Assessment of Water Quality in the Panama Canal Watershed Using Multivariate Analysis of Physicochemical and Biological Parameters
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Description of the Physicochemical and Biological Water Parameters
3.2. Principal Component Analysis (PCA)
3.2.1. Bartlett’s Test of Sphericity
3.2.2. Kaiser–Meyer–Olkin (KMO) Test
3.2.3. Analysis of the Correlation Matrix
3.2.4. Number of Components to Retain
3.2.5. Matrix of Principal Component Loadings
3.2.6. HJ-Biplot Analysis
3.3. Cluster Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carrera, D.; Guevara, P.; Tamayo, L.; Guallichico, D. Analisis Multivariado de las aguas de la Subcuenca del Rio Ambi en Epoca de Estiaje y su relación con la calidad desde el punto de vista agrícola. In Proceedings of the Congreso de Ciencia y Tecnología ESPE, Quito, Ecuador, 3–5 June 2015; Volume 10, pp. 123–129. [Google Scholar]
- Oliveira, M.L.V.M. Gestão de águas, territórios e desenvolvimento econômico. ACTA Geográfica Boa Vista 2017, 11, 42–61. [Google Scholar]
- De Souza, J.A.R.; Moreira, D.A.; Silva, É.L.; Thomazini, S.C.N.; Ferreira, N.D.; Mello, H.C. Application of the Water Quality Index in a Stretch of the Sampáio River Basin. Rev. Gestão Soc. E Ambient. 2024, 18, e06734. [Google Scholar] [CrossRef]
- Salinas, A. Integrated Water Resources Management under a New Global Scenario. Water Sci. Technol. Water Supply 2015, 15, 215–233. [Google Scholar]
- Basco-Carrera, L.; van Beek, E.; Jonoski, A.; Benítez-Ávila, C.; Guntoro, F.P.J. Collaborative Modelling for Informed Decision Making and Inclusive Water Development. Water Resour. Manag. 2017, 31, 2611–2625. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, M.; Guardado-Lacaba, R. Evaluación del Índice de calidad del agua (Icasup) en el Río Cabaña, Moa-Cuba. Minería y Geol. 2021, 37, 105–119. [Google Scholar]
- Narendra, B.H.; Siregar, C.A.; Dharmawan, I.W.S.; Sukmana, A.; Pratiwi; Pramono, I.B.; Basuki, T.M.; Nugroho, H.Y.S.H.; Supangat, A.B.; Purwanto; et al. A Review on Sustainability of Watershed Management in Indonesia. Sustainability 2021, 13, 11125. [Google Scholar] [CrossRef]
- Friberg, N. Impacts and Indicators of Change in Lotic Ecosystems. Wiley Online Libr. Water 2014, 1, 513–531. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging Threats and Persistent Conservation Challenges for Freshwater Biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef]
- Fonseca-Sánchez, A.; Madrigal-Solís, H.; Uniciencia, C.N.-S. Evaluación de la amenaza de contaminación al agua subterránea y áreas de protección a manantiales en las subcuencas Maravilla-Chiz y Quebrada Honda. Uniciencia 2019, 33, 76–97. [Google Scholar]
- Wuijts, S.; Driessen, P.P.J.; Van Rijswick, H.F.M.W. Governance Conditions for Improving Quality Drinking Water Resources: The Need for Enhancing Connectivity. Water Resour. Manag. 2018, 32, 1245–1260. [Google Scholar] [CrossRef]
- Guerrero Martínez, C.D. Evaluación Temporal y Espacial de la Calidad del Agua de la Quebrada Las Delicias (Cerros Orientales de Bogotá) Mediante Un Análisis Estadístico Multivariado; Universidad Cooperativa de Colombia: Arauca, Colombia, 2019. [Google Scholar]
- Sotomayor, G. Evaluación de la calidad de las Aguas Superficiales mediante Técnicas de Estadística Multivariante: Un Estudio de Caso en la Cuenca Del Río Paute, al Sur de Ecuador; Universidad Nacional de La Plata: La Plata, Argentina, 2016. [Google Scholar]
- de Abreu, C. da Cunha Qualidade Da Água Em Ecossistemas Aquáticos Tropicais Sob Impactos Ambientais No Baixo Rio Jari-AP. Revisão Descritiva Biota Amaz. 2015, 5, 119–131. [Google Scholar]
- Autoridad del Canal de Panamá. Aguas y Bosques en la Cuenca del Canal: Tendencias de Largo Plazo. Available online: https://pancanal.com/wp-content/uploads/pandata/2018/cuencahidrografica/aguaybosquesenlacuencadelcanaltendenciasdelargoplazo.pdf (accessed on 20 May 2023).
