Understanding Terrestrial Water Storage Changes Derived from the GRACE/GRACE-FO in the Inner Niger Delta in West Africa
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Data
3.2. Methodology
4. Results and Discussion
4.1. Analysis of TWS Changes
4.2. Analysis of TWS Changes Across Sub-Regions
4.3. Relationship Between TWS and Water Budget
4.4. Effect of Surface Water Bodies on TWS Variations
4.5. Effect of Groundwater Recharge on TWS Variations
5. Conclusions
- Monthly TWS exhibited seasonal variations from −170 mm to 330 mm, with a positive trend over the study period. Maximum TWS changes occurred in September, while minimum values were recorded in April–May.
- GRACE/GRACE-FO and GLDAS data showed a strong correlation in the IND (r = 0.92, RMSE = 35 mm), with sub-region correlations ranging from 0.87 to 0.93.
- Wavelet analysis indicated that most of the shared variance between GRACE/GRACE-FO and GLDAS TWS changes occurred at seasonal timescales of 8 to 16 months.
- The water budget (P-PE) influenced TWS variations only in humid areas near the Niger River’s source in Guinea, with no significant correlation in the semi-arid savanna and Sahelian IND regions.
- Groundwater recharge was the dominant driver of TWS changes in semi-arid and Sahelian regions, explaining 58–78% of TWS variance (r > 0.76).
- Surface water bodies significantly influenced TWS variations across the savanna areas along the Guinea–Mali border, particularly in Northern Guinea and southern Mali (r = 0.68).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Rodell, M. Water in the balance. Science 2013, 340, 1300–1301. [Google Scholar] [CrossRef] [PubMed]
- Khorrami, B.; Ali, S.; Abadi, L.H.; Jehanzaib, M. Spatio-temporal variations in characteristics of terrestrial water storage and associated drought over different geographic regions of Türkiye. Earth Sci. Inform. 2022, 16, 717–731. [Google Scholar] [CrossRef]
- Deng, S.; Liu, S.; Mo, X. Assessment of three common methods for estimating terrestrial water storage change with three reanalysis datasets. J. Clim. 2020, 33, 511–525. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48, 1–11. [Google Scholar] [CrossRef]
- Fatolazadeh, F.; Goïta, K. Mapping terrestrial water storage changes in Canada using GRACE and GRACE-FO. Sci. Total Environ. 2021, 779, 146435. [Google Scholar] [CrossRef]
- Khorrami, B.; Gündüz, O. Remote sensing-based monitoring and evaluation of the basin-wise dynamics of terrestrial water and groundwater storage fluctuations. Environ. Monit. Assess. 2023, 195, 868. [Google Scholar] [CrossRef]
- Sun, Z.; Long, D.; Yang, W.; Li, X.; Pan, Y. Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 basins. Water Resour. Res. 2020, 56, e2019WR026250. [Google Scholar] [CrossRef]
- Zwarts, L.; van Beukering, P.; Kone, B.; Wymenga, E. The Niger, a Lifeline: Water Management in the Inner Niger Delta in Mali; Wetlands International: Wageningen, The Netherlands, 2005. [Google Scholar]
- Werth, S.; White, D.; Bliss, D.W. GRACE detected rise of groundwater in the Sahelian Niger River basin. J. Geophys. Res. Solid Earth 2017, 122, 10459–10477. [Google Scholar] [CrossRef]
