 27, 4423–4441. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.-H.; Kang, J.-K.; Park, S.-J.; Lee, C.-G. Application of Magnetic Biochar Derived from Food Waste in Heterogeneous Sono-Fenton-like Process for Removal of Organic Dyes from Aqueous Solution. J. Water Process Eng. 2020, 37, 101455. [Google Scholar] [CrossRef]
- Ebert, D. Ecology, Epidemiology, and Evolution of Parasitism in Daphnia; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2005.
- Grochowska, J. Assessment of Water Buffer Capacity of Two Morphometrically Different, Degraded, Urban Lakes. Water 2020, 12, 1512. [Google Scholar] [CrossRef]
- GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M.-Á. Optimization and Toxicity Assessment of a Combined Electrocoagulation, H2O2/Fe2+/UV and Activated Carbon Adsorption for Textile Wastewater Treatment. Sci. Total Environ. 2019, 651, 551–560. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Zhou, Z.; Liu, G.; Wang, C. A Review of the Conversion of Wood Biomass into High-Performance Bulk Biochar: Pretreatment, Modification, Characterization, and Wastewater Application. Sep. Purif. Technol. 2025, 361, 131448. [Google Scholar] [CrossRef]
- Dhila, H.; Bhapkar, A.; Bhame, S. Metal Oxide/Biochar Hybrid Nanocomposites for Adsorption and Photocatalytic Degradation of Textile Dye Effluents: A Review. Desalination Water Treat. 2025, 321, 101004. [Google Scholar] [CrossRef]
- Das, T.; Debnath, A.; Manna, M.S. Adsorption of Malachite Green by Aegle Marmelos-Derived Activated Biochar: Novelty Assessment through Phytotoxicity Tests and Economic Analysis. J. Indian Chem. Soc. 2024, 101, 101219. [Google Scholar] [CrossRef]
Property | Units | Wood Pellets | BC |
---|---|---|---|
Surface area (BET) | m2/g | 1.16 | 367.33 |
Pore volume | cm3/g | 0.0006 | 0.20 |
N | wt% | 0.02 | 0.19 |
O | wt% | 47.28 | 0.9 |
H | wt% | 5.69 | 0.97 |
C | wt% | 47.01 | 97.94 |
H/C | - | 1.45 | 0.12 |
O/C | - | 0.75 | 0.01 |
Volatile material (VM) | wt% | 84.64 | 20.59 |
pHpzc | - | - | 6 |
Parameter | Unit | Value |
---|---|---|
Chemical oxygen demand (COD) | mgO2/L | 630.3 |
5 d biochemical oxygen demand (BOD5) | mgO2/L | 222.2 |
BOD5/COD | - | 0.35 |
Temperature | °C | 24.9 |
True colour | Pt-Co | 201 |
Apparent colour | Pt-Co | >90 |
Total organic carbon (TOC) | mgC/L | 217.9 |
Dissolved organic carbon (DOC) | mgC/L | 124.5 |
Conductivity | mS/cm | 2.4 |
pH | pH units | 6.4 |
Species | Experimental Conditions | Results | Reference |
---|---|---|---|
D. magna | t = 48 h Number of neonates per sample = 5 Photoperiod: 12:12 T = 25 °C Dilutions of the TWW were performed with reconstituted water |
| [37] |
D. magna | t = 24 h Number of neonates per sample = 5 Photoperiod: 12:12 T = 25 °C Dilutions of the TWW were performed with reconstituted water (100, 50, 25, 12.5, 6.2, and 3.1%) |
| [61] |
D. magna | t = 48 h Number of neonates per sample = 10 Photoperiod: 16:8 Dilutions of the TWW were performed with reconstituted water |
| [62] |
D. magna | t = 48 h Number of neonates per sample = 5 Photoperiod: 16:8 Dilutions of the TWW were performed with reconstituted water (100, 66.67, 44.44, 29.63, 19.75, 13.17, and 8.78%) |
| [63] |
D. magna | t = 48 h Number of neonates per sample = 5 Photoperiod: 16:8 T = 20 °C Dilutions of the TWW were performed with reconstituted water (100–1%) |
| [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallego-Ramírez, C.; García-Zapata, Y.; Aguirre, N.; Chica, E.; Rubio-Clemente, A. Acute Toxicity Assessment of Textile Wastewater Treated with Pinus patula Biochar Using Daphnia pulex. Water 2025, 17, 1143. https://doi.org/10.3390/w17081143
Gallego-Ramírez C, García-Zapata Y, Aguirre N, Chica E, Rubio-Clemente A. Acute Toxicity Assessment of Textile Wastewater Treated with Pinus patula Biochar Using Daphnia pulex. Water. 2025; 17(8):1143. https://doi.org/10.3390/w17081143
Chicago/Turabian StyleGallego-Ramírez, Carolina, Yuri García-Zapata, Néstor Aguirre, Edwin Chica, and Ainhoa Rubio-Clemente. 2025. "Acute Toxicity Assessment of Textile Wastewater Treated with Pinus patula Biochar Using Daphnia pulex" Water 17, no. 8: 1143. https://doi.org/10.3390/w17081143
APA StyleGallego-Ramírez, C., García-Zapata, Y., Aguirre, N., Chica, E., & Rubio-Clemente, A. (2025). Acute Toxicity Assessment of Textile Wastewater Treated with Pinus patula Biochar Using Daphnia pulex. Water, 17(8), 1143. https://doi.org/10.3390/w17081143