Bivariate and Partial Wavelet Coherence for Revealing the Remote Impacts of Large-Scale Ocean-Atmosphere Oscillations on Drought Variations in Xinjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. SPEI
2.3.2. Seasonal Kendall Test and Hierarchical Clustering
2.3.3. Correlation Analysis and Partial Correlation Analysis
2.3.4. A Brief Review of Wavelet Coherence Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global Warming and Changes in Drought. Nat. Clim. Change 2014, 4, 17–22. [Google Scholar]
- Mehr, A.D.; Vaheddoost, B. Identification of the trends associated with the SPI and SPEI indices across Ankara Turkey. Theor. Appl. Climatol. 2020, 139, 1531–1542. [Google Scholar]
- Otop, I.; Adynkiewicz-Piragas, M.; Zdralewicz, I.; Lejcus, I.; Miszuk, B. The Drought of 2018–2019 in the Lusatian Neisse River Catchment in Relation to the Multiannual Conditions. Water 2023, 15, 1647. [Google Scholar] [CrossRef]
- Gao, M.; Ge, R.; Wang, Y. Spring Meteorological Drought over East Asia and Its Associations with Large-Scale Climate Variations. Water 2024, 6, 1508. [Google Scholar]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role ff Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Li, W.; Liu, X.; Zhang, X. Drought: Progress in Broadening its Understanding. Wiley Interdiscip. Rev. Water 2020, 7, e1407. [Google Scholar]
- Wang, Y.; Zhang, J.; Guo, E.; Dong, Z.; Quan, L. Estimation of Variability Characteristics of Regional Drought during 1964–2013 in Horqin Sandy Land China. Water 2016, 8, 543. [Google Scholar] [CrossRef]
- Wang, W.; Du, Q.; Yang, H.; Jin, P.; Wang, F.; Liang, Q. Drought patterns and multiple teleconnection factors driving forces in China during 1960–2018. J. Hydrol. 2024, 631, 130821. [Google Scholar]
- Herrera-Estrada, J.E.; Satoh, Y.; Sheffield, J. Spatiotemporal Dynamics of Global Drought. Geophys. Res. Lett. 2017, 44, 2254–2263. [Google Scholar] [CrossRef]
- Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. Atmos. 2011, 116, D12115. [Google Scholar]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435–438. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. European drought climatologies and trends based on a multi-indicator approach. Glob. Planet. Change 2015, 127, 50–57. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Santos, J.F.; Tadic, L.; Portela, M.M.; Espinosa, L.A.; Brlekovic, T. Drought Characterization in Croatia Using E-OBS Gridded Data. Water 2023, 15, 3806. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Pan, Y.; Bai, J.; Li, S. Performance of Different Drought Indices for Agriculture Drought in the North China Plain. J. Arid Land 2018, 10, 507–516. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.; Lai, H.; Men, R.; Wang, F.; Feng, K.; Qi, Q.; Zhang, Z.; Quan, Q.; Huang, S. Dynamic Characteristics of Meteorological Drought and Its Impact on Vegetation in an Arid and Semi-Arid Region. Water 2023, 15, 3882. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, X.; Guo, E.; Cong, L.; Wang, Y. Characteristics of the Spatial and Temporal Distribution of Drought in Northeast China, 1961–2020. Water 2024, 16, 234. [Google Scholar] [CrossRef]
- Das, P.K.; Dutta, D.; Sharma, J.R.; Dadhwal, V.K. Trends and Behaviour of Meteorological Drought (1901–2008) over Indian Region Using Standardized Precipitation—Evapotranspiration Index. Int. J. Climatol. 2016, 36, 909–916. [Google Scholar] [CrossRef]
- Bao, G.; Liu, Y.; Liu, N.; Linderholm, H. Drought Variability in Eastern Mongolian Plateau and its Linkages to the Large-Scale Climate Forcing. Clim. Dyn. 2015, 44, 717–733. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X. Spatiotemporal Trends of Dryness/Wetness Duration and Severity: The Respective Contribution of Precipitation and Temperature. Atmos. Res. 2019, 216, 176–185. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (Spei) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Hu, W.; She, D.; Xia, J.; He, B.; Hu, C. Dominant Patterns of Dryness/Wetness Variability In The Huang-Huai-Hai River Basin and its Relationship with Multiscale Climate Oscillations. Atmos. Res. 2021, 247, 105148. [Google Scholar]
- Manzano, A.; Clemente, M.A.; Morata, A.; Luna, M.Y.; Beguería, S.; Vicente-Serrano, S.M.; Martín, M.L. Analysis of the Atmospheric Circulation Pattern Effects over SPEI Drought Index in Spain. Atmos. Res. 2019, 230, 104630. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar]
- Ma, B.; Zhang, B.; Jia, L.; Huang, H. Conditional Distribution Selection For Spei-Daily and Its Revealed Meteorological Drought Characteristics in China from 1961 to 2017. Atmos. Res. 2020, 246, 105108. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Lyon, B. The strength of El Niño and the spatial extent of tropical drought. Geophys. Res. Lett. 2004, 31, L21204. [Google Scholar]
- Gibbs, W.J.; Maher, J.V. Rainfall Deciles as Drought Indicators; Bureau of Meteorology, Commonwealth of Australia: Melbourne, Australia, 1967.