- Barbosa, S.A.; Jones, N.L.; Williams, G.P.; Mamane, B.; Begou, J.; Nelson, E.J.; Ames, D.P. Exploiting earth observations to enable groundwater modeling in the data-sparse region of Goulbi Maradi, Niger. Remote Sens. 2023, 15, 5199. [Google Scholar] [CrossRef]
- Bibi, S.; Zhu, T.; Rateb, A.; Scanlon, B.R.; Kamran, M.A.; Elnashar, A.; Bennour, A.; Li, C. Benchmarking multimodel terrestrial water storage seasonal cycle against Gravity Recovery and Climate Experiment (GRACE) observations over major global river basins. Hydrol. Earth Syst. Sci. 2024, 28, 1725–1750. [Google Scholar] [CrossRef]
- Hassan, A.; Jin, S. Water storage changes and balances in Africa observed by GRACE and hydrologic models. Geodesy Geodyn. 2016, 7, 39–49. [Google Scholar] [CrossRef]
- Hasan, E.; Tarhule, A.; Zume, J.T.; Kirstetter, P.-E. +50 years of terrestrial hydroclimatic variability in Africa’s transboundary waters. Sci. Rep. 2019, 9, 12327. [Google Scholar] [CrossRef] [PubMed]
- Hinderer, J.; Team, G.; Pfeffer, J.; Boucher, M.; Nahmani, S.; De Linage, C.; Boy, J.-P.; Genthon, P.; Seguis, L.; Favreau, G.; et al. Land water storage changes from ground and space geodesy: First results from the GHYRAF (Gravity and Hydrology in Africa) experiment. Pure Appl. Geophys. 2011, 169, 1391–1410. [Google Scholar] [CrossRef]
- Lu, Y.; Dai, L.; Yan, G.; Huo, Z.; Chen, W.; Lan, J.; Zhang, C.; Xu, Q.; Deng, S.; Chen, J. Effects of various land utilization types on groundwater at different temporal scales: A case study of Huocheng plain, Xinjiang, China. Front. Environ. Sci. 2023, 11, 1225916. [Google Scholar] [CrossRef]
- Springer, A.; Lopez, T.; Owor, M.; Frappart, F.; Stieglitz, T. The role of space-based observations for groundwater resource monitoring over Africa. Surv. Geophys. 2023, 44, 123–172. [Google Scholar] [CrossRef]
- Barbosa, S.A.; Pulla, S.T.; Williams, G.P.; Jones, N.L.; Mamane, B.; Sanchez, J.L. Evaluating groundwater storage change and recharge using GRACE data: A case study of aquifers in Niger, West Africa. Remote Sens. 2022, 14, 1532. [Google Scholar] [CrossRef]
- Cools, J.; Innocenti, D.; O’brien, S. Lessons from flood early warning systems. Environ. Sci. Policy 2016, 58, 117–122. [Google Scholar] [CrossRef]
- Klop, E.; Sikkema, M.; Diawara, M.; Gado, A. Ecological Hotspots and Land Use Patterns in the Upper Niger Basin, Guinea. Altenburg & Wymenga Ecological Consultants. Available online: https://www.altwym.nl/wp-content/uploads/2020/05/Klop-cs-2019.-Hotspots-Upper-NIger-Basin-Guinea-def.pdf (accessed on 17 May 2019).
- Oguntunde, P.G.; Abiodun, B.J. The impact of climate change on the Niger River Basin hydroclimatology, West Africa. Clim. Dyn. 2012, 40, 81–94. [Google Scholar] [CrossRef]
- Andersen, I.; Dione, O.; Jarosewich-Holder, M.; Olivry, J.C.; Golitzen, K.G. The Niger River Basin: A Vision for Sustainable Management; Water P-Notes, 16; World Bank Group: Washington, DC, USA, 2005; Available online: http://documents.worldbank.org/curated/en/446841468290737812/The-Niger-river-basin-a-vision-for-sustainable-management (accessed on 1 October 2008).
- Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. J. Hydrol. 2008, 352, 30–49. [Google Scholar] [CrossRef]
- Dada, O.A.; Li, G.; Qiao, L.; Asiwaju-Bello, Y.A.; Anifowose, A.Y.B. Recent Niger Delta shoreline response to Niger River hydrology: Conflict between forces of nature and humans. J. Afr. Earth Sci. 2018, 139, 222–231. [Google Scholar] [CrossRef]
- Bonkoungou, B.; Bossa, A.Y.; van der Kwast, J.; Mul, M.; Sintondji, L.O. Inner Niger Delta inundation extent (2010–2022) based on Landsat imagery and the Google Earth Engine. Remote Sens. 2024, 16, 1853. [Google Scholar] [CrossRef]
- Thompson, J.R.; Crawley, A.; Kingston, D.G. Future river flows and flood extent in the Upper Niger and Inner Niger Delta: GCM-related uncertainty using the CMIP5 ensemble. Hydrol. Sci. J. 2017, 62, 2239–2265. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.C.E.; Khan, H.F.; Xie, H.; Ringler, C.; Ogilvie, A.; Seidou, O.; Djibo, A.G.; van Weert, F.; Tharme, R. Quantifying the sustainability of water availability for the water-food-energy-ecosystem nexus in the Niger River Basin. Earth’s Futur. 2018, 6, 1292–1310. [Google Scholar] [CrossRef]
- Nicholson, S.E. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet. Change 2000, 26, 137–158. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S.; Zhu, W. Analysis of climate variability, trends, and prediction in the most active parts of the Lake Chad basin, Africa. Sci. Rep. 2019, 9, 6317. [Google Scholar] [CrossRef]
- Kornfeld, R.P.; Arnold, B.W.; Gross, M.A.; Dahya, N.T.; Klipstein, W.M.; Gath, P.F.; Bettadpur, S. GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission. J. Spacecr. Rocket. 2019, 56, 931–951. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Chen, J.; Cazenave, A.; Dahle, C.; Llovel, W.; Panet, I.; Pfeffer, J.; Moreira, L. Applications and challenges of GRACE and GRACE Follow-On satellite gravimetry. Surv. Geophys. 2022, 43, 305–345. [Google Scholar] [CrossRef]
- Fatolazadeh, F.; Eshagh, M.; Goïta, K. New spectro-spatial downscaling approach for terrestrial and groundwater storage variations estimated by GRACE models. J. Hydrol. 2022, 615, 128635. [Google Scholar] [CrossRef]
- Fatolazadeh, F.; Eshagh, M.; Goïta, K.; Wang, S. A New Spatiotemporal Estimator to Downscale GRACE Gravity Models for Terrestrial and Groundwater Storage Variations Estimation. Remote Sens. 2022, 14, 5991. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Li, B.; Rodell, M.; Kumar, S.; Beaudoing, H.K.; Getirana, A.; Zaitchik, B.F.; de Goncalves, L.G.; Cossetin, C.; Bhanja, S.; Mukherjee, A.; et al. Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges. Water Resour. Res. 2019, 55, 7564–7586. [Google Scholar] [CrossRef]
- Li, B.; Beaudoing, H.; Rodell, M. GLDAS Catchment Land Surface Model L4 Daily 0.25 × 0.25 Degree GRACE-DA1 V2; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2020. [CrossRef]
- Schmied, H.M.; Cáceres, D.; Eisner, S.; Flörke, M.; Herbert, C.; Niemann, C.; Peiris, T.A.; Popat, E.; Portmann, F.T.; Reinecke, R.; et al. The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev. 2021, 14, 1037–1079. [Google Scholar] [CrossRef]
- Díaz-Alcaide, S.; Martínez-Santos, P.; Villarroya, F. A commune-level groundwater potential map for the Republic of Mali. Water 2017, 9, 839. [Google Scholar] [CrossRef]