- Ibañez Asencio, H.; Moreno Ramón, H.; Gisbert Blanquer, J.; Morfología de las cuencas hidrológicas. Universidad Politécnica de Valencia. Available online: http://riunet.upv.es/bitstream/handle/10251/10782/Morfolog%C3%ADa%20de%20una%20cuenca.pdf (accessed on 25 May 2024).
- Pauta, G.; Velasco, M.; Gutiérrez, D.; Vázquez, G.; Rivera, S.; Morales, Ó.; Abril, A. Evaluación de la Calidad del Agua de los Ríos de La Ciudad de Cuenca, Ecuador. Maskana 2019, 10, 76–88. [Google Scholar] [CrossRef]
- Kushwah, V.K.; Singh, K.R.; Gupta, N.; Berwal, P.; Alfaisal, F.M.; Khan, M.A.; Alam, S.; Qamar, O. Assessment of the Surface Water Quality of the Gomti River, India, Using Multivariate Statistical Methods. Water 2023, 15, 3575. [Google Scholar] [CrossRef]
- Lucas, J.S.; Southgate, P.C.; Tucker, C.S. Aquaculture: Farming Aquatic Animals and Plants; Lucas, J.S., Southgate, P.C., Tucker, C.S., Eds.; John Wiley & Sons: New York, NY, USA, 2019. [Google Scholar]
- Flores Cruz, R.V. Variación Temporal de la Calidad de Agua en la Bocatoma “La Atarjea”, Río Rímac (2009–2015); Universidad Agraria La Molina: Lima, Perú, 2017. [Google Scholar]
- Bucheli Rosero, L.A.; Rojas Bastidas, B.F.; Maffla Chamorro, F.R. Monitoreo de la Calidad del Agua mediante Clorofila-a aplicando imágenes satelitales en El Humedal Ramsar, Lago Guamués. Ingeniare 2021, 17, 21–31. [Google Scholar] [CrossRef]
- Xu, W.; Duan, L.; Wen, X.; Li, H.; Li, D.; Zhang, Y.; Water, H.Z. Effects of Seasonal Variation on Water Quality Parameters and Eutrophication in Lake Yangzong. Water 2022, 14, 2732. [Google Scholar] [CrossRef]
- Chadli, K.; Boufala, M. Assessment of Water Quality Using Moroccan WQI and Multivariate Statistics in the Sebou Watershed (Morocco). Arab. J. Geosci. 2021, 14, 27. [Google Scholar] [CrossRef]
- Djemai, M.; Saibi, H.; Mesbah, M.; Robertson, A. Spatio-Temporal Evolution of the Physico-Chemical Water Characteristics of the Sebaou River Valley (Great Kabylia, Algeria). J. Hydrol. Reg. Stud. 2017, 12, 33–49. [Google Scholar] [CrossRef]
- Singh, Y.; Singh, G.; Khattar, J.S.; Barinova, S.; Kaur, J.; Kumar, S.; Singh, D.P. Assessment of Water Quality Condition and Spatiotemporal Patterns in Selected Wetlands of Punjab, India. Environ. Sci. Pollut. Res. 2022, 29, 2493–2509. [Google Scholar] [CrossRef]
- Tello, J.A.; Leporati, J.L.; Colombetti, P.L.; Ortiz, C.G.; Jofré, M.B.; Ferrari, G.V.; González, P. Evaluation and Monitoring of the Water Quality of an Argentinian Urban River Applying Multivariate Statistics. Environ. Sci. Pollut. Res. 2024, 31, 30009–30025. [Google Scholar] [CrossRef]