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Silver Spring, MD, USA, 1965.
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Anaheim, CA, USA, 1993. [Google Scholar]
- Yu, H.; Zhang, Q.; Xu, C.-Y.; Du, J.; Sun, P.; Hu, P. Modified Palmer Drought Severity Index: Model Improvement and Application. Environ. Int. 2019, 130, 104951. [Google Scholar] [CrossRef]
- Erb, M.; Emile-Geay, J.; Hakim, G.; Steiger, N.; Steig, E. Atmospheric dynamics drive most interannual U.S. droughts over the last millennium. Sci. Adv. 2020, 6, eaay7268. [Google Scholar]
- Yoon, J.; Wang, S.; Gillies, R.; Kravitz, B.; Hipps, L.; Rasch, P. Spatiotemporal variations in extreme precipitation on the middle and lower reaches of the Yangtze River Basin (1970–2018). Nat. Commun. 2015, 6, 8657. [Google Scholar]
- Wang, H.; Chen, Y.; Pan, Y.; Li, W. Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. J. Hydrol. 2015, 523, 283–296. [Google Scholar] [CrossRef]
- Irfan, U.; Xieyao, M.; Jun, Y.; Abubaker, O.; Asmerom, H.B.; Farhan, S.; Vedaste, I.; Sidra, S.; Muhammad, A.; Mengyang, L. Spatiotemporal Characteristics of Meteorological Drought Variability and trends (1981–2020) over South Asia and the associated large-scale circulation patterns. Clim. Dynam. 2023, 60, 2261–2284. [Google Scholar]
- Yang, R.; Xing, B. Teleconnections of Large-Scale Climate Patterns to Regional Drought in Mid-Latitudes: A Case Study in Xinjiang, China. Atmosphere 2022, 13, 230. [Google Scholar] [CrossRef]
- Grinsted, A.; Morre, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc. Geoph. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C. Technical note: Multiple wavelet coherence for untangling scale specific andlocalized multivariate relationships in geosciences. Hydrol. Earth Syst. Sci. 2016, 20, 3183–3191. [Google Scholar] [CrossRef]
- Mihanoviæ, H.; Orliæ, M.; Pasariæ, Z. Diurnal thermocline oscillations driven by tidal flow around an island in the Middle Adriatic. J. Mar. Syst. 2009, 78, S157–S168. [Google Scholar] [CrossRef]
- Hu, W.; Si, B. Technical Note: Improved partial wavelet coherency for understanding scale-specific and localized bivariate relationships in geosciences. Hydrol. Earth Syst. Sci. 2021, 25, 321–331. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Guan, X.; Zhao, Y.; Chen, J.; Mao, W. Recent climate and hydrological changes in amountain-basin system in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Chen, R.; Duan, K.; Shi, P.; Shang, W.; Yang, J.; He, J.; Meng, M.; Li, L. Amplification of warming-wetting in high mountains and associated mechanisms during the 21st century in Xinjiang, Central Asia. Clim. Change 2024, 177, 177. [Google Scholar] [CrossRef]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Bao, A.; Xing, W.; Feng, X.; De Maeyer, P.; Frankl, A. Identifying climate change impacts on water resources in Xinjiang, China. Sci. Total Environ. 2019, 676, 613–626. [Google Scholar]
- Shen, Y.; Shen, Y.; Guo, Y.; Zhang, Y.; Pei, H.; Brenning, A. Review of historical and projected future climatic and hydrological changes in mountainous semiarid Xinjiang (northwestern China), central Asia. Catena 2020, 187, 104343. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, L.; Huang, S. A hybrid drought index combining meteorological, hydrological, and agricultural information based on the entropy weight theory. Arab. J. Geosci. 2018, 11, 91. [Google Scholar] [CrossRef]
- Yao, J.; Zhao, Y.; Yu, X. Spatial-temporal variation and impacts of drought in Xinjiang (Northwest China) during 1961–2015. PeerJ 2018, 6, e4926. [Google Scholar] [CrossRef]
- Yao, J.; Tuoliewubieke, D.; Chen, J.; Huo, W.; Hu, W. Identification of Drought Events and Correlations with Large-Scale Ocean–Atmospheric Patterns of Variability: A Case Study in Xinjiang, China. Atmosphere 2019, 10, 94. [Google Scholar] [CrossRef]
- Luo, N.; Yu, R.; Mao, D.; Wen, B.; Liu, X. Spatiotemporal variations of wetlands in the northern Xinjiang with relationship to climate change. Wetl. Ecol. Manag. 2021, 29, 617–631. [Google Scholar] [CrossRef]
- Wen, X.; Wu, X.; Gao, M. Spatiotemporal variability of temperature and precipitation in Gansu Province (Northwest China) during 1951–2015. Atmo. Res. 2017, 197, 132–149. [Google Scholar] [CrossRef]
- SPEI. Available online: https://cran.r-project.org/web/packages/SPEI/index.html (accessed on 2 April 2024).