- Onyekuru, N.A.; Marchant, R.; Touza, J.M.; Ume, C.; Chiemela, C.; Onyia, C.; Eboh, E.C.; Eze, C.C. A–Z of cost-effective adaptation strategies to the impact of climate change among crop farmers in West Africa. Environ. Dev. Sustain. 2023, 26, 20311–20332. [Google Scholar] [CrossRef]
- Biancamaria, S.; Mballo, M.; Le Moigne, P.; Pérez, J.M.S.; Espitalier-Noël, G.; Grusson, Y.; Cakir, R.; Häfliger, V.; Barathieu, F.; Trasmonte, M.; et al. Total water storage variability from GRACE mission and hydrological models for a 50,000 km2 temperate watershed: The Garonne River basin (France). J. Hydrol. Reg. Stud. 2019, 24, 100609. [Google Scholar] [CrossRef]
- Jia, Y.; Lei, H.; Yang, H.; Hu, Q. Terrestrial water storage change retrieved by GRACE and its implication in the Tibetan Plateau: Estimating areal precipitation in ungauged regions. Remote Sens. 2020, 12, 3129. [Google Scholar] [CrossRef]
- Neves, M.C.; Nunes, L.M.; Monteiro, J.P. Evaluation of GRACE data for water resource management in Iberia: A case study of groundwater storage monitoring in the Algarve region. J. Hydrol. Reg. Stud. 2020, 32, 100734. [Google Scholar] [CrossRef]
- Nimmo, J.R.; Horowitz, C.; Mitchell, L. Discrete-storm water-table fluctuation method to estimate episodic recharge. Groundwater 2014, 53, 282–292. [Google Scholar] [CrossRef]
- Wu, Q.; Si, B.; He, H.; Wu, P. Determining regional-scale groundwater recharge with GRACE and GLDAS. Remote Sens. 2019, 11, 154. [Google Scholar] [CrossRef]
- Fatolazadeh, F.; Goïta, K. Reconstructing groundwater storage variations from GRACE observations using a new Gaussian-Han-Fan (GHF) smoothing approach. J. Hydrol. 2022, 604, 127234. [Google Scholar] [CrossRef]
- Li, F.; Kusche, J.; Rietbroek, R.; Wang, Z.; Forootan, E.; Schulze, K.; Lück, C. Comparison of data-driven techniques to reconstruct (1992–2002) and predict (2017–2018) GRACE-like gridded total water storage changes using climate inputs. Water Resour. Res. 2020, 56, e2019WR026551. [Google Scholar] [CrossRef]
- Tangdamrongsub, N. Comparative analysis of global terrestrial water storage simulations: Assessing CABLE, Noah-MP, PCR-GLOBWB, and GLDAS performances during the GRACE and GRACE-FO era. Water 2023, 15, 2456. [Google Scholar] [CrossRef]
- Henry, C.; Allen, D.M.; Kirste, D. Characterizing recharge in southern Mali using a combination of modeling and stable isotopes. Front. Water 2022, 4, 778957. [Google Scholar] [CrossRef]
- Johnston, R.; Smakhtin, V. Hydrological modeling of large river basins: How much is enough? Water Resour. Manag. 2014, 28, 2695–2730. [Google Scholar] [CrossRef]
- Li, F.; Kusche, J.; Chao, N.; Wang, Z.; Löcher, A. Long-term (1979–present) total water storage anomalies over the global land derived by reconstructing GRACE data. Geophys. Res. Lett. 2021, 48, e2021GL093492. [Google Scholar] [CrossRef]
- Fatolazadeh, F.; Eshagh, M.; Goïta, K. A new approach for generating optimal GLDAS hydrological products and uncertainties. Sci. Total Environ. 2020, 730, 138932. [Google Scholar] [CrossRef]
- Descroix, L.; Mahé, G.; Lebel, T.; Favreau, G.; Galle, S.; Gautier, E.; Olivry, J.-C.; Albergel, J.; Amogu, O.; Cappelaere, B.; et al. Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: A synthesis. J. Hydrol. 2009, 375, 90–102. [Google Scholar] [CrossRef]