- Corroto, F.; Gamarra, O.; Barboza, E. Evaluación Multivariante de la Calidad del Agua en la Cuenca Del Utcubamba (Perú). Tecnol. y Cienc. Agua 2018, 9, 33–51. [Google Scholar] [CrossRef]
- Osorio-Nuñez, M.H.; Martínez Rodríguez, D.; Merlo Rodríguez, V. Evaluación de la Calidad de Agua mediante un Análisis Multivariante en Los Esteros del Golfo de Fonseca, Honduras. Boletín Investig. Mar. y Costeras 2023, 52, 65–92. [Google Scholar]
- El-Rawy, M.; Fathi, H.; Abdalla, F.; Alshehri, F.; Eldeeb, H. An Integrated Principal Component and Hierarchical Cluster Analysis Approach for Groundwater Quality Assessment in Jazan, Saudi Arabia. Water 2023, 15, 1466. [Google Scholar] [CrossRef]
- Rahman, A.; Jahanara, I.; Jolly, Y.N. Assessment of Physicochemical Properties of Water and Their Seasonal Variation in an Urban River in Bangladesh. Water Sci. Eng. 2021, 14, 139–148. [Google Scholar] [CrossRef]
- Wu, W.; Chen, H.; Xu, S.; Liu, T.; Wang, H.; Li, G.; Wang, J. Water Environment Characteristics and Water Quality Assessment of Water Source of Diversion System of Project from Hanjiang to Weihe River. Int. J. Environ. Res. Public Health 2023, 20, 2890. [Google Scholar] [CrossRef] [PubMed]
- Saldaña-Fabela, M.P.; Díaz-Pardo, E.; Gutiérrez-Hernández, A. Diagnóstico de la Calidad del Agua en un Sistema de Embalses En Cascada, Cuenca Del Río San Juan, Querétaro, México. Tecnol. y Cienc. Agua 2011, 2, 115–126. [Google Scholar]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 2012; Volume 10. [Google Scholar]
- Galindo, M. Una Alternativa de Representación Simultánea: HJ-Biplot. Qüestiió 1986, 10, 13–23. [Google Scholar]
- Cubilla-Montilla, M.; Nieto-Librero, A.B.; Galindo-Villardón, M.P.; Torres-Cubilla, C.A. Sparse HJ-Biplot: A New Methodology via Elastic Net. Mathematics 2021, 9, 1298. [Google Scholar] [CrossRef]
- Carrasco, G.; Molina, J.L.; Patino-Alonso, M.C.; Castillo, M.D.C.; Vicente-Galindo, M.P.; Galindo-Villardón, M.P. Water Quality Evaluation through a Multivariate Statistical HJ-Biplot Approach. J. Hydrol. 2019, 577, 123993. [Google Scholar] [CrossRef]
- Cubilla-Montilla, M. Contribuciones al Análisis Biplot basadas en Soluciones Factoriales Disjuntas y en Soluciones Sparse. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2019. [Google Scholar]
- Gutiérrez-Sánchez, G.; Álvarez-Muñoz, P.; Galindo-Villardón, P.; Vicente-Galindo, P. Scientific Collaboration and Sustainable Development: A Bibliometric Analysis of the Andean Region, Panama, and Spain. Publications 2025, 13, 10. [Google Scholar] [CrossRef]
- Gonzalez, L.M.; D’Croz, L. Variabilidad espacial del afloramiento en el Golfo de Panamá. 2007. Available online: https://revistas.up.ac.pa/index.php/tecnociencia/article/view/822 (accessed on 25 May 2024).