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of Trend Analysis for Monthly Water Quality Data. Water Res. Res. 1982, 18, 107–121. [Google Scholar]
- Kendall. Available online: https://cran.r-project.org/web/packages/Kendall/index.html (accessed on 2 April 2024).
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Cluster. Available online: https://cran.r-project.org/web/packages/cluster/index.html (accessed on 2 April 2024).
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 7: Correlation and regression. Crit Care 2003, 7, 451–459. [Google Scholar] [CrossRef] [PubMed]
- ppcor. Available online: https://cran.r-project.org/web/packages/ppcor/index.html (accessed on 2 April 2024).
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Koopmans, L.H. The Spectral Analysis of Time Series; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- pwc. Available online: https://figshare.com/articles/software/Matlab_code_for_multiple_wavelet_coherence_and_partial_wavelet_coherency/13031123 (accessed on 15 April 2024).
- Richardson, D.; Pitman, A.J.; Ridder, N.N. Climate Influence on Compound Solar and Wind Droughts in Australia. NPJ Clim. Atmos. Sci. 2023, 6, 184. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, P.; Qin, D. New perspectives on ‘warming–wetting’ trend in Xinjiang, China. Adv. Clim. Change Res. 2020, 11, 252–260. [Google Scholar]
- Li, B.; Chen, Y.; Shi, X. Why does the temperature rise faster in the arid region of Northwest China? J. Geophys. Res. 2012, 117, D16115. [Google Scholar]
- Shi, Y.; Shen, Y.; Kang, E.; Li, D.; Ding, Y.; Zhang, G.; Hu, R. Recent and future climate change in Northwest China. Clim. Change 2007, 80, 40606. [Google Scholar]
- Peng, D.; Zhou, T. Why was the arid and semiarid Northwest China getting wetter in the recent decades? J. Geophys. Res. 2017, 122, 9060–9075. [Google Scholar]
- Long, J.; Xu, C.; Wang, Y.; Zhang, J. From meteorological to agricultural drought: Propagation time and influencing factors over diverse underlying surfaces based on CNN-LSTM model. Ecol. Inform. 2024, 82, 102681. [Google Scholar] [CrossRef]
- Li, F.; Orsoloni, Y.J.; Wang, H.J.; Gao, Y.; He, S. Atlantic Multidecadal Oscillation Modulates the Impacts of Arctic Sea Ice Decline. Geophys. Res. Lett. 2018, 45, 2497–2506. [Google Scholar]
- Zhang, Q.; Li, J.; Singh, V.P.; Bai, Y. SPI-based evaluation of drought events in Xinjiang, China. Nat. Hazards 2012, 64, 481–492. [Google Scholar]
- Li, Y.; Yao, N.; Sahin, S.; Appels, W.M. Spatiotemporal variability of four precipitation-based drought indices in Xinjiang, China. Theor. Appl. Climatol. 2016, 129, 1017–1034. [Google Scholar]
- Zhang, H.; Song, J.; Wang, G.; Wu, X.; Li, J. Spatiotemporal characteristic and forecast of drought in northern Xinjiang, China. Ecol. Indic. 2021, 127, 107712. [Google Scholar]
- Zhang, Y.; You, Q.; Lin, H.; Chen, C. Analysis of Dry/Wet Conditions in the Gan River Basin, China, and Their Association with Large-Scale Atmospheric Circulation. Glob. Planet. Change 2015, 133, 309–317. [Google Scholar]
- Hamal, K.; Sharma, S.; Pokharel, B.; Shrestha, D.; Talchabhadel, R.; Shrestha, A.; Khadka, N. Changing Pattern of Drought in Nepal and Associated Atmospheric Circulation. Atmos. Res. 2021, 262, 105798. [Google Scholar]