- Seka, A.M.; Zhang, J.; Ayele, G.T.; Demeke, Y.G.; Han, J.; Prodhan, F.A. Spatio-temporal analysis of water storage variation and temporal correlations in the East Africa lake basins. J. Hydrol. Reg. Stud. 2022, 41, 101094. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Taylor, R.G.; Favreau, G.; Todd, M.C.; Shamsudduha, M.; Villholth, K.G.; MacDonald, A.M.; Scanlon, B.R.; Kotchoni, D.O.V.; Vouillamoz, J.-M.; et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 2019, 572, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Sur, K.; Verma, V.K.; Pateriya, B. Surface water estimation at regional scale using hybrid techniques in GEE environment-A case study on Punjab State of India. Remote Sens. Appl. Soc. Environ. 2021, 24, 100625. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Wiese, D.N.; Landerer, F.W.; Long, D.; Longuevergne, L.; Chen, J. Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour. Res. 2016, 52, 9412–9429. [Google Scholar] [CrossRef]
- Pavelic, P.; Giordano, M.; Keraita, B.N.; Ramesh, V.; Rao, T. Groundwater Availability and Use in Sub-Saharan Africa: A Review of 15 Countries; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2012. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Change 2013, 3, 322–329. [Google Scholar] [CrossRef]
- Ramillien, G.; Frappart, F.; Seoane, L. Application of the regional water mass variations from GRACE satellite gravimetry to large-scale water management in Africa. Remote Sens. 2014, 6, 7379–7405. [Google Scholar] [CrossRef]
- Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res. 2008, 44, W02433. [Google Scholar] [CrossRef]
- Werth, S.; Güntner, A.; Petrovic, S.; Schmidt, R. Integration of GRACE mass variations into a global hydrological model. Earth Planet. Sci. Lett. 2009, 277, 166–173. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Yang, H.; Ndehedehe, C.; Wang, H.; Ge, Y.; Xu, J.; Xia, M.; Kalu, I.; Jing, M.; Agutu, N. Estimating groundwater recharge across Africa during 2003–2023 using GRACE-derived groundwater storage changes. J. Hydrol. Reg. Stud. 2024, 56, 102046. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Aeschbach-Hertig, W.; Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 2012, 5, 853–861. [Google Scholar] [CrossRef]
- Pazola, A.; Shamsudduha, M.; French, J.; MacDonald, A.M.; Abiye, T.; Goni, I.B.; Taylor, R.G. High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation. Hydrol. Earth Syst. Sci. 2024, 28, 2949–2967. [Google Scholar] [CrossRef]
- Turkeltaub, T.; Bel, G. Changes in mean evapotranspiration dominate groundwater recharge in semi-arid regions. Hydrol. Earth Syst. Sci. 2024, 28, 4263–4274. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Adeyeri, O.E.; Onojeghuo, A.O.; Ferreira, V.G.; Kalu, I.; Okwuashi, O. Understanding global groundwater-climate interactions. Sci. Total Environ. 2023, 904, 166571. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Liu, Y.; Zhang, W. A comprehensive evaluation of GRACE-like terrestrial water storage (TWS) reconstruction products at an interannual scale during 1981–2019. Water Resour. Res. 2023, 59, e2022WR034381. [Google Scholar] [CrossRef]
Max TWS Variations (GRACE/GRACE-FO | Min TWS Variations (GRACE/GRACE-FO) | Max TWS Variations (GLDAS) | Min TWS Variations (GLDAS) | |
---|---|---|---|---|
2002 | September | April | September | May |
2003 | September | May | September | May |
2004 | September | May | September | June |
2005 | September | May | November | May |
2006 | September | May | September | June |
2007 | September | March | September | June |
2008 | September | June | September | May |
2009 | September | May | September | May |