- Quattrini, S.; Pampaloni, B.; Brandi, M.L. Natural Mineral Waters: Chemical Characteristics and Health Effects. Clin. Cases Miner. Bone Metab. 2016, 13, 173–180. [Google Scholar]
- Plúas-Chiquito, A.; Pozo-Cajas, M.; Lajones-Tapia, C.; Carreño-Rosario, H.; Arévalo-Castro, O. Determinación de Coliformes Totales y Escherichia Coli en el Estuario Chulluype del Cantón Santa Elena Provincia de Santa Elena. INVESTIGATIO 2020, 14, 61–70. [Google Scholar] [CrossRef]
- Solís-Castro, Y.; Zúñiga-Zúñiga, L.A.; Mora-Alvarado, D. La Conductividad como parámetro predictivo de la dureza del agua en pozos y nacientes de Costa Rica. Rev. Tecnol. Marcha 2018, 31, 35–36. [Google Scholar]
- Hernández Jiménez, C. Efectos de la entrada de Agua del Río Magdalena en la producción primaria del Fitoplancton en la Ciénaga Pajaral, Caribe Colombiano. Rev. Inst. Investig. Trop. 2017, 12, 117–130. [Google Scholar] [CrossRef]
- Prato, J.; González-Ramírez, L. MC Pérez Adsorción de La dureza del agua sobre lechos de Rocas Volcánicas de Ecuador. Inf. Tecnol. 2021, 32, 51–60. [Google Scholar]
- Muñoz, H.; Orozco, S.; Vera, A.; Suárez, J.; García, E.; Neria, M.; Jiménez, J. Relación entre Oxígeno Disuelto, Precipitación Pluvial y Temperatura: Río Zahuapan, Tlaxcala, México. Tecnol. y Cienc. Agua 2015, 6, 59–74. [Google Scholar]
- Rock, C.; Rivera, B. La Calidad Del Agua, E. coli y Su Salud; College of Agriculture and Life Sciences, The University of Arizon: Tucson, AZ, USA, 2014; Available online: https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1624s.pdf (accessed on 12 June 2024).
- Ledesma, M.M.; Bonansea, M.; Ledesma, C.; Rodriguez, C.; Pinotti, L.P. Water Quality Assessment of the Cassaffousth Reservoir Using Multivariate Statistical Techniques. Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Córdoba, Argentina. Rev. Científica FAV-UNRC Ab Intus 2018, 2, 27–38. [Google Scholar]
- Fernández Ortega, J.; Barberá, J.A.; Martín Rodríguez, J.F.; Andreo, B. Turbidez y Distribución del tamaño de partículas en el agua como parámetros de alerta temprana frente a la fecal en un manantial Kárstico. Geogaceta 2023, 74, 63–66. [Google Scholar]
- Moreno Franco, D.; Quintero Manzano, J.; López Cuevas, A. Métodos para identificar, diagnosticar y evaluar el grado de eutrofia. ContactoS 2010, 78, 25–33. [Google Scholar]
- Fergus, C.E.; Finley, A.O.; Soranno, P.A.; Wagner, T. Spatial Variation in Nutrient and Water Color Effects on Lake Chlorophyll at Macroscales. PLoS ONE 2016, 11, e0164592. [Google Scholar] [CrossRef]
- Oliver Rajadel, N. Análisis de los rendimientos, durante la puesta en marcha, de un sistema de tratamiento Basado en humedales artificiales destinados a la recuperación del Lago de l’Albufera de Valencia. Master’s Thesis, Universitat Politècnica de València (UPV), Valencia, Spain, 2011. [Google Scholar]
- González, A. Determinación de los sistemas de flujo del agua subterránea y caracterización de sus componentes en regiones desérticas: El Caso de Loreto, Baja California Sur. Ph.D. Thesis, Centro de Investigaciones Biológicas del Noreste, México, Mexico, 2011. [Google Scholar]