- Coumou, D.; Di Capua, G.; Vavrus, S.; Wang, L.; Wang, S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 2018, 9, 2959. [Google Scholar] [PubMed]
- Huang, W.; Chen, F.; Feng, S.; Chen, J.; Zhang, X. Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation. Chin. Sci. Bull. 2013, 58, 3962–3968. [Google Scholar]
- Guo, H.; Bao, A.; Liu, T.; Ndayisaba, F.; Jiang, L.; Kurban, A.; De Maeyer, P. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total Environ. 2018, 624, 523–1538. [Google Scholar] [CrossRef] [PubMed]
- Stevens, K.; Ruscher, P. Large scale climate oscillations and mesoscale surface meteorological variability in the Apalachicola-Chattahoochee-Flint River Basin. J. Hydrol. 2014, 517, 700–714. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Stepaniak, D.P. Indices of El Niño Southern Oscillation and Tropical Atlantic Sea Surface Temperature Anomalies. J. Clim. 2001, 14, 1686–1701. [Google Scholar]
- Yeh, S.W.; Kug, J.S.; Dewitte, B.; Kim, S.Y.; Jin, F.F.; An, S.I. El Niño in Changing Climate. Nature 2009, 461, 511–514. [Google Scholar]
- Cai, W.; Borlace, S.; Lengaigne, M.; van Rensch, P.; Collins, M.; Vecchi, G.A.; Jin, F.F. Increasing Frequency of Extreme El Niño Events Due To Greenhouse Warming. Nature 2014, 510, 633–637. [Google Scholar]
- Jiang, Y.; Zhou, L.; Roundy, P.E.; Hua, W.; Raghavendra, A. Increasing Influence of Indian Ocean Dipole on Precipitation over Central Equatorial Africa. Geophys. Res. Lett. 2021, 48, e2020GL092370. [Google Scholar]
- Zhang, Y.; Zhou, W.; Wang, X.; Chen, S.; Chen, J.; Li, S. Indian Ocean Dipole and ENSO’s Mechanistic Importance in Modulating The Ensuing-Summer Precipitation over Eastern China. NPJ Clim. Atmos. Sci. 2022, 5, 48. [Google Scholar]
- He, S.; Gao, Y.; Li, F.; Wang, H.; He, Y. Impact of Arctic Oscillation on the East Asian climate: A review. Earth-Sci. Rev. 2017, 164, 48–62. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Yao, S.; Jiang, D.; Zhang, Z. Moisture Sources of Heavy Precipitation in Xinjiang Characterized by Meteorological Patterns. J. Hydrometeorol. 2021, 22, 2213–2225. [Google Scholar] [CrossRef]
- Ning, G.; Luo, M.; Zhang, Q.; Wang, S.; Liu, Z.; Yang, Y.; Wu, S.; Zeng, Z. Understanding the Mechanisms of Summer Extreme Precipitation Events in Xinjiang of Arid Northwest China. J. Geophy. Res. Atmos. 2021, 126, e2020JD034111. [Google Scholar] [CrossRef]
- Chen, P.; Yao, J.; Mao, W.; Ma, L.; Chen, J.; Dilinuer, T.; Li, S. Increased Extreme Precipitation in May over Southwestern Xinjiang in Relation to Eurasian Snow Cover in Recent Years. J. Clim. 2024, 37, 2695–2711. [Google Scholar] [CrossRef]
Index Name | Core Variables | Timescale | Applicable Scenarios |
---|---|---|---|
Moisture Index (MI) [26] | Precipitation, potential evapotranspiration | Monthly or longer | Agricultural drought monitoring, crop water stress assessment |
Weighted Anomaly Standardized Precipitation (WASP) [27] | Precipitation | 1–12 months | Rapid assessment of precipitation deficits |
Rainfall Deciles (RDs) [28] | Precipitation | Monthly or longer | Assess the current precipitation patterns |