2010 | September | June | September | May |
2011 | September | May | September | June |
2012 | September | March | September | May |
2013 | October | May | September | June |
2014 | September | April | September | April |
2015 | September | April | September | May |
2016 | August | May | September | May |
2017 | Incomplete data | May | Incomplete data | April |
2018 | Incomplete data | Incomplete data | Incomplete data | Incomplete data |
2019 | September | June | September | May |
2020 | September | May | September | June |
2021 | September | April | September | June |
2022 | September | April | September | May |
RMSE (mm) | Correlation | |
---|---|---|
Region 1 | 34.5 | 0.90 |
Region 2 | 38.4 | 0.91 |
Region 3 | 54.5 | 0.93 |
Region 4 | 28.7 | 0.87 |
Location | Eco-Climatic Zone | Latitude | Longitude | Correlation | RMSE (mm) | p-Value |
---|---|---|---|---|---|---|
1 | Humid Forest | 9.500 | −10.750 | 0.26 | 124.6 | <10−4 |
2 | Forest Transition Zone/Derived Savanna | 10.500 | −10.250 | 0.25 | 110.3 | <10−3 |
3 | Southern Guinea Savanna | 11.500 | −8.750 | 0.18 | 103.4 | 0.0096 |
4 | Northern Guinea Savanna | 12.750 | −7.750 | 0.10 | 99.1 | 0.32 |
5 | Semi-Arid/Sudan Savanna | 13.500 | −6.250 | −0.06 | 95.8 | 0.40 |
6 | Sahelian Zone (IND) | 14.500 | −4.250 | −0.14 | 92 | 0.03 |
Location | Climatic Zone | Correlation |
---|---|---|
1 | Humid Forest | 0.39 |
2 | Forest Transition Zone/Derived Savanna | 0.54 |
3 | Southern Guinea Savanna | 0.69 |
4 | Northern Guinea Savanna | 0.67 |
5 | Semi-Arid/Sudan Savanna | 0.66 |
6 | Sahelian Zone | 0.51 |
Location | Climatic Zone | Correlation | RMSE (mm) |
---|---|---|---|
1 | Humid Forest | 0.83 | 120.6 |
2 | Forest Transition Zone/Derived Savanna | 0.79 | 115.8 |
3 | Southern Guinea Savanna | 0.48 | 118.3 |
4 | Northern Guinea Savanna | 0.69 | 87.4 |
5 | Semi-Arid/Sudan Savanna | 0.78 | 56.4 |
6 | Sahelian IND | 0.63 | 60.2 |
Pixel Number | Climatic Zone | Method | Correlation | p-Value |
---|---|---|---|---|
1 | Humid Forest | Method 1 | 0.47 | 0.09 |
Method 2 | 0.29 | 0.33 | ||
2 | Forest Transition Zone/Derived Savanna | Method 1 | 0.59 | 0.02 |
Method 2 | 0.53 | 0.05 | ||
3 | Southern Guinea Savanna | Method 1 | 0.74 | 0.002 |
Method 2 | 0.73 | 0.003 | ||
4 | Northern Guinea Savanna | Method 1 | 0.74 | 0.002 |
Method 2 | 0.76 | 0.002 | ||
5 | Semi-Arid/Sudan Savanna | Method 1 | 0.73 | 0.003 |
Method 2 | 0.81 | 0.0005 | ||
6 | Sahelian Region | Method 1 | 0.78 | 0.0001 |
Method 2 | 0.86 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatolazadeh, F.; Goïta, K. Understanding Terrestrial Water Storage Changes Derived from the GRACE/GRACE-FO in the Inner Niger Delta in West Africa. Water 2025, 17, 1121. https://doi.org/10.3390/w17081121
Fatolazadeh F, Goïta K. Understanding Terrestrial Water Storage Changes Derived from the GRACE/GRACE-FO in the Inner Niger Delta in West Africa. Water. 2025; 17(8):1121. https://doi.org/10.3390/w17081121
Chicago/Turabian StyleFatolazadeh, Farzam, and Kalifa Goïta. 2025. "Understanding Terrestrial Water Storage Changes Derived from the GRACE/GRACE-FO in the Inner Niger Delta in West Africa" Water 17, no. 8: 1121. https://doi.org/10.3390/w17081121
APA StyleFatolazadeh, F., & Goïta, K. (2025). Understanding Terrestrial Water Storage Changes Derived from the GRACE/GRACE-FO in the Inner Niger Delta in West Africa. Water, 17(8), 1121. https://doi.org/10.3390/w17081121