- Bollo Manent, M.; Martínez Serrano, A.; Martín Morales, G. Los Paisajes Antropogénicos del Municipio Morelia, Michoacán de Ocampo—México. Cuad. Geogr. Rev. Colomb. Geogr. 2023, 32, 50–69. [Google Scholar] [CrossRef]
- Valencia Ocampo, M. Evaluación de la escorrentía y calidad de aguas en áreas de Ribera de fuentes hídricas con diferentes usos en Andisoles de la Zona Media del Río Chinchiná. Bachelor’s Thesis, Universidad de Caldas, Caldas, Colombia, 2023. [Google Scholar]
- Blanco-Muñoz, E.; De La Parra-Guerra, A.; García-Alzate, C.; Villarreal-Blanco, E. Análisis Físico-Químico y Fitoplanctónico de la Ciénaga Puerto Caimán, Vertiente Caribe, Colombia. Intropica 2020, 15, 114–125. [Google Scholar] [CrossRef]
Type Parameter | Parameter | Units | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|---|
Bacteriological parameters | Total coliforms (TC) | NMP/100 mL | 63 | 120,000 | 2566 | 9521.8 |
Escherichia coli (E. coli) | NMP/100 mL | 10 | 1700 | 51 | 146.28 | |
Biological parameter | Chlorophyll a (CHL_A) | µg/L | 1.8 | 40.20 | 7.20 | 5.19 |
Solids | Total dissolved solids (TDS) | mg/L | 7 | 286 | 147 | 67.86 |
Total suspended solids (TSS) | mg/L | 10 | 15 | 10 | 0.48 | |
Turbidity (Turb) | NTU | 0.6 | 43.3 | 3.1 | 4.73 | |
Nutrients | Phosphorus as phosphate (P_PO4) | mg/L | 0.020 | 0.035 | 0.020 | 0.0012 |
Nitrogen as nitrate (N_NO3) | mg/L | 0.010 | 0.284 | 0.032 | 0.042 | |
Major anions | Total alkalinity (T_Alc) | mg/L | 14 | 60 | 36 | 12.53 |
Sulfate (SO4) | mg/L | 0.6 | 20.6 | 8.5 | 4.28 | |
Chlorides (Cl) | mg/L | 3.9 | 116.8 | 48.8 | 31.86 | |
Major cations | Sodium (Na) | mg/L | 2.68 | 64.61 | 28.21 | 17.34 |
Calcium (Ca) | mg/L | 1.13 | 16.30 | 5.92 | 2.69 | |
Magnesium (Mg) | mg/L | 1.32 | 9.77 | 5.29 | 2.1 | |
Potassium (K) | mg/L | 0.65 | 3.12 | 1.8 | 0.603 | |
Water hardness (Hardness) | mg/L | 8.5 | 72.4 | 36.5 | 13.89 | |
In Situ | Conductivity (Cond) | µS/cm | 42 | 514 | 251 | 124.7 |
Salinity (S) | UPS | 0.10 | 0.25 | 0.14 | 0.041 | |
Hydrogen ion potential (pH) | pH units | 6.38 | 8.28 | 7.39 | 0.391 | |
Dissolved oxygen (DO) | mg/L | 2.64 | 8.35 | 6.74 | 0.96 | |
Oxygen saturation percentage (SatO2) | % | 33 | 108 | 88 | 12.81 | |
Transparency (Transp) | m | 0.33 | 5.0 | 2.5 | 1.13 | |
Temperature (T) | °C | 26.6 | 30.9 | 29.2 | 0.72 |
Barlett’s Test of Sphericity | Kaiser–Meyer–Olkin Measure of Sampling Adequacy (KMO) | |
---|---|---|
Approximate Chi-Square | 8173.72 | 0.84 |
Degrees of Freedom | 253 | |
Significance | 0.00 |
Parameter | T_Alc | Ca | CHL_A | Cl | Cond | TC | Hardness | E. coli | K | Mg | N_NO3 | Na | DO | SatO2 | P_PO4 | pH | S | SO4 | TDS | TSS | T | Transp | Turb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T_Alc | 1.00 | ||||||||||||||||||||||
Ca | 0.86 | 1.00 | |||||||||||||||||||||
CHL_A | −0.08 | −0.07 | 1.00 | ||||||||||||||||||||
Cl | 0.18 | 0.35 | −0.28 | 1.00 | |||||||||||||||||||
Cond | 0.38 | 0.53 | −0.26 | 0.97 | 1.00 | ||||||||||||||||||
TC | 0.08 | 0.10 | −0.02 | −0.15 | −0.11 | 1.00 | |||||||||||||||||