Palmer Drought Severity Index (PDSI) [29] | Precipitation, temperature, soil moisture | Long-term (annual or multi-year) | Drought severity and duration |
Standardized Precipitation Index (SPI) [30] | Precipitation | Multiple scales (1–48 months) | Meteorological and hydrological drought monitoring |
Standardized Precipitation Evapotranspiration Index (SPEI) [13] | Precipitation, potential evapotranspiration | Multiple scales (1–48 months) | Meteorological drought in temperature-sensitive regions |
Modified PDSI [31] | Precipitation, temperature, potential evapotranspiration | Long-term (annual or multi-year) | Cumulative drought impact assessment |
SPEI Value | Category |
---|---|
SPEI | extreme wet |
SPEI | severe wet |
SPEI | moderate wet |
SPEI | slight wet |
SPEI | near normal |
SPEI | slight dry |
SPEI | moderate dry |
SPEI | severe dry |
SPEI | extreme dry |
SOI | PDO | DMI | AO | NAO | |
---|---|---|---|---|---|
Cluster 1 | 0.33 (5.46%) | 0.34 (6.45%) | 0.34 (2.88%) | 0.38 (9.46%) | 0.34 (5.67%) |
Cluster 2 | 0.34 (6.58%) | 0.35 (6.79%) | 0.29 (4.43%) | 0.37 (10.32%) | 0.35 (10.1%) |
Cluster 3 | 0.31 (3.31%) | 0.32 (4.72%) | 0.30 (4.15%) | 0.35 (7.76%) | 0.33 (7.22%) |
Cluster 4 | 0.35 (6.8%) | 0.35 (8.63%) | 0.30 (4.02%) | 0.37 (8.49%) | 0.36 (6.22%) |
Cluster 5 | 0.34 (5.3%) | 0.33 (6.72%) | 0.34 (5.81%) | 0.33 (5.84%) | 0.33 (5.91%) |
Cluster 6 | 0.35 (8.13%) | 0.33 (5.62%) | 0.35 (8.47%) | 0.32 (5.52%) | 0.33 (6.33%) |
SOI−(PDO, DMI, AO) | PDO−(SOI, AO) | DMI−(SOI) | AO−(SOI, PDO, NAO) | NAO−(AO) | |
---|---|---|---|---|---|
Cluster 1 | 0.43 (4.64%) | 0.4 (6.28%) | 0.34 (6.08%) | 0.46 (7.2%) | 0.39 (5.78%) |
Cluster 2 | 0.44 (6.84%) | 0.4 (5.39%) | 0.36 (7.82%) | 0.43 (4.13%) | 0.4 (6.97%) |
Cluster 3 | 0.41 (3.75%) | 0.38 (3.53%) | 0.33 (4.15%) | 0.44 (7.99%) | 0.36 (5.15%) |
Cluster 4 | 0.42 (4.17%) | 0.38 (3.89%) | 0.35 (4.47%) | 0.43 (4.74%) | 0.37 (5.32%) |
Cluster 5 | 0.45 (6.03%) | 0.41 (4.45%) | 0.38 (6.09%) | 0.4 (5.72%) | 0.34 (3.42%) |
Cluster 6 | 0.43 (7.44%) | 0.41 (7.26%) | 0.35 (3.29%) | 0.41 (6.24%) | 0.35 (2.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Gao, M.; Ning, J.; Tang, J. Bivariate and Partial Wavelet Coherence for Revealing the Remote Impacts of Large-Scale Ocean-Atmosphere Oscillations on Drought Variations in Xinjiang, China. Water 2025, 17, 957. https://doi.org/10.3390/w17070957
Jiang L, Gao M, Ning J, Tang J. Bivariate and Partial Wavelet Coherence for Revealing the Remote Impacts of Large-Scale Ocean-Atmosphere Oscillations on Drought Variations in Xinjiang, China. Water. 2025; 17(7):957. https://doi.org/10.3390/w17070957
Chicago/Turabian StyleJiang, Linchu, Meng Gao, Jicai Ning, and Junhu Tang. 2025. "Bivariate and Partial Wavelet Coherence for Revealing the Remote Impacts of Large-Scale Ocean-Atmosphere Oscillations on Drought Variations in Xinjiang, China" Water 17, no. 7: 957. https://doi.org/10.3390/w17070957
APA StyleJiang, L., Gao, M., Ning, J., & Tang, J. (2025). Bivariate and Partial Wavelet Coherence for Revealing the Remote Impacts of Large-Scale Ocean-Atmosphere Oscillations on Drought Variations in Xinjiang, China. Water, 17(7), 957. https://doi.org/10.3390/w17070957