Hardness | 0.73 | 0.88 | −0.17 | 0.73 | 0.85 | 0.00 | 1.00 | ||||||||||||||||
E. coli | 0.11 | 0.08 | −0.03 | −0.20 | −0.16 | 0.88 | −0.04 | 1.00 | |||||||||||||||
K | 0.07 | 0.27 | −0.29 | 0.97 | 0.92 | −0.14 | 0.65 | −0.20 | 1.00 | ||||||||||||||
Mg | 0.51 | 0.63 | −0.23 | 0.90 | 0.96 | −0.08 | 0.93 | −0.12 | 0.83 | 1.00 | |||||||||||||
N_NO3 | 0.43 | 0.47 | 0.25 | −0.24 | −0.11 | 0.29 | 0.22 | 0.40 | −0.28 | −0.01 | 1.00 | ||||||||||||
Na | 0.23 | 0.39 | −0.27 | 0.99 | 0.97 | −0.15 | 0.75 | −0.19 | 0.97 | 0.91 | −0.20 | 1.00 | |||||||||||
DO | −0.07 | 0.05 | −0.09 | 0.61 | 0.55 | −0.37 | 0.30 | −0.49 | 0.61 | 0.45 | −0.44 | 0.61 | 1.00 | ||||||||||
SatO2 | −0.09 | 0.03 | −0.10 | 0.61 | 0.54 | −0.38 | 0.29 | −0.49 | 0.62 | 0.45 | −0.50 | 0.61 | 1 | 1.00 | |||||||||
P_PO4 | −0.08 | −0.07 | −0.02 | −0.05 | −0.06 | −0.02 | −0.09 | −0.02 | −0.03 | −0.09 | −0.04 | −0.05 | 0.09 | 0.09 | 1.00 | ||||||||
pH | 0.35 | 0.44 | −0.25 | 0.69 | 0.70 | −0.17 | 0.63 | −0.24 | 0.64 | 0.67 | −0.17 | 0.71 | 0.74 | 0.73 | 0.03 | 1.00 | |||||||
S | 0.22 | 0.41 | −0.24 | 0.92 | 0.93 | −0.09 | 0.74 | −0.14 | 0.90 | 0.87 | −0.10 | 0.92 | 0.50 | 0.50 | −0.07 | 0.59 | 1.00 | ||||||
SO4 | 0.48 | 0.62 | −0.11 | 0.81 | 0.86 | −0.05 | 0.84 | −0.09 | 0.76 | 0.87 | 0.09 | 0.82 | 0.44 | 0.42 | −0.03 | 0.63 | 0.79 | 1.00 | |||||
TDS | 0.41 | 0.54 | −0.21 | 0.89 | 0.93 | −0.07 | 0.83 | −0.12 | 0.84 | 0.92 | −0.08 | 0.90 | 0.50 | 0.45 | −0.06 | 0.65 | 0.84 | 0.82 | 1.00 | ||||
TSS | 0.19 | 0.13 | 0.00 | −0.03 | 0.02 | 0.47 | 0.10 | 0.44 | −0.04 | 0.05 | 0.28 | −0.01 | −0.23 | −0.24 | −0.01 | −0.14 | 0.02 | 0.11 | 0.08 | 1.00 | |||
T | −0.30 | −0.20 | −0.12 | 0.21 | 0.14 | −0.33 | −0.04 | −0.36 | 0.27 | 0.10 | −0.50 | 0.19 | 0.36 | 0.43 | 0.02 | 0.13 | 0.10 | −0.03 | 0.10 | −0.30 | 1.00 | ||
Transp | −0.05 | −0.01 | −0.39 | 0.61 | 0.54 | −0.22 | 0.28 | −0.27 | 0.62 | 0.46 | −0.50 | 0.60 | 0.62 | 0.63 | 0.00 | 0.55 | 0.50 | 0.38 | 0.50 | −0.24 | 0.31 | 1.00 | |
Turb | 0.28 | 0.23 | 0.20 | −0.37 | −0.27 | 0.68 | −0.01 | 0.77 | −0.39 | −0.20 | 0.74 | −0.34 | −0.61 | −0.63 | −0.03 | −0.38 | −0.22 | −0.10 | −0.22 | 0.56 | −0.54 | −0.58 | 1.00 |
Parameter | T_Alc | Ca | CHL_A | Cl | Cond | TC | Hardness | E. coli | K | Mg | N_NO3 | Na | DO | SatO2 | P_PO4 | pH | S | SO4 | TDS | TSS | T | Transp | Turb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T_Alc | |||||||||||||||||||||||
Ca | 0.00 | ||||||||||||||||||||||
CHL_A | 0.30 | 0.39 | |||||||||||||||||||||
Cl | 0.00 | 0.00 | 0.00 | ||||||||||||||||||||
Cond | 0.00 | 0.00 | 0.00 | 0.00 | |||||||||||||||||||
TC | 0.30 | 0.20 | 0.78 | 0.05 | 0.14 | ||||||||||||||||||
Hardness | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.95 | |||||||||||||||||
E. coli | 0.17 | 0.32 | 0.67 | 0.01 | 0.04 | 0.00 | 0.65 | ||||||||||||||||
K | 0.34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.01 | |||||||||||||||
Mg | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 | 0.00 | 0.13 | 0.00 | ||||||||||||||
N_NO3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.87 | |||||||||||||
Na | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | ||||||||||||
DO | 0.39 | 0.52 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||||||||||
SatO2 | 0.26 | 0.67 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | ||||||||||
P_PO4 | 0.32 | 0.40 | 0.80 | 0.51 | 0.41 | 0.81 | 0.25 | 0.78 | 0.66 | 0.24 | 0.60 | 0.49 | 0.25 | 0.24 | |||||||||
pH | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.70 | ||||||||
S | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.23 | 0.00 | 0.08 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 0.00 | 0.38 | 0.00 | |||||||
SO4 | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.52 | 0.00 | 0.23 | 0.00 | 0.00 | 0.26 | 0.00 | 0.00 | 0.00 | 0.66 | 0.00 | 0.00 | ||||||
TDS | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.35 | 0.00 | 0.11 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 0.00 | 0.43 | 0.00 | 0.00 | 0.00 | |||||
TSS | 0.00 | 0.09 | 0.99 | 0.69 | 0.79 | 0.00 | 0.21 | 0.00 | 0.63 | 0.48 | 0.00 | 0.95 | 0.00 | 0.00 | 0.89 | 0.07 | 0.78 | 0.17 | 0.29 | ||||
T | 0.00 | 0.0 | 0.13 | 0.01 | 0.07 | 0.00 | 0.64 | 0.00 | 0.00 | 0.21 | 0.00 | 0.01 | 0.00 | 0.00 | 0.82 | 0.10 | 0.20 | 0.68 | 0.18 | 0.00 | |||
Transp | 0.49 | 0.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Turb | 0.00 | 0.0 | 0.01 | 0.00 | 0.00 | 0.00 | 0.86 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.71 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.0 |
Parameter | Dim1 | Dim2 |
---|---|---|
T_Alc | 0.328 | 0.663 |
Ca | 0.482 | 0.664 |
CHL_A | −0.287 | 0.057 |
Cl | 0.959 | 0.021 |
Cond | 0.966 | 0.177 |
TC | −0.243 | 0.608 |
Hardness | 0.809 | 0.502 |
E. coli | −0.310 | 0.656 |
K | 0.922 | −0.049 |
Mg | 0.927 | 0.293 |
N_NO3 | −0.232 | 0.747 |
Na | 0.963 | 0.055 |
DO | 0.701 | −0.474 |
SatO2 | 0.699 | −0.500 |
P_PO4 | −0.038 | −0.107 |
pH | 0.803 | −0.042 |
S | 0.882 | 0.158 |
SO4 | 0.844 | 0.339 |
TDS | 0.903 | 0.232 |
TSS | −0.090 | 0.555 |
T | 0.239 | −0.581 |
Transp | 0.647 | −0.389 |
Turb | −0.441 | 0.812 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cubilla-Montilla, M.; Carrasco, G.; Castillo, M. Assessment of Water Quality in the Panama Canal Watershed Using Multivariate Analysis of Physicochemical and Biological Parameters. Water 2025, 17, 979. https://doi.org/10.3390/w17070979
Cubilla-Montilla M, Carrasco G, Castillo M. Assessment of Water Quality in the Panama Canal Watershed Using Multivariate Analysis of Physicochemical and Biological Parameters. Water. 2025; 17(7):979. https://doi.org/10.3390/w17070979
Chicago/Turabian StyleCubilla-Montilla, Mitzi, Gonzalo Carrasco, and Marisela Castillo. 2025. "Assessment of Water Quality in the Panama Canal Watershed Using Multivariate Analysis of Physicochemical and Biological Parameters" Water 17, no. 7: 979. https://doi.org/10.3390/w17070979
APA StyleCubilla-Montilla, M., Carrasco, G., & Castillo, M. (2025). Assessment of Water Quality in the Panama Canal Watershed Using Multivariate Analysis of Physicochemical and Biological Parameters. Water, 17(7), 979. https://doi.org/10.3390/w17070979